Results for 'Tarski Undefinability '

226 found
Order:
  1. Tarski Undefinability Theorem Succinctly Refuted.P. Olcott - manuscript
    If the conclusion of the Tarski Undefinability Theorem was that some artificially constrained limited notions of a formal system necessarily have undecidable sentences, then Tarski made no mistake within his assumptions. When we expand the scope of his investigation to other notions of formal systems we reach an entirely different conclusion showing that Tarski's assumptions were wrong.
    Download  
     
    Export citation  
     
    Bookmark  
  2. Tarski Undefinability Theorem Terse Refutation.P. Olcott - manuscript
    Both Tarski and Gödel “prove” that provability can diverge from Truth. When we boil their claim down to its simplest possible essence it is really claiming that valid inference from true premises might not always derive a true consequence. This is obviously impossible.
    Download  
     
    Export citation  
     
    Bookmark  
  3. The Prolog Inference Model refutes Tarski Undefinability.P. Olcott - manuscript
    The generalized conclusion of the Tarski and Gödel proofs: All formal systems of greater expressive power than arithmetic necessarily have undecidable sentences. Is not the immutable truth that Tarski made it out to be it is only based on his starting assumptions. -/- When we reexamine these starting assumptions from the perspective of the philosophy of logic we find that there are alternative ways that formal systems can be defined that make undecidability inexpressible in all of these formal (...)
    Download  
     
    Export citation  
     
    Bookmark  
  4. How Tarski Defined the Undefinable.Cezary Cieśliński - 2015 - European Review 23 (01):139 - 149.
    This paper describes Tarski’s project of rehabilitating the notion of truth, previously considered dubious by many philosophers. The project was realized by providing a formal truth definition, which does not employ any problematic concept.
    Download  
     
    Export citation  
     
    Bookmark  
  5. Tarski’s Convention T: condition beta.John Corcoran - forthcoming - South American Journal of Logic 1 (1).
    Tarski’s Convention T—presenting his notion of adequate definition of truth (sic)—contains two conditions: alpha and beta. Alpha requires that all instances of a certain T Schema be provable. Beta requires in effect the provability of ‘every truth is a sentence’. Beta formally recognizes the fact, repeatedly emphasized by Tarski, that sentences (devoid of free variable occurrences)—as opposed to pre-sentences (having free occurrences of variables)—exhaust the range of significance of is true. In Tarski’s preferred usage, it is part (...)
    Download  
     
    Export citation  
     
    Bookmark  
  6. Refuting Tarski and Gödel with a Sound Deductive Formalism.P. Olcott - manuscript
    The conventional notion of a formal system is adapted to conform to the sound deductive inference model operating on finite strings. Finite strings stipulated to have the semantic value of Boolean true provide the sound deductive premises. Truth preserving finite string transformation rules provide the valid deductive inference. Sound deductive conclusions are the result of these finite string transformation rules.
    Download  
     
    Export citation  
     
    Bookmark  
  7. Formal Background for the Incompleteness and Undefinability Theorems.Richard Kimberly Heck - manuscript
    A teaching document I've used in my courses on truth and on incompleteness. Aimed at students who have a good grasp of basic logic, and decent math skills, it attempts to give them the background they need to understand a proper statement of the classic results due to Gödel and Tarski, and sketches their proofs. Topics covered include the notions of language and theory, the basics of formal syntax and arithmetization, formal arithmetic (Q and PA), representability, diagonalization, and the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  8. Refuting Incompleteness and Undefinability.P. Olcott - manuscript
    Within the (Haskell Curry) notion of a formal system we complete Tarski's formal correctness: ∀x True(x) ↔ ⊢ x and use this finally formalized notion of Truth to refute his own Undefinability Theorem (based on the Liar Paradox), the Liar Paradox, and the (Panu Raatikainen) essence of the conclusion of the 1931 Incompleteness Theorem.
    Download  
     
