Results for 'wave function realism'

964 found
Order:
  1. Wave Function Realism.Alyssa Ney - 3105–3124
    This is an introduction to wave function realism for a compendium on the philosophy of quantum mechanics that will be edited and translated into Portuguese by Raoni Arroyo, entitled Compêndio de Filosofia da Física Quântica. This essay presents the history of wave function realism, its various interpretations, the main arguments that are given for the position, and the main objections that have been raised to it.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  2. Realism about the wave function.Eddy Keming Chen - 2019 - Philosophy Compass 14 (7):e12611.
    A century after the discovery of quantum mechanics, the meaning of quantum mechanics still remains elusive. This is largely due to the puzzling nature of the wave function, the central object in quantum mechanics. If we are realists about quantum mechanics, how should we understand the wave function? What does it represent? What is its physical meaning? Answering these questions would improve our understanding of what it means to be a realist about quantum mechanics. In this (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  3. Scientific Realism without the Wave-Function: An Example of Naturalized Quantum Metaphysics.Valia Allori - 2020 - In Juha Saatsi & Steven French (eds.), Scientific Realism and the Quantum. Oxford: Oxford University Press.
    Scientific realism is the view that our best scientific theories can be regarded as (approximately) true. This is connected with the view that science, physics in particular, and metaphysics could (and should) inform one another: on the one hand, science tells us what the world is like, and on the other hand, metaphysical principles allow us to select between the various possible theories which are underdetermined by the data. Nonetheless, quantum mechanics has always been regarded as, at best, puzzling, (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  4. Scientific Realism and Primitive Ontology Or: The Pessimistic Induction and the Nature of the Wave Function.Valia Allori - 2018 - Lato Sensu 1 (5):69-76.
    In this paper I wish to connect the recent debate in the philosophy of quantum mechanics concerning the nature of the wave function to the historical debate in the philosophy of science regarding the tenability of scientific realism. Being realist about quantum mechanics is particularly challenging when focusing on the wave function. According to the wave function ontology approach, the wave function is a concrete physical entity. In contrast, according to an (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  5. Realism and instrumentalism about the wave function. How should we choose?Mauro Dorato & Federico Laudisa - 2014 - In Shao Gan (ed.), Protective Measurements and Quantum Reality: Toward a New Understanding of Quantum Mechanics. Cambridge University Press.
    The main claim of the paper is that one can be ‘realist’ (in some sense) about quantum mechanics without requiring any form of realism about the wave function. We begin by discussing various forms of realism about the wave function, namely Albert’s configuration-space realism, Dürr Zanghi and Goldstein’s nomological realism about Ψ, Esfeld’s dispositional reading of Ψ Pusey Barrett and Rudolph’s realism about the quantum state. By discussing the articulation of these (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  6. Bohmian mechanics without wave function ontology.Albert Solé - 2013 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 44 (4):365-378.
    In this paper, I critically assess different interpretations of Bohmian mechanics that are not committed to an ontology based on the wave function being an actual physical object that inhabits configuration space. More specifically, my aim is to explore the connection between the denial of configuration space realism and another interpretive debate that is specific to Bohmian mechanics: the quantum potential versus guidance approaches. Whereas defenders of the quantum potential approach to the theory claim that Bohmian mechanics (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  7. The Wave Function and Particle Ontology.Shan Gao - 2014
    In quantum mechanics, the wave function of a N-body system is a mathematical function defined in a 3N-dimensional configuration space. We argue that wave function realism implies particle ontology when assuming: (1) the wave function of a N-body system describes N physical entities; (2) each triple of the 3N coordinates of a point in configuration space that relates to one physical entity represents a point in ordinary three-dimensional space. Moreover, the motion of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  8. Meaning of the wave function.Shan Gao - 2010
    We investigate the meaning of the wave function by analyzing the mass and charge density distributions of a quantum system. According to protective measurement, a charged quantum system has effective mass and charge density distributing in space, proportional to the square of the absolute value of its wave function. In a realistic interpretation, the wave function of a quantum system can be taken as a description of either a physical field or the ergodic motion (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  9. ​​Our Fundamental Physical Space: An Essay on the Metaphysics of the Wave Function.Eddy Keming Chen - 2017 - Journal of Philosophy 114 (7):333-365.
