Results for 'Quantum mechanics'

999 found
Order:
  1. Quantum Mechanics and 3 N - Dimensional Space.Bradley Monton - 2006 - Philosophy of Science 73 (5):778-789.
    I maintain that quantum mechanics is fundamentally about a system of N particles evolving in three-dimensional space, not the wave function evolving in 3N-dimensional space.
    Download  
     
    Export citation  
     
    Bookmark   56 citations  
  2. Quantum Mechanics in a Time-Asymmetric Universe: On the Nature of the Initial Quantum State.Eddy Keming Chen - forthcoming - British Journal for the Philosophy of Science:axy068.
    In a quantum universe with a strong arrow of time, we postulate a low-entropy boundary condition to account for the temporal asymmetry. In this paper, I show that the Past Hypothesis also contains enough information to simplify the quantum ontology and define a unique initial condition in such a world. First, I introduce Density Matrix Realism, the thesis that the quantum universe is described by a fundamental density matrix that represents something objective. This stands in sharp contrast (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  3. The Principles of Quantum Mechanics.P. A. M. Dirac - 1930 - Clarendon Press.
    THE PRINCIPLE OF SUPERPOSITION. The need for a quantum theory Classical mechanics has been developed continuously from the time of Newton and applied to an ...
    Download  
     
    Export citation  
     
    Bookmark   218 citations  
  4.  75
    Quantum Mechanics Over Sets.David Ellerman - forthcoming - Synthese.
    This paper shows how the classical finite probability theory (with equiprobable outcomes) can be reinterpreted and recast as the quantum probability calculus of a pedagogical or toy model of quantum mechanics over sets (QM/sets). There have been several previous attempts to develop a quantum-like model with the base field of ℂ replaced by ℤ₂. Since there are no inner products on vector spaces over finite fields, the problem is to define the Dirac brackets and the probability (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  5. Quantum Mechanics in Terms of Realism.Arthur Jabs - 2017 - arXiv.Org.
    We expound an alternative to the Copenhagen interpretation of the formalism of nonrelativistic quantum mechanics. The basic difference is that the new interpretation is formulated in the language of epistemological realism. It involves a change in some basic physical concepts. The ψ function is no longer interpreted as a probability amplitude of the observed behaviour of elementary particles but as an objective physical field representing the particles themselves. The particles are thus extended objects whose extension varies in time (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  6. Quantum Mechanics and Paradigm Shifts.Valia Allori - 2015 - Topoi 34 (2):313-323.
    It has been argued that the transition from classical to quantum mechanics is an example of a Kuhnian scientific revolution, in which there is a shift from the simple, intuitive, straightforward classical paradigm, to the quantum, convoluted, counterintuitive, amazing new quantum paradigm. In this paper, after having clarified what these quantum paradigms are supposed to be, I analyze whether they constitute a radical departure from the classical paradigm. Contrary to what is commonly maintained, I argue (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  7. Self-Locating Uncertainty and the Origin of Probability in Everettian Quantum Mechanics.Charles T. Sebens & Sean M. Carroll - 2016 - British Journal for the Philosophy of Science (1):axw004.
    A longstanding issue in attempts to understand the Everett (Many-Worlds) approach to quantum mechanics is the origin of the Born rule: why is the probability given by the square of the amplitude? Following Vaidman, we note that observers are in a position of self-locating uncertainty during the period between the branches of the wave function splitting via decoherence and the observer registering the outcome of the measurement. In this period it is tempting to regard each branch as equiprobable, (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  8. An Intrinsic Theory of Quantum Mechanics: Progress in Field's Nominalistic Program, Part I.Eddy Keming Chen - 2017