    Export citation  
     
    Bookmark  
  9. The inexpressibility of validity.Julien Murzi - 2014 - Analysis 74 (1):65-81.
    Tarski's Undefinability of Truth Theorem comes in two versions: that no consistent theory which interprets Robinson's Arithmetic (Q) can prove all instances of the T-Scheme and hence define truth; and that no such theory, if sound, can even express truth. In this note, I prove corresponding limitative results for validity. While Peano Arithmetic already has the resources to define a predicate expressing logical validity, as Jeff Ketland has recently pointed out (2012, Validity as a primitive. Analysis 72: 421-30), (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  10. Proof that Wittgenstein is correct about Gödel.P. Olcott - manuscript
    The conventional notion of a formal system is adapted to conform to the sound deductive inference model operating on finite strings. Finite strings stipulated to have the semantic property of Boolean true provide the sound deductive premises. Truth preserving finite string transformation rules provide valid the deductive inference. Conclusions of sound arguments are derived from truth preserving finite string transformations applied to true premises.
    Download  
     
    Export citation  
     
    Bookmark  
  11. Deductively Sound Formal Proofs.P. Olcott - manuscript
    Could the intersection of [formal proofs of mathematical logic] and [sound deductive inference] specify formal systems having [deductively sound formal proofs of mathematical logic]? All that we have to do to provide [deductively sound formal proofs of mathematical logic] is select the subset of conventional [formal proofs of mathematical logic] having true premises and now we have [deductively sound formal proofs of mathematical logic].
    Download  
     
    Export citation  
     
    Bookmark  
  12. Eliminating Undecidability and Incompleteness in Formal Systems.P. Olcott - manuscript
    To eliminate incompleteness, undecidability and inconsistency from formal systems we only need to convert the formal proofs to theorem consequences of symbolic logic to conform to the sound deductive inference model. -/- Within the sound deductive inference model there is a (connected sequence of valid deductions from true premises to a true conclusion) thus unlike the formal proofs of symbolic logic provability cannot diverge from truth.
    Download  
     
    Export citation  
     
    Bookmark  
  13. Defining Gödel Incompleteness Away.P. Olcott - manuscript
    We can simply define Gödel 1931 Incompleteness away by redefining the meaning of the standard definition of Incompleteness: A theory T is incomplete if and only if there is some sentence φ such that (T ⊬ φ) and (T ⊬ ¬φ). This definition construes the existence of self-contradictory expressions in a formal system as proof that this formal system is incomplete because self-contradictory expressions are neither provable nor disprovable in this formal system. Since self-contradictory expressions are neither provable nor disprovable (...)
    Download  
     
    Export citation  
     
    Bookmark  
  14. ‘Sometime a paradox’, now proof: Yablo is not first order.Saeed Salehi - 2022 - Logic Journal of the IGPL 30 (1):71-77.
    Interesting as they are by themselves in philosophy and mathematics, paradoxes can be made even more fascinating when turned into proofs and theorems. For example, Russell’s paradox, which overthrew Frege’s logical edifice, is now a classical theorem in set theory, to the effect that no set contains all sets. Paradoxes can be used in proofs of some other theorems—thus Liar’s paradox has been used in the classical proof of Tarski’s theorem on the undefinability of truth in sufficiently rich (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15. The concept of truth in a finite universe.Panu Raatikainen - 2000 - Journal of Philosophical Logic 29 (6):617-633.
    The prospects and limitations of defining truth in a finite model in the same language whose truth one is considering are thoroughly examined. It is shown that in contradistinction to Tarski's undefinability theorem for arithmetic, it is in a definite sense possible in this case to define truth in the very language whose truth is in question.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  16. The Eternal Unprovability Filter – Part I.Kiran Pai - 2016 - Dissertation, Thinkstrike
    I prove both the mathematical conjectures P ≠ NP and the Continuum Hypothesis are eternally unprovable using the same fundamental idea. Starting with the Saunders Maclane idea that a proof is eternal or it is not a proof, I use the indeterminacy of human biological capabilities in the eternal future to show that since both conjectures are independent of Axioms and have definitions connected with human biological capabilities, it would be impossible to prove them eternally without the creation and widespread (...)
    Download  
     