    The mathematical structure of realist quantum theories has given rise to a debate about how our ordinary 3-dimensional space is related to the 3N-dimensional configuration space on which the wave function is defined. Which of the two spaces is our (more) fundamental physical space? I review the debate between 3N-Fundamentalists and 3D-Fundamentalists and evaluate it based on three criteria. I argue that when we consider which view leads to a deeper understanding of the physical world, especially given the (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  10. Laws of nature and the reality of the wave function.Mauro Dorato - 2015 - Synthese 192 (10):3179-3201.
    In this paper I review three different positions on the wave function, namely: nomological realism, dispositionalism, and configuration space realism by regarding as essential their capacity to account for the world of our experience. I conclude that the first two positions are committed to regard the wave function as an abstract entity. The third position will be shown to be a merely speculative attempt to derive a primitive ontology from a reified mathematical space. Without (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  11. A New Argument for the Nomological Interpretation of the Wave Function: The Galilean Group and the Classical Limit of Nonrelativistic Quantum Mechanics.Valia Allori - 2017 - International Studies in the Philosophy of Science (2):177-188.
    In this paper I investigate, within the framework of realistic interpretations of the wave function in nonrelativistic quantum mechanics, the mathematical and physical nature of the wave function. I argue against the view that mathematically the wave function is a two-component scalar field on configuration space. First, I review how this view makes quantum mechanics non- Galilei invariant and yields the wrong classical limit. Moreover, I argue that interpreting the wave function as (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  12. Quantum Mechanics and Relational Realism: Logical Causality and Wave Function Collapse.Michael Epperson - 2009 - Process Studies 38 (2):340-367.
    By the relational realist interpretation of wave function collapse, the quantum mechanical actualization of potentia is defined as a decoherence-driven process by which each actualization (in “orthodox” terms, each measurement outcome) is conditioned both by physical and logical relations with the actualities conventionally demarked as “environmental” or external to that particular outcome. But by the relational realist interpretation, the actualization-in-process is understood as internally related to these “enironmental” data per the formalism of quantum decoherence. The concept of “actualization (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  13. Review of Alyssa Ney’s 
The World in the Wave Function: A Metaphysics for Quantum Physics[REVIEW]Mario Hubert - 2022 - Philosophy of Science 89 (4):864-875.
    There is not much of a consensus on almost anything about quantum mechanics. I take it, however, that the minimum consensus is that "although quantum mechanics is empirically successful, quantum mechanics is hard to understand." Quantum mechanics, in the way it is presented in most textbooks, does indeed not provide a clear picture of reality that would make it a theory to be understood. In her new book, "The World in the Wave Function: A Metaphysics for Quantum Physics," (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  14. Density Matrix Realism.Eddy Keming Chen - 2024 - In Michael E. Cuffaro & Stephan Hartmann (eds.), Open Systems: Physics, Metaphysics, and Methodology (2025: Oxford University Press). Oxford: Oxford University Press.
    Realism about quantum theory naturally leads to realism about the quantum state of the universe. It leaves open whether it is a pure state represented by a wave function, or an impure (mixed) one represented by a density matrix. I characterize and elaborate on Density Matrix Realism, the thesis that the universal quantum state is objective but can be impure. To clarify the thesis, I compare it with Wave Function Realism, explain the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15. Functionalising the wavefunction.Lorenzo Lorenzetti - 2022 - Studies in History and Philosophy of Science Part A 96 (C):141-153.
    Functionalism is the view that being x is to play the role of x. This paper defends a functionalist account of three-dimensional entities in the context of Wave Function Realism (WFR), that can explain in detail how we can recover three-dimensional entities out of the wavefunction. In particular, the essay advocates for a novel version of WFR in terms of a functional reductionist approach in the style of David Lewis. This account entails reduction of the upper entities (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  16. Against 3N-Dimensional Space.Bradley Monton - 2013 - In Alyssa Ney & David Albert (eds.), The Wave Function: Essays on the Metaphysics of Quantum Mechanics. , US: Oxford University Press USA.
