Results for 'deep neural networks'

969 found
Order:
  1. Interventionist Methods for Interpreting Deep Neural Networks.Raphaël Millière & Cameron Buckner - forthcoming - In Gualtiero Piccinini (ed.), Neurocognitive Foundations of Mind. Routledge.
    Recent breakthroughs in artificial intelligence have primarily resulted from training deep neural networks (DNNs) with vast numbers of adjustable parameters on enormous datasets. Due to their complex internal structure, DNNs are frequently characterized as inscrutable ``black boxes,'' making it challenging to interpret the mechanisms underlying their impressive performance. This opacity creates difficulties for explanation, safety assurance, trustworthiness, and comparisons to human cognition, leading to divergent perspectives on these systems. This chapter examines recent developments in interpretability methods for (...)
    Download  
     
    Export citation  
     
    Bookmark  
  2.  25
    Deep Neural Networks for Real-Time Plant Disease Diagnosis and Productivity Optimization.K. Usharani - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):645-652.
    The health of plants plays a crucial role in ensuring agricultural productivity and food security. Early detection of plant diseases can significantly reduce crop losses, leading to improved yields. This paper presents a novel approach for plant disease recognition using deep learning techniques. The proposed system automates the process of disease detection by analyzing leaf images, which are widely recognized as reliable indicators of plant health. By leveraging convolutional neural networks (CNNs), the model identifies various plant diseases (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3. Adversarial Sampling for Fairness Testing in Deep Neural Network.Tosin Ige, William Marfo, Justin Tonkinson, Sikiru Adewale & Bolanle Hafiz Matti - 2023 - International Journal of Advanced Computer Science and Applications 14 (2).
    In this research, we focus on the usage of adversarial sampling to test for the fairness in the prediction of deep neural network model across different classes of image in a given dataset. While several framework had been proposed to ensure robustness of machine learning model against adversarial attack, some of which includes adversarial training algorithm. There is still the pitfall that adversarial training algorithm tends to cause disparity in accuracy and robustness among different group. Our research is (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  4. Three Strategies for Salvaging Epistemic Value in Deep Neural Network Modeling.Philippe Verreault-Julien - manuscript
    Some how-possibly explanations have epistemic value because they are epistemically possible; we cannot rule out their truth. One paradoxical implication of that proposal is that epistemic value may be obtained from mere ignorance. For the less we know, then the more is epistemically possible. This chapter examines a particular class of problematic epistemically possible how-possibly explanations, viz. *epistemically opaque* how-possibly explanations. Those are how-possibly explanations justified by an epistemically opaque process. How could epistemically opaque how-possibly explanations have epistemic value if (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5. Recurrent Neural Network Based Speech emotion detection using Deep Learning.P. Pavithra - 2022 - Journal of Science Technology and Research (JSTAR) 3 (1):65-77.
    In modern days, person-computer communication systems have gradually penetrated our lives. One of the crucial technologies in person-computer communication systems, Speech Emotion Recognition (SER) technology, permits machines to correctly recognize emotions and greater understand users' intent and human-computer interlinkage. The main objective of the SER is to improve the human-machine interface. It is also used to observe a person's psychological condition by lie detectors. Automatic Speech Emotion Recognition(SER) is vital in the person-computer interface, but SER has challenges for accurate recognition. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  6.  69
    Comprehensive Review on Advanced Adversarial Attack and Defense Strategies in Deep Neural Network.Anderson Brown - 2023 - International Journal of Research and Innovation in Applied Sciences.
    In adversarial machine learning, attackers add carefully crafted perturbations to input, where the perturbations are almost imperceptible to humans, but can cause models to make wrong predictions. In this paper, we did comprehensive review of some of the most recent research, advancement and discoveries on adversarial attack, adversarial sampling generation, the potency or effectiveness of each of the existing attack methods, we also did comprehensive review on some of the most recent research, advancement and discoveries on adversarial defense strategies, the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7.  18
    Enhancing Malware Detection by Fusing Static and Dynamic Features Using Deep Neural Networks.Navas Garcia - manuscript
    Malware detection has been an ongoing challenge for cybersecurity experts due to the evolving nature of malicious software and the ability of malware to disguise itself. Traditional methods that rely solely on static features such as file signatures or dynamic analysis have had limitations in detecting new or obfuscated malware. This paper investigates the enhancement of malware detection by integrating both static and dynamic features and utilizing deep neural networks (DNNs) for more effective classification. By combining these (...)
    Download  
     