    Export citation  
     
    Bookmark  
  17. What are logical notions?Alfred Tarski - 1986 - History and Philosophy of Logic 7 (2):143-154.
    In this manuscript, published here for the first time, Tarski explores the concept of logical notion. He draws on Klein's Erlanger Programm to locate the logical notions of ordinary geometry as those invariant under all transformations of space. Generalizing, he explicates the concept of logical notion of an arbitrary discipline.
    Download  
     
    Export citation  
     
    Bookmark   229 citations  
  18. Tarski and Primitivism About Truth.Jamin Asay - 2013 - Philosophers' Imprint 13:1-18.
    Tarski’s pioneering work on truth has been thought by some to motivate a robust, correspondence-style theory of truth, and by others to motivate a deflationary attitude toward truth. I argue that Tarski’s work suggests neither; if it motivates any contemporary theory of truth, it motivates conceptual primitivism, the view that truth is a fundamental, indefinable concept. After outlining conceptual primitivism and Tarski’s theory of truth, I show how the two approaches to truth share much in common. While (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  19. Tarski.Benedict Eastaugh - 2017 - In Alex Malpass & Marianna Antonutti Marfori (eds.), The History of Philosophical and Formal Logic: From Aristotle to Tarski. New York: Bloomsbury Publishing. pp. 293-313.
    Alfred Tarski was one of the greatest logicians of the twentieth century. His influence comes not merely through his own work but from the legion of students who pursued his projects, both in Poland and Berkeley. This chapter focuses on three key areas of Tarski's research, beginning with his groundbreaking studies of the concept of truth. Tarski's work led to the creation of the area of mathematical logic known as model theory and prefigured semantic approaches in the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  20. Was Tarski's Theory of Truth Motivated by Physicalism?Greg Frost-Arnold - 2004 - History and Philosophy of Logic 25 (4):265-280.
    Many commentators on Alfred Tarski have, following Hartry Field, claimed that Tarski's truth-definition was motivated by physicalism—the doctrine that all facts, including semantic facts, must be reducible to physical facts. I claim, instead, that Tarski did not aim to reduce semantic facts to physical ones. Thus, Field's criticism that Tarski's truth-definition fails to fulfill physicalist ambitions does not reveal Tarski to be inconsistent, since Tarski's goal is not to vindicate physicalism. I argue that (...)'s only published remarks that speak approvingly of physicalism were written in unusual circumstances: Tarski was likely attempting to appease an audience of physicalists that he viewed as hostile to his ideas. In later sections I develop positive accounts of: (1) Tarski's reduction of semantic concepts; (2) Tarski's motivation to develop formal semantics in the particular way he does; and (3) the role physicalism plays in Tarski's thought. (shrink)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  21. Ordinary Truth in Tarski and Næss.Joseph Ulatowski - 2016 - In Adrian Kuźniar & Joanna Odrowąż-Sypniewska (eds.), Uncovering Facts and Values: Studies in Contemporary Epistemology and Political Philosophy. Boston: Brill | Rodopi. pp. 67-90.
    Alfred Tarski seems to endorse a partial conception of truth, the T-schema, which he believes might be clarified by the application of empirical methods, specifically citing the experimental results of Arne Næss (1938a). The aim of this paper is to argue that Næss’ empirical work confirmed Tarski’s semantic conception of truth, among others. In the first part, I lay out the case for believing that Tarski’s T-schema, while not the formal and generalizable Convention-T, provides a partial account (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  22. Tarski's Nominalism.Greg Frost-Arnold - 2008 - In Douglas Patterson (ed.), New essays on Tarski and philosophy. New York: Oxford University Press.
    Alfred Tarski was a nominalist. But he published almost nothing on his nominalist views, and until recently the only sources scholars had for studying Tarski’s nominalism were conversational reports from his friends and colleagues. However, a recently-discovered archival resource provides the most detailed information yet about Tarski’s nominalism. Tarski spent the academic year 1940-41 at Harvard, along with many of the leading lights of scientific philosophy: Carnap, Quine, Hempel, Goodman, and (for the fall semester) Russell. This (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  23. The Banach-Tarski Paradox.Ulrich Meyer - 2023 - Logique Et Analyse 261:41–53.
    Emile Borel regards the Banach-Tarski Paradox as a reductio ad absurdum of the Axiom of Choice. Peter Forrest instead blames the assumption that physical space has a similar structure as the real numbers. This paper argues that Banach and Tarski's result is not paradoxical and that it merely illustrates a surprising feature of the continuum: dividing a spatial region into disjoint pieces need not preserve volume.
    Download  
     