    I argue that space has three dimensions, and quantum mechanics does not show otherwise. Specifically, I argue that the mathematical wave function of quantum mechanics corresponds to a property that an N-particle system has in three-dimensional space.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  17. Taking models seriously and being a linguistic realist.Raoni Wohnrath Arroyo & Gilson Olegario da Silva - 2022 - Principia: An International Journal of Epistemology 26 (1):73-94.
    Carnap's conception of linguistic frameworks is widespread; however, it is not entirely clear nor consensual to pinpoint what is the influence of his stance within the traditional realist/anti-realist debate. In this paper, we place Carnap as a proponent of a scientific realist stance, by presenting what he called “linguistic realism”. Some possible criticisms are considered, and a case study is offered with wave function realism, a popular position in the philosophy of quantum mechanics.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  18. Quantum Mechanics in a Time-Asymmetric Universe: On the Nature of the Initial Quantum State.Eddy Keming Chen - 2021 - British Journal for the Philosophy of Science 72 (4):1155–1183.
    In a quantum universe with a strong arrow of time, we postulate a low-entropy boundary condition to account for the temporal asymmetry. In this paper, I show that the Past Hypothesis also contains enough information to simplify the quantum ontology and define a unique initial condition in such a world. First, I introduce Density Matrix Realism, the thesis that the quantum universe is described by a fundamental density matrix that represents something objective. This stands in sharp contrast to (...) Function Realism, the thesis that the quantum universe is described by a wave function that represents something objective. Second, I suggest that the Past Hypothesis is sufficient to determine a unique and simple density matrix. This is achieved by what I call the Initial Projection Hypothesis: the initial density matrix of the universe is the normalized projection onto the special low-dimensional Hilbert space. Third, because the initial quantum state is unique and simple, we have a strong case for the \emph{Nomological Thesis}: the initial quantum state of the universe is on a par with laws of nature. This new package of ideas has several interesting implications, including on the harmony between statistical mechanics and quantum mechanics, the dynamic unity of the universe and the subsystems, and the alleged conflict between Humean supervenience and quantum entanglement. (shrink)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  19. An Intrinsic Theory of Quantum Mechanics: Progress in Field's Nominalistic Program, Part I.Eddy Keming Chen - manuscript
    In this paper, I introduce an intrinsic account of the quantum state. This account contains three desirable features that the standard platonistic account lacks: (1) it does not refer to any abstract mathematical objects such as complex numbers, (2) it is independent of the usual arbitrary conventions in the wave function representation, and (3) it explains why the quantum state has its amplitude and phase degrees of freedom. -/- Consequently, this account extends Hartry Field’s program outlined in Science (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  20. Structuralist approaches to Bohmian mechanics.Lorenzo Lorenzetti - 2022 - Synthese 200 (1):1-15.
    Lam and Esfeld have argued that, within Bohmian mechanics, the wave function can be interpreted as a physical structure instantiated by the fundamental particles posited by the theory. Further, to characterize the nature of this structure, they appeal to the framework of Ontic Structural Realism, thereby proposing a structuralist interpretation of Bohmian mechanics. However, I shall point out that OSR denotes a family of distinct views, each of which maintains a different account about the relation between structures (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  21. Time's Arrow in a Quantum Universe: On the Status of Statistical Mechanical Probabilities.Eddy Keming Chen - 2020 - In Valia Allori (ed.), Statistical Mechanics and Scientific Explanation: Determinism, Indeterminism and Laws of Nature. Singapore: World Scientific. pp. 479–515.
    In a quantum universe with a strong arrow of time, it is standard to postulate that the initial wave function started in a particular macrostate---the special low-entropy macrostate selected by the Past Hypothesis. Moreover, there is an additional postulate about statistical mechanical probabilities according to which the initial wave function is a ''typical'' choice in the macrostate. Together, they support a probabilistic version of the Second Law of Thermodynamics: typical initial wave functions will increase in (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  22. After Qbism, Contextual Quantum Realism (Response to C. Fuchs’s Question).Francois-Igor Pris - 2023 - ФИЛОСОФИЯ НАУКИ 3 (98):143-165.
    In his recent paper, C. Fuchs formulates QBism in the form of eight postulates. We criticise QBism as an anti-realist position and propose an alternative – contextual quantum realism (QCR). 1. A quantum state is not “an agent’s personal judgement” (QBism), nor is it subjective (QBism), but objective (QCR). It describes not the current experience (QBism), but a state of a physical system in context (QCR). 2. A quantum measurement is a (literally) measurement of quantum reality (QCR), rather than (...)
    Download  
     
