17 found
Order:
  1. Philosophy of Logic – Reexamining the Formalized Notion of Truth.Pete Olcott - manuscript
    Because formal systems of symbolic logic inherently express and represent the deductive inference model formal proofs to theorem consequences can be understood to represent sound deductive inference to true conclusions without any need for other representations such as model theory.
    Download  
     
    Export citation  
     
    Bookmark  
  2.  20
    Minimal Type Theory (YACC BNF).Pete Olcott - manuscript
    This is the formal YACC BNF specification for Minimal Type Theory (MTT). MTT was created by augmenting the syntax of First Order Logic (FOL) to specify Higher Order Logic (HOL) expressions using FOL syntax. Syntax is provided to enable quantifiers to specify type. FOL is a subset of MTT. The ASSIGN_ALIAS operator := enables FOL expressions to be chained together to form HOL expressions.
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  3. Minimal Type Theory (MTT).Pete Olcott - manuscript
    Minimal Type Theory (MTT) is based on type theory in that it is agnostic about Predicate Logic level and expressly disallows the evaluation of incompatible types. It is called Minimal because it has the fewest possible number of fundamental types, and has all of its syntax expressed entirely as the connections in a directed acyclic graph.
    Download  
     
    Export citation  
     
    Bookmark  
  4.  17
    Expressing Truth Directly Within a Formal System with No Need for Model Theory.Pete Olcott - manuscript
    Because formal systems of symbolic logic inherently express and represent the deductive inference model formal proofs to theorem consequences can be understood to represent sound deductive inference to deductive conclusions without any need for other representations.
    Download  
     
    Export citation  
     
    Bookmark  
  5.  15
    Tarski Undefinability Theorem Succinctly Refuted.Pete Olcott - manuscript
    If the conclusion of the Tarski Undefinability Theorem was that some artificially constrained limited notions of a formal system necessarily have undecidable sentences, then Tarski made no mistake within his assumptions. When we expand the scope of his investigation to other notions of formal systems we reach an entirely different conclusion showing that Tarski's assumptions were wrong.
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  6. Formalizing the Logical (Self-Reference) Error of the Liar Paradox.Pete Olcott - manuscript
    This paper decomposes the Liar Paradox into its semantic atoms using Meaning Postulates (1952) provided by Rudolf Carnap. Formalizing truth values of propositions as Boolean properties of these propositions is a key new insight. This new insight divides the translation of a declarative sentence into its equivalent mathematical proposition into three separate steps. When each of these steps are separately examined the logical error of the Liar Paradox is unequivocally shown.
    Download  
     
    Export citation  
     
    Bookmark  
  7.  11
    Eliminating Undecidability and Incompleteness in Formal Systems (by Making Formal Systems Correspond to the Sound Deductive Inference Model).Pete Olcott - manuscript
    Tarski "proved" that there cannot possibly be any correct formalization of the notion of truth entirely on the basis of an insufficiently expressive formal system that was incapable of recognizing and rejecting semantically incorrect expressions of language. -/- An alternative that corrects the shortcomings of the conventional notion of formal systems is provided that totally eliminates incompleteness and undecidability from all formal systems capable of directly expressing a provability predicate (thus without diagonalization).
    Download  
     
    Export citation  
     
    Bookmark  
  8.  88
    The Notion of Truth in Natural and Formal Languages.Pete Olcott - manuscript
    For any natural (human) or formal (mathematical) language L we know that an expression X of language L is true if and only if there are expressions Γ of language L that connect X to known facts. -/- By extending the notion of a Well Formed Formula to include syntactically formalized rules for rejecting semantically incorrect expressions we recognize and reject expressions that evaluate to neither True nor False.
    Download  
     
    Export citation  
     
    Bookmark  
  9. Refuting Incompleteness and Undefinability.Pete Olcott - manuscript
    Within the (Haskell Curry) notion of a formal system we complete Tarski's formal correctness: ∀x True(x) ↔ ⊢ x and use this finally formalized notion of Truth to refute his own Undefinability Theorem (based on the Liar Paradox), the Liar Paradox, and the (Panu Raatikainen) essence of the conclusion of the 1931 Incompleteness Theorem.
    Download  
     