    Export citation  
     
    Bookmark  
  24. Alfred Tarski - the man who defined truth.Urszula Wybraniec-Skardowska - 2008 - Filozofia, Scientific Works of Jan Długosz Academy, Częstochowa:67-71.
    This article is a translation of the paper in Polish (Alfred Tarski - człowiek, który zdefiniował prawdę) published in Ruch Filozoficzny 4 (4) (2007). It is a personal Alfred Tarski memories based on my stay in Berkeley and visit the Alfred Tarski house for the invitation of Janusz Tarski.
    Download  
     
    Export citation  
     
    Bookmark  
  25. Alfred Tarski - człowiek, który zdefiniował prawdę.Urszula Wybraniec-Skardowska - 2007 - Ruch Filozoficzny 4 (4).
    This article is a characteristic of Alfred Tarski's profile, seen from a personal perspective after a long visit to Berkeley, at the invitation of Jan Tarski, in the house where Alfred Tarski lived. It takes into account the scientific achievements and research results of Tarski, as well as certain impressions of the author of these memories concerning the exotic life of this great Polish logician and mathematician of the 20th century.
    Download  
     
    Export citation  
     
    Bookmark  
  26. More on Putnam and Tarski.Panu Raatikainen - 2003 - Synthese 135 (1):37 - 47.
    Hilary Putnam's famous arguments criticizing Tarski's theory of truth are evaluated. It is argued that they do not succeed to undermine Tarski's approach. One of the arguments is based on the problematic idea of a false instance of T-schema. The other ignores various issues essential for Tarski's setting such as language-relativity of truth definition.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  27. Truth, correspondence, models, and Tarski.Panu Raatikainen - 2007 - In Sami Pihlström, Panu Raatikainen & Matti Sintonen (eds.), Approaching truth: essays in honour of Ilkka Niiniluoto. London: College Publications. pp. 99-112.
    In the early 20th century, scepticism was common among philosophers about the very meaningfulness of the notion of truth – and of the related notions of denotation, definition etc. (i.e., what Tarski called semantical concepts). Awareness was growing of the various logical paradoxes and anomalies arising from these concepts. In addition, more philosophical reasons were being given for this aversion.1 The atmosphere changed dramatically with Alfred Tarski’s path-breaking contribution. What Tarski did was to show that, assuming that (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  28. Book Reviews: Anita Burdman Feferman and Solomon Feferman, "Alfred Tarski: Life and Logic", Cambridge University Press, Cambridge.Walter Carnielli - 2006 - Logic and Logical Philosophy 15 (1):91-96.
    Anita Burdman Feferman and Solomon Feferman, "Alfred Tarski: Life and Logic", Cambridge University Press, Cambridge, UK, 2004, pp. 432.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  29. REVIEW OF Alfred Tarski, Collected Papers, vols. 1-4 (1986) edited by Steven Givant and Ralph McKenzie. [REVIEW]John Corcoran - 1991 - MATHEMATICAL REVIEWS 91 (h):01101-4.
    Alfred Tarski (1901--1983) is widely regarded as one of the two giants of twentieth-century logic and also as one of the four greatest logicians of all time (Aristotle, Frege and Gödel being the other three). Of the four, Tarski was the most prolific as a logician. The four volumes of his collected papers, which exclude most of his 19 monographs, span over 2500 pages. Aristotle's writings are comparable in volume, but most of the Aristotelian corpus is not about (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  30. (1 other version)The Absence of Multiple Universes of Discourse in the 1936 Tarski Consequence-Definition Paper.John Corcoran & José Miguel Sagüillo - 2011 - History and Philosophy of Logic 32 (4):359-374.