    In this paper, I introduce an intrinsic account of the quantum state. This account contains three desirable features that the standard platonistic account lacks: (1) it does not refer to any abstract mathematical objects such as complex numbers, (2) it is independent of the usual arbitrary conventions in the wave function representation, and (3) it explains why the quantum state has its amplitude and phase degrees of freedom. -/- Consequently, this account extends Hartry Field’s program outlined in Science (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  9.  88
    Composite Time Concept for Quantum Mechanics and Bio-Psychology.Franz Klaus Jansen - 2018 - Philosophy Study 8 (2):49-66.
    Time has multiple aspects and is difficult to define as one unique entity, which therefore led to multiple interpretations in physics and philosophy. However, if the perception of time is considered as a composite time concept, it can be decomposed into basic invariable components for the perception of progressive and support-fixed time and into secondary components with possible association to unit-defined time or tense. Progressive time corresponds to Bergson’s definition of duration without boundaries, which cannot be divided for measurements. Time (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  10. Scientific Realism Meets Metaphysics of Quantum Mechanics.Juha Saatsi - 2017 - In Philosophers Think About Quantum Theory.
    I examine the epistemological debate on scientific realism in the context of quantum physics, focusing on the empirical underdetermin- ation of different formulations and interpretations of QM. I will argue that much of the interpretational, metaphysical work on QM tran- scends the kinds of realist commitments that are well-motivated in the light of the history of science. I sketch a way of demarcating empirically well-confirmed aspects of QM from speculative quantum metaphysics in a way that coheres with anti-realist (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  11. Axiomatic Foundations of Quantum Mechanics Revisited: The Case for Systems.S. E. Perez-Bergliaffa, Gustavo E. Romero & H. Vucetich - 1996 - International Journal of Theoretical Phyisics 35:1805-1819.
    We present an axiomatization of non-relativistic Quantum Mechanics for a system with an arbitrary number of components. The interpretation of our system of axioms is realistic and objective. The EPR paradox and its relation with realism is discussed in this framework. It is shown that there is no contradiction between realism and recent experimental results.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  12. Grades of Individuality. A Pluralistic View of Identity in Quantum Mechanics and in the Sciences.Mauro Dorato & Matteo Morganti - 2013 - Philosophical Studies 163 (3):591-610.
    This paper offers a critical assessment of the current state of the debate about the identity and individuality of material objects. Its main aim, in particular, is to show that, in a sense to be carefully specified, the opposition between the Leibnizian ‘reductionist’ tradition, based on discernibility, and the sort of ‘primitivism’ that denies that facts of identity and individuality must be analysable has become outdated. In particular, it is argued that—contrary to a widespread consensus—‘naturalised’ metaphysics supports both the acceptability (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  13. Quantum Mechanics as a Deterministic Theory of a Continuum of Worlds.Kim Joris Boström - 2015 - Quantum Studies: Mathematics and Foundations 2 (3):315-347.