    Export citation  
     
    Bookmark  
  8.  29
    Revolutionizing Cybersecurity: Intelligent Malware Detection Through Deep Neural Networks.M. Sheik Dawood - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):655-666.
    With the proliferation of sophisticated cyber threats, traditional malware detection techniques are becoming inadequate to ensure robust cybersecurity. This study explores the integration of deep learning (DL) techniques into malware detection systems to enhance their accuracy, scalability, and adaptability. By leveraging convolutional neural networks (CNNs), recurrent neural networks (RNNs), and transformers, this research presents an intelligent malware detection framework capable of identifying both known and zero-day threats. The methodology involves feature extraction from static, dynamic, and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  9. Empiricism without Magic: Transformational Abstraction in Deep Convolutional Neural Networks.Cameron Buckner - 2018 - Synthese (12):1-34.
    In artificial intelligence, recent research has demonstrated the remarkable potential of Deep Convolutional Neural Networks (DCNNs), which seem to exceed state-of-the-art performance in new domains weekly, especially on the sorts of very difficult perceptual discrimination tasks that skeptics thought would remain beyond the reach of artificial intelligence. However, it has proven difficult to explain why DCNNs perform so well. In philosophy of mind, empiricists have long suggested that complex cognition is based on information derived from sensory experience, (...)
    Download  
     
    Export citation  
     
    Bookmark   49 citations  
  10. Comprehensive Review on Advanced Adversarial Attack and Defense Strategies in Deep Neural Network (8th edition). [REVIEW]Smith Oliver & Brown Anderson - 2023 - International Journal of Research and Innovation in Applied Science:156-166.
    In adversarial machine learning, attackers add carefully crafted perturbations to input, where the perturbations are almost imperceptible to humans, but can cause models to make wrong predictions. In this paper, we did comprehensive review of some of the most recent research, advancement and discoveries on adversarial attack, adversarial sampling generation, the potency or effectiveness of each of the existing attack methods, we also did comprehensive review on some of the most recent research, advancement and discoveries on adversarial defense strategies, the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  11.  59
    3D Convolutional Neural Networks for Accurate Reconstruction of Distorted Faces.M. Arul Selvan - 2024 - Journal of Science Technology and Research (JSTAR) 5 (4):560-570.
    The core objective of this project is to recognize and reconstruct distorted facial images, particularly in the context of accidents. This involves using deep learning techniques to analyze the features of a distorted face and regenerate it into a recognizable form. Deep learning models are wellsuited for this task due to their ability to learn complex patterns and representations from data the input data consists of distorted facial images, typically obtained from MRI scans of accident victims. These images (...)
    Download  
     
    Export citation  
     
    Bookmark  
  12. PREDICTION OF EDUCATIONAL DATA USING DEEP CONVOLUTIONAL NEURAL NETWORK.K. Vijayalakshmi - 2022 - Journal of Science Technology and Research (JSTAR) 3 (1):93-111.
    : One of the most active study fields in natural language processing, web mining, and text mining is sentiment analysis. Big data is an important research component in education that is used to advance the value of education by watching students' performance and understanding their learning habits. Real-time student feedback will enable teachers and students to understand teaching and learning challenges in the most user-friendly manner for students. By linking learning analytics to grounded theory, the proposed Deep Convolutional (...) Network (DCNN) analyses students' sentiments and emotions through feedback using a Lexicon-based emotional analysis approach. The sentiment analysis approach is a computer procedure that identifies and classifies subjective information from the source material as good, negative, or neutral. (shrink)
    Download  
     