    This paper discusses the history of the confusion and controversies over whether the definition of consequence presented in the 11-page 1936 Tarski consequence-definition paper is based on a monistic fixed-universe framework?like Begriffsschrift and Principia Mathematica. Monistic fixed-universe frameworks, common in pre-WWII logic, keep the range of the individual variables fixed as the class of all individuals. The contrary alternative is that the definition is predicated on a pluralistic multiple-universe framework?like the 1931 Gödel incompleteness paper. A pluralistic multiple-universe framework recognizes (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  31. Process tracing : defining the undefinable.Christopher Clarke - 2022 - In Harold Kincaid & Jeroen van Bouwel (eds.), The Oxford Handbook of Philosophy of Political Science. New York: Oxford University Press.
    A good definition of process tracing should highlight what is distinctive about process tracing as a methodology of causal inference. I look at eight criteria that are used to define process tracing in the methodological literature, and I dismiss all eight criteria as unhelpful (some because they are too restrictive, and others because they are vacuous). In place of these criteria, I propose four alternative criteria, and I draw a distinction between process tracing for the ultimate aim of testing a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  32. Carnap's Contribution to Tarski's Truth.Monika Gruber - 2015 - Journal for the History of Analytical Philosophy 3 (10).
    In his seminal work “The Concept of Truth in Formalized Languages”, Alfred Tarski showed how to construct a formally correct and materially adequate definition of true sentence for certain formalized languages. These results have, eventually, been accepted and applauded by philosophers and logicians nearly in unison. Its Postscript, written two years later, however, has given rise to a considerable amount of controversy. There is an ongoing debate on what Tarski really said in the postscript. These discussions often regard (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  33. Nihilism and Tarski's truth definition: an interests incompatibility.Maurilio Lovatti - 1998 - Per la Filosofia (43):46-56.
    In this paper the importance of Tarski's truth definition is evaluated like a productive resource to criticize Nietzsche's nihilistic view and any pragmatic understanding of truth.
    Download  
     
    Export citation  
     
    Bookmark  
  34.  59
    From Natural to Artificial: The Transformation of the Concept of Logical Consequence in Bolzano, Carnap, and Tarski.Lassi Saario-Ramsay - 2024 - Philosophies 9 (6):178.
    Our standard model-theoretic definition of logical consequence is originally based on Alfred Tarski’s (1936) semantic definition, which, in turn, is based on Rudolf Carnap’s (1934) similar definition. In recent literature, Tarski’s definition is described as a conceptual analysis of the intuitive ‘everyday’ concept of consequence or as an explication of it, but the use of these terms is loose and largely unaccounted for. I argue that the definition is not an analysis but an explication, in the Carnapian sense: (...)
    Download  
     