    A non-relativistic quantum mechanical theory is proposed that describes the universe as a continuum of worlds whose mutual interference gives rise to quantum phenomena. A logical framework is introduced to properly deal with propositions about objects in a multiplicity of worlds. In this logical framework, the continuum of worlds is treated in analogy to the continuum of time points; both “time” and “world” are considered as mutually independent modes of existence. The theory combines elements of Bohmian mechanics (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  14. Quantum Mechanics, Metaphysics, and Bohm's Implicate Order.George Williams - 2019 - Mind and Matter 2 (17):155-186.
    The persistent interpretation problem for quantum mechanics may indicate an unwillingness to consider unpalatable assumptions that could open the way toward progress. With this in mind, I focus on the work of David Bohm, whose earlier work has been more influential than that of his later. As I’ll discuss, I believe two assumptions play a strong role in explaining the disparity: 1) that theories in physics must be grounded in mathematical structure and 2) that consciousness must supervene on (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15. Separability, Locality, and Higher Dimensions in Quantum Mechanics.Alyssa Ney - manuscript
    *A shortened version of this paper will appear in Current Controversies in Philosophy of Science, Dasgupta and Weslake, eds. Routledge.* This paper describes the case that can be made for a high-dimensional ontology in quantum mechanics based on the virtues of avoiding both nonseparability and non locality.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  16. The History of Quantum Mechanics as a Decisive Argument Favoring Einstein Over Lorentz.R. M. Nugayev - 1985 - Philosophy of Science 52 (1):44-63.
    PHILOSOPHY OF SCIENCE, vol. 52, number 1, pp.44-63. R.M. Nugayev, Kazan State |University, USSR. -/- THE HISTORY OF QUANTUM THEORY AS A DECISIVE ARGUMENT FAVORING EINSTEIN OVER LJRENTZ. -/- Abstract. Einstein’s papers on relativity, quantum theory and statistical mechanics were all part of a single research programme ; the aim was to unify mechanics and electrodynamics. It was this broader program – which eventually split into relativistic physics and quantummmechanics – that superseded Lorentz’s theory. The argument (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  17. From Mathematics to Quantum Mechanics - On the Conceptual Unity of Cassirer’s Philosophy of Science.Thomas Mormann - 2015 - In Sebastian Luft & J. Tyler Friedman (eds.), The Philosophy of Ernst Cassirer: A Novel Assessment. De Gruyter. pp. 31-64.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  18. The Roles of One Thought Experiment in Interpreting Quantum Mechanics. Werner Heisenberg Meets Thomas Kuhn.Maarten Van Dyck - 2003 - Philosophica 72 (3):79-103.
    Recent years saw the rise of an interest in the roles and significance of thought experiments in different areas of human thinking. Heisenberg's gamma ray microscope is no doubt one of the most famous examples of a thought experiment in physics. Nevertheless, this particular thought experiment has not received much detailed attention in the philosophical literature on thought experiments up to date, maybe because of its often claimed inadequacies. In this paper, I try to do two things: to provide an (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  19.  98
    Quantum Mechanics and Consciousness: Thoughts on a Causal Correspondence Theory.Ian J. Thompson - 2017 - In S. Gosh (ed.), Quantum Physics & Consciousness - Thoughts of Founding Fathers of Quantum Physics and other Renowned Scholars. Kolkata, India: Bhaktivedanta Institute. pp. 173-185.
    Which way does causation proceed? The pattern in the material world seems to be upward: particles to molecules to organisms to brains to mental processes. In contrast, the principles of quantum mechanics allow us to see a pattern of downward causation. These new ideas describe sets of multiple levels in which each level influences the levels below it through generation and selection. Top-down causation makes exciting sense of the world: we can find analogies in psychology, in the formation (...)
    Download  
     