    Export citation  
     
    Bookmark  
  13. Papaya Maturity Classifications using Deep Convolutional Neural Networks.Marah M. Al-Masawabe, Lamis F. Samhan, Amjad H. AlFarra, Yasmeen E. Aslem & Samy S. Abu-Naser - 2021 - International Journal of Engineering and Information Systems (IJEAIS) 5 (12):60-67.
    Papaya is a tropical fruit with a green cover, yellow pulp, and a taste between mango and cantaloupe, having commercial importance because of its high nutritive and medicinal value. The process of sorting papaya fruit based on maturely is one of the processes that greatly determine the mature of papaya fruit that will be sold to consumers. The manual grading of papaya fruit based on human visual perception is time-consuming and destructive. The objective of this paper is to the status (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  14. Theorem proving in artificial neural networks: new frontiers in mathematical AI.Markus Pantsar - 2024 - European Journal for Philosophy of Science 14 (1):1-22.
    Computer assisted theorem proving is an increasingly important part of mathematical methodology, as well as a long-standing topic in artificial intelligence (AI) research. However, the current generation of theorem proving software have limited functioning in terms of providing new proofs. Importantly, they are not able to discriminate interesting theorems and proofs from trivial ones. In order for computers to develop further in theorem proving, there would need to be a radical change in how the software functions. Recently, machine learning results (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15. Predicting the Number of Calories in a Dish Using Just Neural Network.Sulafa Yhaya Abu Qamar, Shahed Nahed Alajjouri, Shurooq Hesham Abu Okal & Samy S. Abu-Naser - 2023 - International Journal of Academic Information Systems Research (IJAISR) 7 (10):1-9.
    Abstract: Heart attacks, or myocardial infarctions, are a leading cause of mortality worldwide. Early prediction and accurate analysis of potential risk factors play a crucial role in preventing heart attacks and improving patient outcomes. In this study, we conduct a comprehensive review of datasets related to heart attack analysis and prediction. We begin by examining the various types of datasets available for heart attack research, encompassing clinical, demographic, and physiological data. These datasets originate from diverse sources, including hospitals, research institutions, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  16.  53
    Optimized Face Reconstruction Using 3D Convolutional Neural Networks.A. Manoj Prabaharan - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):509-520.
    The accuracy levels of VGG19 and 3D CNN are compared using the performance metrics. This comparison helps in identifying which model performs better in the task of facial reconstruction from distorted images. Visualizing the results in the form of a graph provides a clear and concise way to understand the comparative performance of the algorithms. The ultimate goal of this project is to develop a system that can accurately reconstruct distorted faces, which can be invaluable in identifying accident victims or (...)
    Download  
     
    Export citation  
     
    Bookmark  
  17. Predicting Life Expectancy in Diverse Countries Using Neural Networks: Insights and Implications.Alaa Mohammed Dawoud & Samy S. Abu-Naser - 2023 - International Journal of Academic Engineering Research (IJAER) 7 (9):45-54.
    Life expectancy prediction, a pivotal facet of public health and policy formulation, has witnessed remarkable advancements owing to the integration of neural network models and comprehensive datasets. In this research, we present an innovative approach to forecasting life expectancy in diverse countries. Leveraging a neural network architecture, our model was trained on a dataset comprising 22 distinct features, acquired from Kaggle, and encompassing key health indicators, socioeconomic metrics, and cultural attributes. The model demonstrated exceptional predictive accuracy, attaining an (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  18.  35
    AI-Driven Air Quality Forecasting Using Multi-Scale Feature Extraction and Recurrent Neural Networks.P. Selvaprasanth - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):575-590.
    We investigate the application of Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM) networks, and a hybrid CNN-LSTM model for forecasting air pollution levels based on historical data. Our experimental setup uses real-world air quality datasets from multiple regions, containing measurements of pollutants like PM2.5, PM10, CO, NO2, and SO2, alongside meteorological data such as temperature, humidity, and wind speed. The models are trained, validated, and tested using a split dataset, and their accuracy is evaluated using performance (...)
    Download  
     