    Export citation  
     
    Bookmark  
  35. Normalisation and subformula property for a system of classical logic with Tarski’s rule.Nils Kürbis - 2021 - Archive for Mathematical Logic 61 (1):105-129.
    This paper considers a formalisation of classical logic using general introduction rules and general elimination rules. It proposes a definition of ‘maximal formula’, ‘segment’ and ‘maximal segment’ suitable to the system, and gives reduction procedures for them. It is then shown that deductions in the system convert into normal form, i.e. deductions that contain neither maximal formulas nor maximal segments, and that deductions in normal form satisfy the subformula property. Tarski’s Rule is treated as a general introduction rule for (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  36. The development of mathematical logic from Russell to Tarski, 1900-1935.Paolo Mancosu, Richard Zach & Calixto Badesa - 2009 - In Leila Haaparanta (ed.), The development of modern logic. New York: Oxford University Press.
    The period from 1900 to 1935 was particularly fruitful and important for the development of logic and logical metatheory. This survey is organized along eight "itineraries" concentrating on historically and conceptually linked strands in this development. Itinerary I deals with the evolution of conceptions of axiomatics. Itinerary II centers on the logical work of Bertrand Russell. Itinerary III presents the development of set theory from Zermelo onward. Itinerary IV discusses the contributions of the algebra of logic tradition, in particular, Löwenheim (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  37. Lies, half-truths, and falsehoods about Tarski’s 1933 “liar” antinomies.John Corcoran & Joaquin Miller - 2012 - Bulletin of Symbolic Logic 18 (1):140-141.
    We discuss misinformation about “the liar antinomy” with special reference to Tarski’s 1933 truth-definition paper [1]. Lies are speech-acts, not merely sentences or propositions. Roughly, lies are statements of propositions not believed by their speakers. Speakers who state their false beliefs are often not lying. And speakers who state true propositions that they don’t believe are often lying—regardless of whether the non-belief is disbelief. Persons who state propositions on which they have no opinion are lying as much as those (...)
    Download  
     
    Export citation  
     
    Bookmark  
  38. Elementare ma complessa: la prospettiva della complessità computazionale attraverso il caso studio della geometria di Tarski.Pierluigi Graziani - 2012 - In Vincenzo Fano, Enrico Giannetto, Giulia Giannini & Pierluigi Graziani (eds.), Complessità e Riduzionismo. ISONOMIA - Epistemologica Series Editor. pp. 66-81.
    Download  
     
    Export citation  
     
    Bookmark  
  39. Il Concetto di Verità' di Tarski.Carlotta Pavese - 2020 - In Guido Bonino, Carlo Gabbani & Paolo Tripodi (eds.), Biblioteca analitica: i testi fondamentali: linguaggio, conoscenza, mente. Roma: Carocci editore. pp. 91-102.
    In questo capitolo racconto l'articolo classico sulla verità' di Tarski.
    Download  
     
    Export citation  
     
    Bookmark  
  40. Correction regarding 'Normalisation and Subformula Property for a System of Classical Logic with Tarski's Rule'.Nils Kürbis - manuscript
    This note corrects an error in my paper 'Normalisation and Subformula Property for a System of Classical Logic with Tarski's Rule' (Archive for Mathematical Logic 61 (2022): 105-129, DOI 10.1007/s00153-021-00775-6): Theorem 2 is mistaken, and so is a corollary drawn from it as well as a corollary that was concluded by the same mistake. Luckily this does not affect the main result of the paper.
    Download  
     
    Export citation  
     
    Bookmark  
  41. CORCORAN REVIEWS THE 4 VOLUMES OF TARSKI's COLLECTED PAPERS.John Corcoran - 1991 - MATHEMATICAL REVIEWS 91 (I):110-114.
    CORCORAN REVIEWS THE 4 VOLUMES OF TARSKI’S COLLECTED PAPERS Alfred Tarski (1901--1983) is widely regarded as one of the two giants of twentieth-century logic and also as one of the four greatest logicians of all time (Aristotle, Frege and Gödel being the other three). Of the four, Tarski was the most prolific as a logician. The four volumes of his collected papers, which exclude most of his 19 monographs, span over 2500 pages. Aristotle's writings are comparable in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  42. 2007. Notes on the Founding of Logics and Metalogic: Aristotle, Boole, and Tarski. Eds. C. Martínez et al. Current Topics in Logic and Analytic Philosophy / Temas Actuales de Lógica y Filosofía Analítica. Imprenta Univeridade Santiago de Compostela.John Corcoran - 2007 - In Concha Martínez, José L. Falguera & José M. Sagüillo (eds.), Current topics in logic and analytic philosophy =. Santiago de Compostela: Universidade de Santiago de Compostela. pp. 145-178.
    Download  
     