    Export citation  
     
    Bookmark  
  23. Space Emergence in Contemporary Physics: Why We Do Not Need Fundamentality, Layers of Reality and Emergence.Baptiste Le Bihan - 2018 - Disputatio 10 (49):71-95.
    ‘Space does not exist fundamentally: it emerges from a more fundamental non-spatial structure.’ This intriguing claim appears in various research programs in contemporary physics. Philosophers of physics tend to believe that this claim entails either that spacetime does not exist, or that it is derivatively real. In this article, I introduce and defend a third metaphysical interpretation of the claim: reductionism about space. I argue that, as a result, there is no need to subscribe to fundamentality, layers of reality and (...)
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  24. Schrödinger's cat in a realist quantum mechanics.Arthur Jabs - 2016 - arXiv.Org.
    There is no paradox with Schrödinger’s cat in a realist interpretation. In particular, a closer look at the temporal aspect shows that the two macroscopic wave functions (alive and dead) of Schrödinger’s cat are not to be compared with two superposed parts of a microscopic quantum wave function.
    Download  
     
    Export citation  
     
    Bookmark  
  25. Why the de Broglie-Bohm theory is probably wrong.Shan Gao - manuscript
    We investigate the validity of the field explanation of the wave function by analyzing the mass and charge density distributions of a quantum system. It is argued that a charged quantum system has effective mass and charge density distributing in space, proportional to the square of the absolute value of its wave function. This is also a consequence of protective measurement. If the wave function is a physical field, then the mass and charge density (...)
    Download  
     
    Export citation  
     
    Bookmark  
  26. Post-structuralist angst - critical notice: John Bickle, Psychoneural Reduction: The New Wave.Ronald Endicott - 2001 - Philosophy of Science 68 (3):377-393.
    I critically evaluate Bickle’s version of scientific theory reduction. I press three main points. First, a small point, Bickle modifies the new wave account of reduction developed by Paul Churchland and Clifford Hooker by treating theories as set-theoretic structures. But that structuralist gloss seems to lose what was distinctive about the Churchland-Hooker account, namely, that a corrected theory must be specified entirely by terms and concepts drawn from the basic reducing theory. Set-theoretic structures are not terms or concepts but (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  27. A propos du renouveau annoncé de la métaphysique.Pierre Uzan - 2016 - Logos and Episteme 7 (3):305-323.
    In this paper, we evaluate the project of resurgence of metaphysics based on the pecularity of the quantum domain, a project that is supported by some contemporary philosophers. Beyond the general arguments against scientific realism that are still applicable here, we show that this project is faced with the three following issues that, we believe, make it unrealizable: (a) the problem raised by the realistic interpretation of the wave function, as a description of a ‘concrete physical fact’ (...)
    Download  
     
    Export citation  
     
    Bookmark  
  28. Protective measurement and the de Broglie-Bohm theory.Shan Gao - manuscript
    We investigate the implications of protective measurement for de Broglie-Bohm theory, mainly focusing on the interpretation of the wave function. It has been argued that the de Broglie-Bohm theory gives the same predictions as quantum mechanics by means of quantum equilibrium hypothesis. However, this equivalence is based on the premise that the wave function, regarded as a Ψ-field, has no mass and charge density distributions. But this premise turns out to be wrong according to protective measurement; (...)
    Download  
     