    Export citation  
     
    Bookmark  
  19. Classification of Alzheimer's Disease Using Convolutional Neural Networks.Lamis F. Samhan, Amjad H. Alfarra & Samy S. Abu-Naser - 2022 - International Journal of Academic Information Systems Research (IJAISR) 6 (3):18-23.
    Brain-related diseases are among the most difficult diseases due to their sensitivity, the difficulty of performing operations, and their high costs. In contrast, the operation is not necessary to succeed, as the results of the operation may be unsuccessful. One of the most common diseases that affect the brain is Alzheimer’s disease, which affects adults, a disease that leads to memory loss and forgetting information in varying degrees. According to the condition of each patient. For these reasons, it is important (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  20. Pistachio Variety Classification using Convolutional Neural Networks.Ahmed S. Sabah & Samy S. Abu-Naser - 2024 - International Journal of Academic Information Systems Research (IJAISR) 8 (4):113-119.
    Abstract: Pistachio nuts are a valuable source of nutrition and are widely cultivated for commercial purposes. The accurate classification of different pistachio varieties is important for quality control and market analysis. In this study, we propose a new model for the classification of different pistachio varieties using Convolutional Neural Networks (CNNs). We collected a dataset of pistachio images form Kaggle depository with two varieties (Kirmizi and Siirt). The images were then preprocessed and used to train a CNN model (...)
    Download  
     
    Export citation  
     
    Bookmark  
  21. Potato Classification Using Deep Learning.Abeer A. Elsharif, Ibtesam M. Dheir, Alaa Soliman Abu Mettleq & Samy S. Abu-Naser - 2020 - International Journal of Academic Pedagogical Research (IJAPR) 3 (12):1-8.
    Abstract: Potatoes are edible tubers, available worldwide and all year long. They are relatively cheap to grow, rich in nutrients, and they can make a delicious treat. The humble potato has fallen in popularity in recent years, due to the interest in low-carb foods. However, the fiber, vitamins, minerals, and phytochemicals it provides can help ward off disease and benefit human health. They are an important staple food in many countries around the world. There are an estimated 200 varieties of (...)
    Download  
     
    Export citation  
     
    Bookmark   64 citations  
  22.  46
    Facial Distortion Reconstruction with 3D Convolutional Neural Networks.M. Sheik Dawood - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):575-590.
    . The accuracy levels of VGG19 and 3D CNN are compared using the performance metrics. This comparison helps in identifying which model performs better in the task of facial reconstruction from distorted images. Visualizing the results in the form of a graph provides a clear and concise way to understand the comparative performance of the algorithms. The ultimate goal of this project is to develop a system that can accurately reconstruct distorted faces, which can be invaluable in identifying accident victims (...)
    Download  
     
    Export citation  
     
    Bookmark  
  23.  28
    Revolutionizing Agriculture with Deep Learning-Based Plant Health Monitoring.P. Selvaprasanth - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):655-666.
    By leveraging convolutional neural networks (CNNs), the model identifies various plant diseases with high accuracy. The experimental setup includes a dataset consisting of healthy and diseased leaf images of different plant species. The dataset is preprocessed to remove noise and augmented to address the issue of class imbalance. The CNN model is then trained, validated, and tested on this dataset. The results indicate that the deep learning model achieves a classification accuracy of over 95% for most plant (...)
    Download  
     
    Export citation  
     
    Bookmark  
  24. Axe the X in XAI: A Plea for Understandable AI.Andrés Páez - forthcoming - In Juan Manuel Durán & Giorgia Pozzi (eds.), Philosophy of science for machine learning: Core issues and new perspectives. Springer.
    In a recent paper, Erasmus et al. (2021) defend the idea that the ambiguity of the term “explanation” in explainable AI (XAI) can be solved by adopting any of four different extant accounts of explanation in the philosophy of science: the Deductive Nomological, Inductive Statistical, Causal Mechanical, and New Mechanist models. In this chapter, I show that the authors’ claim that these accounts can be applied to deep neural networks as they would to any natural phenomenon is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25.  20
    Deep Learning - Driven Data Leakage Detection for Secure Cloud Computing.Yoheswari S. - 2024 - International Journal of Engineering Innovations and Management Strategies 5 (1):1-4.
    Cloud computing has revolutionized the storage and management of data by offering scalable, cost-effective, and flexible solutions. However, it also introduces significant security concerns, particularly related to data leakage, where sensitive information is exposed to unauthorized entities. Data leakage can result in substantial financial losses, reputational damage, and legal complications. This paper proposes a deep learning-based framework for detecting data leakage in cloud environments. By leveraging advanced neural network architectures, such as Long Short- Term Memory (LSTM) and Convolutional (...)
    Download  
     