    Export citation  
     
    Bookmark  
  20.  50
    If Quantum Mechanics Is the Solution, What Should the Problem Be?Vasil Penchev - 2020 - Philosophy of Science eJournal (Elsevier: SSRN) 13 (32):1-10.
    The paper addresses the problem, which quantum mechanics resolves in fact. Its viewpoint suggests that the crucial link of time and its course is omitted in understanding the problem. The common interpretation underlain by the history of quantum mechanics sees discreteness only on the Plank scale, which is transformed into continuity and even smoothness on the macroscopic scale. That approach is fraught with a series of seeming paradoxes. It suggests that the present mathematical formalism of (...) mechanics is only partly relevant to its problem, which is ostensibly known. The paper accepts just the opposite: The mathematical solution is absolute relevant and serves as an axiomatic base, from which the real and yet hidden problem is deduced. Wave-particle duality, Hilbert space, both probabilistic and many-worlds interpretations of quantum mechanics, quantum information, and the Schrödinger equation are included in that base. The Schrödinger equation is understood as a generalization of the law of energy conservation to past, present, and future moments of time. The deduced real problem of quantum mechanics is: “What is the universal law describing the course of time in any physical change therefore including any mechanical motion?”. (shrink)
    Download  
     
    Export citation  
     
    Bookmark  
  21. Weak Discernibility, Quantum Mechanics and the Generalist Picture.Matteo Morganti - 2008 - Facta Philosophica 10 (1/2):155--183.
    Saunders' recent arguments in favour of the weak discernibility of (certain) quantum particles seem to be grounded in the 'generalist' view that science only provides general descriptions of the worlIn this paper, I introduce the ‘generalist’ perspective and consider its possible justification and philosophical basis; and then look at the notion of weak discernibility. I expand on the criticisms formulated by Hawley (2006) and Dieks and Veerstegh (2008) and explain what I take to be the basic problem: that the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  22.  77
    Quantum Mechanics Unscrambled.Jean-Michel Delhotel - 2014
    Is quantum mechanics about ‘states’? Or is it basically another kind of probability theory? It is argued that the elementary formalism of quantum mechanics operates as a well-justified alternative to ‘classical’ instantiations of a probability calculus. Its providing a general framework for prediction accounts for its distinctive traits, which one should be careful not to mistake for reflections of any strange ontology. The suggestion is also made that quantum theory unwittingly emerged, in Schrödinger’s formulation, as (...)
    Download  
     
    Export citation  
     
    Bookmark  
  23. Events and the Ontology of Quantum Mechanics.Mauro Dorato - 2015 - Topoi 34 (2):369-378.
    In the first part of the paper I argue that an ontology of events is precise, flexible and general enough so as to cover the three main alternative formulations of quantum mechanics as well as theories advocating an antirealistic view of the wave function. Since these formulations advocate a primitive ontology of entities living in four-dimensional spacetime, they are good candidates to connect that quantum image with the manifest image of the world. However, to the extent that (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  24.  25
    Quantum Mechanics and its Epistemological Implications.Antonio Portaluri - 2014 - Milano MI, Italia: Psiche e Realtà - Tecniche Nuove.
    On October 24th, 1927, the world's most important physicists met in Brussels for what is known as the fifth edition of the Solvay Conference. The focus of the discussion was the new Quantum Mechanics, to which most of the people present at the meeting had contributed but about which they had contrasting opinions. On the one hand, Niels Bohr and Werner Heisenberg claimed they had provided the new science with a definite structure, not subject to further modifications, while (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25. Quantum Mechanics: Observer and von Neumann Chain.Michele Caponigro - manuscript
    In this brief paper, we argue about the conceptual relationship between the role of observer in quantum mechanics and the von Neumann Chain. -/- .
    Download  
     
    Export citation  
     
    Bookmark  
  26. Quantum Mechanics Reality and Separability.Franco Selleri & G. Tarozzi - 1981 - la Rivista Del Nuovo Cimento 4 (2):1-53.
    TABLE OF CONTENTS: Introduction; de Broglie's paradox.; Quantum theory of distant particles; The EPR paradox; Einstein locality and Bell's inequality; Recent research on Bell's inequality; General consequences of Einstein locality; Nonloeality and relativity; Time-symmetric theories; The Bohm-Aharonov hypothesis; Experiments on Einstein locality; Reduction of the wave packet; Measurements, reality and consciousness; Conclusions.
    Download  
     