    Export citation  
     
    Bookmark  
  10. Semantic WFF(X) Specified Syntactically.Pete Olcott - manuscript
    Hypothesis: WFF(x) can be applied syntactically to the semantics of formalized declarative sentences such that: WFF(x) ↔ (x ↦ True) ∨ (x ↦ False) (see proof sketch below) For clarity we focus on simple propositions without binary logical connectives.
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  11.  7
    The Prolog Inference Model Refutes Tarski Undefinability.Pete Olcott - manuscript
    The generalized conclusion of the Tarski and Gödel proofs: All formal systems of greater expressive power than arithmetic necessarily have undecidable sentences. Is not the immutable truth that Tarski made it out to be it is only based on his starting assumptions. -/- When we reexamine these starting assumptions from the perspective of the philosophy of logic we find that there are alternative ways that formal systems can be defined that make undecidability inexpressible in all of these formal systems.
    Download  
     
    Export citation  
     
    Bookmark  
  12.  95
    Provability with Minimal Type Theory.Pete Olcott - manuscript
    Minimal Type Theory (MTT) shows exactly how all of the constituent parts of an expression relate to each other (in 2D space) when this expression is formalized using a directed acyclic graph (DAG). This provides substantially greater expressiveness than the 1D space of FOPL syntax. -/- The increase in expressiveness over other formal systems of logic shows the Pathological Self-Reference Error of expressions previously considered to be sentences of formal systems. MTT shows that these expressions were never truth bearers, thus (...)
    Download  
     
    Export citation  
     
    Bookmark  
  13.  44
    Halting Problem Proof From Finite Strings to Final States.Pete Olcott - manuscript
    If there truly is a proof that shows that no universal halt decider exists on the basis that certain tuples: (H, Wm, W) are undecidable, then this very same proof (implemented as a Turing machine) could be used by H to reject some of its inputs. When-so-ever the hypothetical halt decider cannot derive a formal proof from its input strings and initial state to final states corresponding the mathematical logic functions of Halts(Wm, W) or Loops(Wm, W), halting undecidability has been (...)
    Download  
     
    Export citation  
     
    Bookmark  
  14.  42
    Defining a Decidability Decider for the Halting Problem.Pete Olcott - manuscript
    When we understand that every potential halt decider must derive a formal mathematical proof from its inputs to its final states previously undiscovered semantic details emerge. -/- When-so-ever the potential halt decider cannot derive a formal proof from its input strings to its final states of Halts or Loops, undecidability has been decided. -/- The formal proof involves tracing the sequence of state transitions of the input TMD as syntactic logical consequence inference steps in the formal language of Turing Machine (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15.  51
    Formalizing Self-Reference Paradox Using Predicate Logic.Pete Olcott - manuscript
    We begin with the hypothetical assumption that Tarski’s 1933 formula ∀ True(x) φ(x) has been defined such that ∀x Tarski:True(x) ↔ Boolean-True. On the basis of this logical premise we formalize the Truth Teller Paradox: "This sentence is true." showing syntactically how self-reference paradox is semantically ungrounded.
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  16.  19
    Defining a Decidability Decider.Pete Olcott - manuscript
    By extending the notion of a Well Formed Formula to include syntactically formalized rules for rejecting semantically incorrect expressions we recognize and reject expressions that have the semantic error of Pathological self-reference(Olcott 2004). The foundation of this system requires the notion of a BaseFact that anchors the semantic notions of True and False. When-so-ever a formal proof from BaseFacts of language L to a closed WFF X or ~X of language L does not exist X is decided to be semantically (...)
    Download  
     
    Export citation  
     
    Bookmark  
  17. Philosophy of Logic – Reexamining the Formalized Notion of Truth.Pete Olcott - manuscript
    Tarski "proved" that there cannot possibly be any correct formalization of the notion of truth entirely on the basis of an insufficiently expressive formal system that was incapable of recognizing and rejecting semantically incorrect expressions of language. -/- The only thing required to eliminate incompleteness, undecidability and inconsistency from formal systems is transforming the formal proofs of symbolic logic to use the sound deductive inference model.
    Download  
     
    Export citation  
     
    Bookmark