    Export citation  
     
    Bookmark  
  26.  27
    Interpretable Deep Learning Models for Air Quality Prediction: A Study of Techniques and Applications.S. Yoheswari - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):620-630.
    In recent years, the prediction of air quality has become a critical task due to its significant impact on human health and the environment. With urbanization and industrial growth, the need for accurate air quality forecasting has become more urgent. Traditional methods for air quality prediction are often based on statistical models or physical simulations, which, while valuable, can struggle to capture the complexity of air pollution dynamics. This study explores the use of deep learning techniques to predict air (...)
    Download  
     
    Export citation  
     
    Bookmark  
  27. RAINFALL DETECTION USING DEEP LEARNING TECHNIQUE.M. Arul Selvan & S. Miruna Joe Amali - 2024 - Journal of Science Technology and Research 5 (1):37-42.
    Rainfall prediction is one of the challenging tasks in weather forecasting. Accurate and timely rainfall prediction can be very helpful to take effective security measures in dvance regarding: on-going construction projects, transportation activities, agricultural tasks, flight operations and flood situation, etc. Data mining techniques can effectively predict the rainfall by extracting the hidden patterns among available features of past weather data. This research contributes by providing a critical analysis and review of latest data mining techniques, used for rainfall prediction. In (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  28.  31
    Deep Learning - Driven Data Leakage Detection for Secure Cloud Computing.Yoheswari S. - 2025 - International Journal of Engineering Innovations and Management Strategies 1 (1):1-4.
    Cloud computing has revolutionized the storage and management of data by offering scalable, cost-effective, and flexible solutions. However, it also introduces significant security concerns, particularly related to data leakage, where sensitive information is exposed to unauthorized entities. Data leakage can result in substantial financial losses, reputational damage, and legal complications. This paper proposes a deep learning-based framework for detecting data leakage in cloud environments. By leveraging advanced neural network architectures, such as Long Short-Term Memory (LSTM) and Convolutional (...) Networks (CNNs), the model detects abnormal data access patterns that may indicate leakage. The system operates in real-time, continuously monitoring data interactions between users and the cloud. A large dataset containing normal and abnormal access logs is used to train and validate the model, ensuring it can effectively differentiate between legitimate and malicious activity. The performance of the model is evaluated using metrics such as accuracy, precision, recall, and F1-score, with the system achieving over 96% accuracy in identifying potential data leaks. Furthermore, the proposed solution is designed to be scalable and adaptable, making it suitable for dynamic cloud environments with evolving threats. Future enhancements to the system include integrating multi-cloud support and refining the model’s ability to detect sophisticated insider threats. This research highlights the importance of leveraging deep learning for real-time, proactive cloud security. (shrink)
    Download  
     
    Export citation  
     
    Bookmark  
  29. AISC 17 Talk: The Explanatory Problems of Deep Learning in Artificial Intelligence and Computational Cognitive Science: Two Possible Research Agendas.Antonio Lieto - 2018 - In Proceedings of AISC 2017.
    Endowing artificial systems with explanatory capacities about the reasons guiding their decisions, represents a crucial challenge and research objective in the current fields of Artificial Intelligence (AI) and Computational Cognitive Science [Langley et al., 2017]. Current mainstream AI systems, in fact, despite the enormous progresses reached in specific tasks, mostly fail to provide a transparent account of the reasons determining their behavior (both in cases of a successful or unsuccessful output). This is due to the fact that the classical problem (...)
    Download  
     
    Export citation  
     
    Bookmark  
  30. Beyond Human: Deep Learning, Explainability and Representation.M. Beatrice Fazi - 2021 - Theory, Culture and Society 38 (7-8):55-77.
    This article addresses computational procedures that are no longer constrained by human modes of representation and considers how these procedures could be philosophically understood in terms of ‘algorithmic thought’. Research in deep learning is its case study. This artificial intelligence (AI) technique operates in computational ways that are often opaque. Such a black-box character demands rethinking the abstractive operations of deep learning. The article does so by entering debates about explainability in AI and assessing how technoscience and technoculture (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  31. Deep Learning Techniques for Comprehensive Emotion Recognition and Behavioral Regulation.M. Arul Selvan - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):383-389.
    Emotion detection and management have emerged as pivotal areas in humancomputer interaction, offering potential applications in healthcare, entertainment, and customer service. This study explores the use of deep learning (DL) models to enhance emotion recognition accuracy and enable effective emotion regulation mechanisms. By leveraging large datasets of facial expressions, voice tones, and physiological signals, we train deep neural networks to recognize a wide array of emotions with high precision. The proposed system integrates emotion recognition with adaptive (...)
    Download  
     