    Export citation  
     
    Bookmark  
  27. Towards a Micro Realistic Version of Quantum Mechanics, Part I.Nicholas Maxwell - 1976 - Foundations of Physics 6 (3):275-292.
    This paper investigates the possibiity of developing a fully micro realistic version of elementary quantum mechanics. I argue that it is highly desirable to develop such a version of quantum mechanics, and that the failure of all current versions and interpretations of quantum mechanics to constitute micro realistic theories is at the root of many of the interpretative problems associated with quantum mechanics, in particular the problem of measurement. I put forward a (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  28. A Conjecture Concerning Determinism, Reduction, and Measurement in Quantum Mechanics.Arthur Jabs - 2016 - Quantum Studies: Mathematics and Foundations 3 (4):279-292.
    Determinism is established in quantum mechanics by tracing the probabilities in the Born rules back to the absolute (overall) phase constants of the wave functions and recognizing these phase constants as pseudorandom numbers. The reduction process (collapse) is independent of measurement. It occurs when two wavepackets overlap in ordinary space and satisfy a certain criterion, which depends on the phase constants of both wavepackets. Reduction means contraction of the wavepackets to the place of overlap. The measurement apparatus fans (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  29.  71
    Interpreting Quantum Mechanics and Predictability in Terms of Facts About the Universe.Andrew Knight - manuscript
    A potentially new interpretation of quantum mechanics posits the state of the universe as a consistent set of facts that are instantiated in the correlations among entangled objects. A fact (or event) occurs exactly when the number or density of future possibilities decreases, and a quantum superposition exists if and only if the facts of the universe are consistent with the superposition. The interpretation sheds light on both in-principle and real-world predictability of the universe.
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  30. Semantic Epistemology Redux: Proof and Validity in Quantum Mechanics.Arnold Cusmariu - 2016 - Logos and Episteme 7 (3):287-303.
    Definitions I presented in a previous article as part of a semantic approach in epistemology assumed that the concept of derivability from standard logic held across all mathematical and scientific disciplines. The present article argues that this assumption is not true for quantum mechanics (QM) by showing that concepts of validity applicable to proofs in mathematics and in classical mechanics are inapplicable to proofs in QM. Because semantic epistemology must include this important theory, revision is necessary. The (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  31. Philosophical & Practical Implications of Quantum Mechanics.Sunil Thakur - manuscript
    Quantum mechanics makes some very significant observations about nature. Unfortunately, these observations remain a mystery because they do not fit into and/or cannot be explained through classical mechanics. However, we can still explore the philosophical and practical implications of these observations. This article aims to explain philosophical and practical implications of one of the most important observations of quantum mechanics – uncertainty or the arbitrariness in the behavior of particles.
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  32. Quantum Mechanics.Michael Silberstein - forthcoming - In Editors Seibt and Burkhard (ed.), Philosophia Verlag Handbook of Mereology.
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  33. Computability in Quantum Mechanics.Wayne C. Myrvold - 1995 - In Werner De Pauli-Schimanovich, Eckehart Köhler & Friedrich Stadler (eds.), Vienna Circle Institute Yearbook. Kluwer Academic Publishers. pp. 33-46.
    In this paper, the issues of computability and constructivity in the mathematics of physics are discussed. The sorts of questions to be addressed are those which might be expressed, roughly, as: Are the mathematical foundations of our current theories unavoidably non-constructive: or, Are the laws of physics computable?
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  34. Quantum Mechanics of 'Conscious Energy'.Syed Ismyl Mahmood Rizvi - 2018 - International Journal of Mind, Brain and Cognition 9 (1-2):132-160.
    This paper is aiming to investigate the physical substrate of conscious process. It will attempt to find out: How does conscious process establish relations between their external stimuli and internal stimuli in order to create reality? How does consciousness devoid of new sensory input result to its new quantum effects? And how does conscious process gain mass in brain? This paper will also try to locate the origins of consciousness at the level of neurons along with the quantum (...)
    Download  
     