    Export citation  
     
    Bookmark  
  29. Naturalización de la Metafísica Modal.Carlos Romero - 2021 - Dissertation, National Autonomous University of Mexico
    ⦿ In my dissertation I introduce, motivate and take the first steps in the implementation of, the project of naturalising modal metaphysics: the transformation of the field into a chapter of the philosophy of science rather than speculative, autonomous metaphysics. -/- ⦿ In the introduction, I explain the concept of naturalisation that I apply throughout the dissertation, which I argue to be an improvement on Ladyman and Ross' proposal for naturalised metaphysics. I also object to Williamson's proposal that modal metaphysics (...)
    Download  
     
    Export citation  
     
    Bookmark  
  30. The Wave-Function as a Multi-Field.Mario Hubert & Davide Romano - 2018 - European Journal for Philosophy of Science 8 (3):521-537.
    It is generally argued that if the wave-function in the de Broglie–Bohm theory is a physical field, it must be a field in configuration space. Nevertheless, it is possible to interpret the wave-function as a multi-field in three-dimensional space. This approach hasn’t received the attention yet it really deserves. The aim of this paper is threefold: first, we show that the wave-function is naturally and straightforwardly construed as a multi-field; second, we show why this (...)
    Download  
     
    Export citation  
     
    Bookmark   39 citations  
  31. Space, Time, and (how they) Matter: a Discussion about some Metaphysical Insights Provided by our Best Fundamental Physical Theories.Valia Allori - 2016 - In G. C. Ghirardi & J. Statchel (eds.), Space, Time, and Frontiers of Human Understanding. Springer. pp. 95-107.
    This paper is a brief (and hopelessly incomplete) non-standard introduction to the philosophy of space and time. It is an introduction because I plan to give an overview of what I consider some of the main questions about space and time: Is space a substance over and above matter? How many dimensions does it have? Is space-time fundamental or emergent? Does time have a direction? Does time even exist? Nonetheless, this introduction is not standard because I conclude the discussion by (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  32. Events and the Ontology of Quantum Mechanics.Mauro Dorato - 2015 - Topoi 34 (2):369-378.
    In the first part of the paper I argue that an ontology of events is precise, flexible and general enough so as to cover the three main alternative formulations of quantum mechanics as well as theories advocating an antirealistic view of the wave function. Since these formulations advocate a primitive ontology of entities living in four-dimensional spacetime, they are good candidates to connect that quantum image with the manifest image of the world. However, to the extent that some (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  33. Primitive Ontology and the Structure of Fundamental Physical Theories.Valia Allori - 2013 - In Alyssa Ney & David Albert (eds.), The Wave Function: Essays on the Metaphysics of Quantum Mechanics. , US: Oxford University Press USA. pp. 58-75.
    For a long time it was believed that it was impossible to be realist about quantum mechanics. It took quite a while for the researchers in the foundations of physics, beginning with John Stuart Bell [Bell 1987], to convince others that such an alleged impossibility had no foundation. Nowadays there are several quantum theories that can be interpreted realistically, among which Bohmian mechanics, the GRW theory, and the many-worlds theory. The debate, though, is far from being over: in what respect (...)
    Download  
     
    Export citation  
     
    Bookmark   60 citations  
  34. Wave Function Ontology.Bradley Monton - 2002 - Synthese 130 (2):265-277.
    I argue that the wave function ontology for quantum mechanics is an undesirable ontology. This ontology holds that the fundamental space in which entities evolve is not three-dimensional, but instead 3N-dimensional, where N is the number of particles standardly thought to exist in three-dimensional space. I show that the state of three-dimensional objects does not supervene on the state of objects in 3N-dimensional space. I also show that the only way to guarantee the existence of the appropriate mental (...)
    Download  
     