    Export citation  
     
    Bookmark  
  32. Attack Prevention in IoT through Hybrid Optimization Mechanism and Deep Learning Framework.Regonda Nagaraju, Jupeth Pentang, Shokhjakhon Abdufattokhov, Ricardo Fernando CosioBorda, N. Mageswari & G. Uganya - 2022 - Measurement: Sensors 24:100431.
    The Internet of Things (IoT) connects schemes, programs, data management, and operations, and as they continuously assist in the corporation, they may be a fresh entryway for cyber-attacks. Presently, illegal downloading and virus attacks pose significant threats to IoT security. These risks may acquire confidential material, causing reputational and financial harm. In this paper hybrid optimization mechanism and deep learning,a frame is used to detect the attack prevention in IoT. To develop a cybersecurity warning system in a huge data (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  33. Can Deep CNNs Avoid Infinite Regress/Circularity in Content Constitution?Jesse Lopes - 2023 - Minds and Machines 33 (3):507-524.
    The representations of deep convolutional neural networks (CNNs) are formed from generalizing similarities and abstracting from differences in the manner of the empiricist theory of abstraction (Buckner, Synthese 195:5339–5372, 2018). The empiricist theory of abstraction is well understood to entail infinite regress and circularity in content constitution (Husserl, Logical Investigations. Routledge, 2001). This paper argues these entailments hold a fortiori for deep CNNs. Two theses result: deep CNNs require supplementation by Quine’s “apparatus of identity and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  34. Neural Chitchat.Barry Smith - 2021 - The Sherry Turkle Miracle.
    A constant theme in Sherry Turkle’s work is the idea that computers shape our social and psychological lives. This idea is of course in a sense trivial, as can be observed when walking down any city street and noting how many of the passers-by have their heads buried in screens. In The Second Self, however, Turkle makes a stronger claim to the effect that where people confront machines that seem to think this suggests a new way for us to think (...)
    Download  
     
    Export citation  
     
    Bookmark  
  35. Lemon Classification Using Deep Learning.Jawad Yousif AlZamily & Samy Salim Abu Naser - 2020 - International Journal of Academic Pedagogical Research (IJAPR) 3 (12):16-20.
    Abstract : Background: Vegetable agriculture is very important to human continued existence and remains a key driver of many economies worldwide, especially in underdeveloped and developing economies. Objectives: There is an increasing demand for food and cash crops, due to the increasing in world population and the challenges enforced by climate modifications, there is an urgent need to increase plant production while reducing costs. Methods: In this paper, Lemon classification approach is presented with a dataset that contains approximately 2,000 images (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  36. Using Deep Learning to Classify Corn Diseases.Mohanad H. Al-Qadi & Samy S. Abu-Naser - 2024 - International Journal of Academic Information Systems (Ijaisr) 8 (4):81-88.
    Abstract: A corn crop typically refers to a large-scale cultivation of corn (also known as maize) for commercial purposes such as food production, animal feed, and industrial uses. Corn is one of the most widely grown crops in the world, and it is a major staple food for many cultures. Corn crops are grown in various regions of the world with different climates, soil types, and farming practices. In the United States, for example, the Midwest is known as the "Corn (...)
    Download  
     