    Export citation  
     
    Bookmark  
  35. A New Argument for the Nomological Interpretation of the Wave Function: The Galilean Group and the Classical Limit of Nonrelativistic Quantum Mechanics.Valia Allori - 2017 - International Studies in the Philosophy of Science (2):177-188.
    In this paper I investigate, within the framework of realistic interpretations of the wave function in nonrelativistic quantum mechanics, the mathematical and physical nature of the wave function. I argue against the view that mathematically the wave function is a two-component scalar field on configuration space. First, I review how this view makes quantum mechanics non- Galilei invariant and yields the wrong classical limit. Moreover, I argue that interpreting the wave function as a ray, in agreement (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  36. Towards a Micro Realistic Version of Quantum Mechanics, Part II.Nicholas Maxwell - 1976 - Foundations of Physics 6 (6):661-676.
    In this paper, possible objections to the propensity microrealistic version of quantum mechanics proposed in Part I are answered. This version of quantum mechanics is compared with the statistical, particle microrealistic viewpoint, and a crucial experiment is proposed designed to distinguish between these to microrealistic versions of quantum mechanics.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  37. Interpreting Quantum Entanglement: Steps Towards Coherentist Quantum Mechanics.Claudio Calosi & Matteo Morganti - 2018 - British Journal for the Philosophy of Science:axy064.
    We put forward a new, ‘coherentist’ account of quantum entanglement, according to which entangled systems are characterized by symmetric relations of ontological dependence among the component particles. We compare this coherentist viewpoint with the two most popular alternatives currently on offer—structuralism and holism—and argue that it is essentially different from, and preferable to, both. In the course of this article, we point out how coherentism might be extended beyond the case of entanglement and further articulated.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  38. Connecting Spin and Statistics in Quantum Mechanics.Arthur Jabs - 2014 - arXiv:0810.2399.
    The spin-statistics connection is derived in a simple manner under the postulates that the original and the exchange wave functions are simply added, and that the azimuthal phase angle, which defines the orientation of the spin part of each single-particle spin-component eigenfunction in the plane normal to the spin-quantization axis, is exchanged along with the other parameters. The spin factor (−1)2s belongs to the exchange wave function when this function is constructed so as to get the spinor ambiguity under control. (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  39.  95
    Quantum Mechanics May Need Consciousness.Andrew Knight - manuscript
    The assertion by Yu and Nikolic that the delayed choice quantum eraser experiment of Kim et al. empirically falsifies the consciousness-causes-collapse hypothesis of quantum mechanics is based on the unfounded and false assumption that the failure of a quantum wave function to collapse implies the appearance of a visible interference pattern.
    Download  
     
    Export citation  
     
    Bookmark  
  40. Reverse Quantum Mechanics: Ontological Path.Michele Caponigro - manuscript
    This paper is essentially a quantum philosophical challenge: starting from simple assumptions, we argue about an ontological approach to quantum mechanics. In this paper, we will focus only on the assumptions. While these assumptions seems to solve the ontological aspect of theory many others epistemological problems arise. For these reasons, in order to prove these assumptions, we need to find a consistent mathematical context (i.e. time reverse problem, quantum entanglement, implications on quantum fields, Schr¨odinger cat (...)
    Download  
     
    Export citation  
     
    Bookmark  
  41. Heisenberg Quantum Mechanics, Numeral Set-Theory And.Han Geurdes - manuscript
    In the paper we will employ set theory to study the formal aspects of quantum mechanics without explicitly making use of space-time. It is demonstrated that von Neuman and Zermelo numeral sets, previously efectively used in the explanation of Hardy’s paradox, follow a Heisenberg quantum form. Here monadic union plays the role of time derivative. The logical counterpart of monadic union plays the part of the Hamiltonian in the commutator. The use of numerals and monadic union in (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  42. Consciousness Studies and Quantum Mechanics.Varanasi Ramabrahmam - 2017 - Http://Scsiscs.Org/Conference/Scienceandscientist/2017/ 5:165-171.
    The limitations and unsuitability of the twentieth century intellectual marvel, the quantum mechanics for the task of unraveling working of human consciousness is critically analyzed. The inbuilt traits of the probabilistic, approximate and imprecise nature of quantum mechanical approach are brought out. -/- The limitations and the unsuitability of using such knowledge for the understanding of precise, correct, finite and definite happenings of activities relating to human consciousness and mind, which are not quantum in nature, are (...)
    Download  
     