    Export citation  
     
    Bookmark   62 citations  
  35. Fundamentality and Levels in Everettian Quantum Mechanics.Alastair Wilson - 2022 - In Valia Allori (ed.), Quantum Mechanics and Fundamentality: Naturalizing Quantum Theory between Scientific Realism and Ontological Indeterminacy. Cham: Springer.
    Distinctions in fundamentality between different levels of description are central to the viability of contemporary decoherence-based Everettian quantum mechanics (EQM). This approach to quantum theory characteristically combines a determinate fundamental reality (one universal wave function) with an indeterminate emergent reality (multiple decoherent worlds). In this chapter I explore how the Everettian appeal to fundamentality and emergence can be understood within existing metaphysical frameworks, identify grounding and concept fundamentality as promising theoretical tools, and use them to characterize a system (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  36. Bohmian Holism.Tuomas E. Tahko - 2021 - In Petteri Limnell & Tero Vadén (eds.), Unfolding the Big Picture. Essays in Honour of Paavo Pylkkänen. Philosophical Studies from the University of Helsinki. pp. 7-18.
    This is a contribution to Paavo Pylkkänen's Festschrift. I discuss his relationship to Bohm's philosophy and a sense of holism that can be extracted from the Bohmian view.
    Download  
     
    Export citation  
     
    Bookmark  
  37. The Wave Function and Its Evolution.Shan Gao - 2011
    The meaning of the wave function and its evolution are investigated. First, we argue that the wave function in quantum mechanics is a description of random discontinuous motion of particles, and the modulus square of the wave function gives the probability density of the particles being in certain locations in space. Next, we show that the linear non-relativistic evolution of the wave function of an isolated system obeys the free Schrödinger equation due (...)
    Download  
     
    Export citation  
     
    Bookmark  
  38. A Synopsis of the Minimal Modal Interpretation of Quantum Theory.Jacob Barandes & David Kagan - manuscript
    We summarize a new realist, unextravagant interpretation of quantum theory that builds on the existing physical structure of the theory and allows experiments to have definite outcomes but leaves the theory's basic dynamical content essentially intact. Much as classical systems have specific states that evolve along definite trajectories through configuration spaces, the traditional formulation of quantum theory permits assuming that closed quantum systems have specific states that evolve unitarily along definite trajectories through Hilbert spaces, and our interpretation extends this intuitive (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  39. The Minimal Modal Interpretation of Quantum Theory.Jacob Barandes & David Kagan - manuscript
    We introduce a realist, unextravagant interpretation of quantum theory that builds on the existing physical structure of the theory and allows experiments to have definite outcomes but leaves the theory’s basic dynamical content essentially intact. Much as classical systems have specific states that evolve along definite trajectories through configuration spaces, the traditional formulation of quantum theory permits assuming that closed quantum systems have specific states that evolve unitarily along definite trajectories through Hilbert spaces, and our interpretation extends this intuitive picture (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  40. Three Approaches to the Issue of Quantum Reality and the Second Quantum Revolution.Vladislav E. Terekhovich - 2019 - Epistemology and Philosophy of Science 56 (1):169-184.
    The framework of a simple opposition realism – anti-realism is not enough to analyze the views on the reality of unobservable objects of quantum theory. First, it is necessary to distinguish between realism in relation to the theory and realism in relation to the theory’s objects. Secondly, realism in relation to classical objects can be combined, both with realism and with anti-realism in relation to quantum objects. Third, the concept of “existence” and “to (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  41. The Ontological and Epistemological Necessity of Local Beables in Quantum Mechanics.Maryam Ansari & Alireza Mansouri - 2021 - Persian Journal for Analytic Philosophy 25 (38):33-56.
    Bell introduces local beables in contrast to quantum mechanical observables. The present article emphasizes the importance and necessity of introducing local beables in quantum mechanics from the ontological and epistemological points of view. We argue that suggesting beables in the ontology of quantum mechanics is necessary to give an adequate account of its testability.
    Download  
     
    Export citation  
     
    Bookmark  
  42. The wave function as a true ensemble.Jonte Hance & Sabine Hossenfelder - 2022 - Proceedings of the Royal Society 478 (2262).
    In quantum mechanics, the wavefunction predicts probabilities of possible measurement outcomes, but not which individual outcome is realised in each run of an experiment. This suggests that it describes an ensemble of states with different values of a hidden variable. Here, we analyse this idea with reference to currently known theorems and experiments. We argue that the ψ-ontic/epistemic distinction fails to properly identify ensemble interpretations and propose a more useful definition. We then show that all local ψ-ensemble interpretations which reproduce (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  43. The Quantum Wave Function Isn't Real.Eddy Keming Chen - 2022 - The Institute of Art and Ideas.
    In this popular article, I suggest that the task of interpreting quantum mechanics becomes easier if we reject the view that the quantum universe must be described by a wave function. We should zoom out from the wave function and represent the universe with something more coarse-grained, one that naturally arises from considerations about the Past Hypothesis. The new proposal is called the Wentaculus.
    Download  
     