    Export citation  
     
    Bookmark  
  43. Brentano's criticism of the correspondence conception of truth and Tarski's semantic theory.Jan Woleński - 1989 - Topoi 8 (2):105-110.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  44. La Forma della Verità. Logica e filosofia nell'opera di Alfred Tarski.Ciro De Florio - 2013 - Italy: Mimesis.
    Download  
     
    Export citation  
     
    Bookmark  
  45. Semantyczna teoria prawdy a antynomie semantyczne [Semantic Theory of Truth vs. Semantic Antinomies].Jakub Pruś - 2021 - Rocznik Filozoficzny Ignatianum 1 (27):341–363.
    The paper presents Alfred Tarski’s debate with the semantic antinomies: the basic Liar Paradox, and its more sophisticated versions, which are currently discussed in philosophy: Strengthen Liar Paradox, Cyclical Liar Paradox, Contingent Liar Paradox, Correct Liar Paradox, Card Paradox, Yablo’s Paradox and a few others. Since Tarski, himself did not addressed these paradoxes—neither in his famous work published in 1933, nor in later papers in which he developed the Semantic Theory of Truth—therefore, We try to defend his concept (...)
    Download  
     
    Export citation  
     
    Bookmark  
  46. Pascalian Expectations and Explorations.Alan Hajek & Elizabeth Jackson - forthcoming - In Roger Ariew & Yuval Avnur (eds.), The Blackwell Companion to Pascal. Wiley-Blackwell.
    Pascal’s Wager involves expected utilities. In this chapter, we examine the Wager in light of two main features of expected utility theory: utilities and probabilities. We discuss infinite and finite utilities, and zero, infinitesimal, extremely low, imprecise, and undefined probabilities. These have all come up in recent literature regarding Pascal’s Wager. We consider the problems each creates and suggest prospects for the Wager in light of these problems.
    Download  
     
    Export citation  
     
    Bookmark  
  47. An Observation about Truth.David Kashtan - 2017 - Dissertation, University of Jerusalem
    Tarski's analysis of the concept of truth gives rise to a hierarchy of languages. Does this fragment the concept all the way to philosophical unacceptability? I argue it doesn't, drawing on a modification of Kaplan's theory of indexicals.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  48. (1 other version)Truth, meaning, and translation.Panu Raatikainen - 2008 - In Douglas Patterson (ed.), New essays on Tarski and philosophy. New York: Oxford University Press. pp. 247.
    Philosopher’s judgements on the philosophical value of Tarski’s contributions to the theory of truth have varied. For example Karl Popper, Rudolf Carnap, and Donald Davidson have, in their different ways, celebrated Tarski’s achievements and have been enthusiastic about their philosophical relevance. Hilary Putnam, on the other hand, pronounces that “[a]s a philosophical account of truth, Tarski’s theory fails as badly as it is possible for an account to fail.” Putnam has several alleged reasons for his dissatisfaction,1 but (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  49. Thinking dynamic fragments of the infinite.Fabio Scorza - 2014 - SOCRATES 2 (1):270-308.
    ABSTRACT: Compilation of eleven short essays that reflect authors view on various themes. Themes covered under this compilation are: • Right or wrong, good or bad, beautiful or ugly, these are all undefined and indefinable abstractions. • Communication: we're losing this ability; we are hiding behind a screen. • Ecology and environment: what can we do? • From kings to subjects: a society founded on the principle of dishonesty, arrogance and inequality. • Globalization and constraints, we must respect and protect (...)
    Download  
     
    Export citation  
     
    Bookmark  
  50. Truth and Existence.Jan Heylen & Leon Horsten - 2017 - Thought: A Journal of Philosophy 6 (1):106-114.
    Halbach has argued that Tarski biconditionals are not ontologically conservative over classical logic, but his argument is undermined by the fact that he cannot include a theory of arithmetic, which functions as a theory of syntax. This article is an improvement on Halbach's argument. By adding the Tarski biconditionals to inclusive negative free logic and the universal closure of minimal arithmetic, which is by itself an ontologically neutral combination, one can prove that at least one thing exists. The (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
1 — 50 / 226