    Export citation  
     
    Bookmark  
  43. What Quantum Mechanics Doesn't Show.Justin P. McBrayer & Dugald Owen - 2016 - Teaching Philosophy 39 (2):163-176.
    Students often invoke quantum mechanics in class or papers to make philosophical points. This tendency has been encouraged by pop culture influences like the film What the Bleep do We Know? There is little merit to most of these putative implications. However, it is difficult for philosophy teachers unfamiliar with quantum mechanics to handle these supposed implications in a clear and careful way. This paper is a philosophy of science version of MythBusters. We offer a brief (...)
    Download  
     
    Export citation  
     
    Bookmark  
  44. Quantum Mechanics and Intentionality.Godehard Brüntrup - 2014 - In Antonella Corradini & Uwe Meixner (eds.), Quantum Physics Meets The Philosophy Of Mind: New Essays on the Mind-Body-Relation in Quantum-Theoretical Perspective. De Gruyter. pp. 35-49.
    An essay on the connection between the mind-body-problem and quantum mechanics.
    Download  
     
    Export citation  
     
    Bookmark  
  45.  37
    Quantum Mechanics Versus Special Relativity: A Forgotten Conflict.Rafael Andrés Alemañ Berenguer - 2008 - Dissertation, University of Alicante
    Despite the widespread assumptions on the compatibility between non-relativistic quantum mechanics and special relativity, there still remains a considerable amount of unresolved problems to which few authors explicitly pay attention. Most of them involve the aim of coherently achieving a relativistic description of quantum collapses and quantum entanglements. These processes seem to challenge our present picture of the physical world in terms of space-time structures.
    Download  
     
    Export citation  
     
    Bookmark  
  46.  57
    How Quantum Mechanics with Deterministic Collapse Localizes Macroscopic Objects.Arthur Jabs - manuscript
    Why microscopic objects exhibit wave properties (are delocalized), but macroscopic do not (are localized)? Traditional quantum mechanics attributes wave properties to all objects. When complemented with a deterministic collapse model (Quantum Stud.: Math. Found. 3, 279 (2016)) quantum mechanics can dissolve the discrepancy. Collapse in this model means contraction and occurs when the object gets in touch with other objects and satisfies a certain criterion. One single collapse usually does not suffice for localization. But the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  47. Dynamics, Quantum Mechanics and the Indeterminism of Nature.Jörg Neunhäuserer - manuscript
    We show that determinism is false assuming a realistic interpretation of quantum mechanics and considering the sensitive dynamics of macroscopical physical systems.
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  48. Quantum Mechanics Foundations.Bakytzhan Oralbekov - manuscript
    Gravity remains the most elusive field. Its relationship with the electromagnetic field is poorly understood. Relativity and quantum mechanics describe the aforementioned fields, respectively. Bosons and fermions are often credited with responsibility for the interactions of force and matter. It is shown here that fermions factually determine the gravitational structure of the universe, while bosons are responsible for the three established and described forces. Underlying the relationships of the gravitational and electromagnetic fields is a symmetrical probability distribution of (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  49. Mental States Follow Quantum Mechanics During Perception and Cognition of Ambiguous Figures.Elio Conte - 2009 - In Institute of physics Krzysztof Stefanski (ed.), Open Systems and Information Dynamics. World scientific publishing company. pp. 1-17.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  50. Quantum Entanglement, Bohmian Mechanics, and Humean Supervenience.Elizabeth Miller - 2014 - Australasian Journal of Philosophy 92 (3):567-583.
    David Lewis is a natural target for those who believe that findings in quantum physics threaten the tenability of traditional metaphysical reductionism. Such philosophers point to allegedly holistic entities they take both to be the subjects of some claims of quantum mechanics and to be incompatible with Lewisian metaphysics. According to one popular argument, the non-separability argument from quantum entanglement, any realist interpretation of quantum theory is straightforwardly inconsistent with the reductive conviction that the complete (...)
    Download  
     
    Export citation  
     
    Bookmark   70 citations  
1 — 50 / 999