    Export citation  
     
    Bookmark  
  37.  37
    A Novel Deep Learning-Based Framework for Intelligent Malware Detection in Cybersecurity.P. Selvaprasanth - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):666-669.
    With the proliferation of sophisticated cyber threats, traditional malware detection techniques are becoming inadequate to ensure robust cybersecurity. This study explores the integration of deep learning (DL) techniques into malware detection systems to enhance their accuracy, scalability, and adaptability. By leveraging convolutional neural networks (CNNs), recurrent neural networks (RNNs), and transformers, this research presents an intelligent malware detection framework capable of identifying both known and zero-day threats. The methodology involves feature extraction from static, dynamic, and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  38. Diagnosis of Pneumonia Using Deep Learning.Alaa M. A. Barhoom & Samy S. Abu-Naser - 2022 - International Journal of Academic Engineering Research (IJAER) 6 (2):48-68.
    Artificial intelligence (AI) is an area of computer science that emphasizes the creation of intelligent machines or software that work and react like humans. Some of the activities computers with artificial intelligence are designed for include, Speech, recognition, Learning, Planning and Problem solving. Deep learning is a collection of algorithms used in machine learning, It is part of a broad family of methods used for machine learning that are based on learning representations of data. Deep learning is a (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  39.  25
    Automated Plant Disease Detection through Deep Learning for Enhanced Agricultural Productivity.M. Sheik Dawood - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):640-650.
    he health of plants plays a crucial role in ensuring agricultural productivity and food security. Early detection of plant diseases can significantly reduce crop losses, leading to improved yields. This paper presents a novel approach for plant disease recognition using deep learning techniques. The proposed system automates the process of disease detection by analyzing leaf images, which are widely recognized as reliable indicators of plant health. By leveraging convolutional neural networks (CNNs), the model identifies various plant diseases (...)
    Download  
     
    Export citation  
     
    Bookmark  
  40. Using Deep Learning to Detect the Quality of Lemons.Mohammed B. Karaja & Samy S. Abu-Naser - 2024 - International Journal of Academic Information Systems Research (IJAISR) 8 (4):97-104.
    Abstract: Lemons are an important fruit that have a wide range of uses and benefits, from culinary to health to household and beauty applications. Deep learning techniques have shown promising results in image classification tasks, including fruit quality detection. In this paper, we propose a convolutional neural network (CNN)-based approach for detecting the quality of lemons by analysing visual features such as colour and texture. The study aims to develop and train a deep learning model to classify (...)
    Download  
     
    Export citation  
     
    Bookmark  
  41. Classification of Real and Fake Human Faces Using Deep Learning.Fatima Maher Salman & Samy S. Abu-Naser - 2022 - International Journal of Academic Engineering Research (IJAER) 6 (3):1-14.
    Artificial intelligence (AI), deep learning, machine learning and neural networks represent extremely exciting and powerful machine learning-based techniques used to solve many real-world problems. Artificial intelligence is the branch of computer sciences that emphasizes the development of intelligent machines, thinking and working like humans. For example, recognition, problem-solving, learning, visual perception, decision-making and planning. Deep learning is a subset of machine learning in artificial intelligence that has networks capable of learning unsupervised from data that is (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  42. Cantaloupe Classifications using Deep Learning.Basel El-Habil & Samy S. Abu-Naser - 2021 - International Journal of Academic Engineering Research (IJAER) 5 (12):7-17.
    Abstract cantaloupe and honeydew melons are part of the muskmelon family, which originated in the Middle East. When picking either cantaloupe or honeydew melons to eat, you should choose a firm fruit that is heavy for its size, with no obvious signs of bruising. They can be stored at room temperature until you cut them, after which they should be kept in the refrigerator in an airtight container for up to five days. You should always wash and scrub the rind (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  43. Deep Learning-Based Speech and Vision Synthesis to Improve Phishing Attack Detection through a Multi-layer Adaptive Framework.Tosin ige, Christopher Kiekintveld & Aritran Piplai - forthcoming - Proceedings of the IEEE:8.
    The ever-evolving ways attacker continues to improve their phishing techniques to bypass existing state-of-the-art phishing detection methods pose a mountain of challenges to researchers in both industry and academia research due to the inability of current approaches to detect complex phishing attack. Thus, current anti-phishing methods remain vulnerable to complex phishing because of the increasingly sophistication tactics adopted by attacker coupled with the rate at which new tactics are being developed to evade detection. In this research, we proposed an adaptable (...)
    Download  
     
    Export citation  
     
    Bookmark  
  44.  31
    Evaluating Advanced Deep Learning Methods for Regional Air Quality Index Forecasting.M. Sheik Dawood - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):600-620.
    We investigate the application of Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM) networks, and a hybrid CNN-LSTM model for forecasting air pollution levels based on historical data. Our experimental setup uses real-world air quality datasets from multiple regions, containing measurements of pollutants like PM2.5, PM10, CO, NO2, and SO2, alongside meteorological data such as temperature, humidity, and wind speed. The models are trained, validated, and tested using a split dataset, and their accuracy is evaluated using performance (...)
    Download  
     
    Export citation  
     
    Bookmark  
  45.  27
    Advanced Deep Learning Models for Proactive Malware Detection in Cybersecurity Systems.A. Manoj Prabharan - 2023 - Journal of Science Technology and Research (JSTAR) 5 (1):666-676.
    By leveraging convolutional neural networks (CNNs), recurrent neural networks (RNNs), and transformers, this research presents an intelligent malware detection framework capable of identifying both known and zero-day threats. The methodology involves feature extraction from static, dynamic, and hybrid malware datasets, followed by training DL models to classify malicious and benign software with high precision. A robust experimental setup evaluates the framework using benchmark malware datasets, yielding a 96% detection accuracy and demonstrating resilience against adversarial attacks. Real-time (...)
    Download  
     
    Export citation  
     
    Bookmark  
  46.  96
    AI-Driven Emotion Recognition and Regulation Using Advanced Deep Learning Models.S. Arul Selvan - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):383-389.
    Emotion detection and management have emerged as pivotal areas in humancomputer interaction, offering potential applications in healthcare, entertainment, and customer service. This study explores the use of deep learning (DL) models to enhance emotion recognition accuracy and enable effective emotion regulation mechanisms. By leveraging large datasets of facial expressions, voice tones, and physiological signals, we train deep neural networks to recognize a wide array of emotions with high precision. The proposed system integrates emotion recognition with adaptive (...)
    Download  
     
    Export citation  
     
    Bookmark  
  47.  82
    ADVANCED EMOTION RECOGNITION AND REGULATION UTILIZING DEEP LEARNING TECHNIQUES.S. Yoheswari - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):383-388.
    Emotion detection and management have emerged as pivotal areas in humancomputer interaction, offering potential applications in healthcare, entertainment, and customer service. This study explores the use of deep learning (DL) models to enhance emotion recognition accuracy and enable effective emotion regulation mechanisms. By leveraging large datasets of facial expressions, voice tones, and physiological signals, we train deep neural networks to recognize a wide array of emotions with high precision. The proposed system integrates emotion recognition with adaptive (...)
    Download  
     
    Export citation  
     
    Bookmark  
  48. Type of Tomato Classification Using Deep Learning.Mahmoud A. Alajrami & Samy S. Abu-Naser - 2020 - International Journal of Academic Pedagogical Research (IJAPR) 3 (12):21-25.
    Abstract: Tomatoes are part of the major crops in food security. Tomatoes are plants grown in temperate and hot regions of South American origin from Peru, and then spread to most countries of the world. Tomatoes contain a lot of vitamin C and mineral salts, and are recommended for people with constipation, diabetes and patients with heart and body diseases. Studies and scientific studies have proven the importance of eating tomato juice in reducing the activity of platelets in diabetics, which (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  49. Classification of Rice Using Deep Learning.Mohammed H. S. Abueleiwa & Samy S. Abu-Naser - 2024 - International Journal of Academic Information Systems Research (IJAISR) 8 (4):26-36.
    Abstract: Rice is one of the most important staple crops in the world and serves as a staple food for more than half of the global population. It is a critical source of nutrition, providing carbohydrates, vitamins, and minerals to millions of people, particularly in Asia and Africa. This paper presents a study on using deep learning for the classification of different types of rice. The study focuses on five specific types of rice: Arborio, Basmati, Ipsala, Jasmine, and Karacadag. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  50.  27
    A Comparative Study of Advanced Techniques for Predicting Air Quality with Deep Learning.M. Arulselvan - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):575-586.
    In recent years, the prediction of air quality has become a critical task due to its significant impact on human health and the environment. With urbanization and industrial growth, the need for accurate air quality forecasting has become more urgent. Traditional methods for air quality prediction are often based on statistical models or physical simulations, which, while valuable, can struggle to capture the complexity of air pollution dynamics. This study explores the use of deep learning techniques to predict air (...)
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 969