    Export citation  
     
    Bookmark  
  44. New Wave Moral Realism Meets Moral Twin Earth.Terence Horgan & Mark Timmons - 1991 - Journal of Philosophical Research 16:447-465.
    There have been times in the history of ethical theory, especially in this century, when moral realism was down, but it was never out. The appeal of this doctrine for many moral philosophers is apparently so strong that there are always supporters in its corner who seek to resuscitate the view. The attraction is obvious: moral realism purports to provide a precious philosophical good, viz., objectivity and all that this involves, including right answers to (most) moral questions, and (...)
    Download  
     
    Export citation  
     
    Bookmark   123 citations  
  45.  80
    Duality Underpins the Wave Function, Nonlocality and the Measurement Problem: But Progress May be Possible.Paul Klevgard - manuscript
    Rather than regarding the occurring, massless, wave-like photon as an existing, massy particle, the two can be seen as opposites. This opposition carries over into how the two utilize dimensions: particle rest mass requires space to exist and always advances in time; photon kinetic energy cycles require time to occur and always advance in space. The photon and the inertial particle exchange the equalities that special relativity identifies: particle mass for photon energy and particle time advance for photon space (...)
    Download  
     
    Export citation  
     
    Bookmark  
  46. Ontology of the wave function and the many-worlds interpretation.Lev Vaidman (ed.) - 2019 - Cambridge University Press, UK.
    It is argued that the many-worlds interpretation is by far the best interpretation of quantum mechanics. The key points of this view are viewing the wave functions of worlds in three dimensions and understanding probability through self-locating uncertainty.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  47. Taking Heisenberg's Potentia Seriously.Ruth Kastner, Stuart Kauffman & Michael Epperson - 2018 - International Journal of Quantum Foundations 4 (2):158-172.
    It is argued that quantum theory is best understood as requiring an ontological duality of res extensa and res potentia, where the latter is understood per Heisenberg’s original proposal, and the former is roughly equivalent to Descartes’ ‘extended substance.’ However, this is not a dualism of mutually exclusive substances in the classical Cartesian sense, and therefore does not inherit the infamous ‘mind-body’ problem. Rather, res potentia and res extensa are proposed as mutually implicative ontological extants that serve to explain the (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  48. Consciousness and the Collapse of the Wave Function.David J. Chalmers & Kelvin J. McQueen - 2022 - In Shan Gao (ed.), Consciousness and Quantum Mechanics. Oxford University Press, Usa.
    Does consciousness collapse the quantum wave function? This idea was taken seriously by John von Neumann and Eugene Wigner but is now widely dismissed. We develop the idea by combining a mathematical theory of consciousness (integrated information theory) with an account of quantum collapse dynamics (continuous spontaneous localization). Simple versions of the theory are falsified by the quantum Zeno effect, but more complex versions remain compatible with empirical evidence. In principle, versions of the theory can be tested by (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  49. Derivation of the Meaning of the Wave Function.Shan Gao - 2011
    We show that the physical meaning of the wave function can be derived based on the established parts of quantum mechanics. It turns out that the wave function represents the state of random discontinuous motion of particles, and its modulus square determines the probability density of the particles appearing in certain positions in space.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  50. Quantum States of a Time-Asymmetric Universe: Wave Function, Density Matrix, and Empirical Equivalence.Eddy Keming Chen - 2019 - Dissertation, Rutgers University - New Brunswick
    What is the quantum state of the universe? Although there have been several interesting suggestions, the question remains open. In this paper, I consider a natural choice for the universal quantum state arising from the Past Hypothesis, a boundary condition that accounts for the time-asymmetry of the universe. The natural choice is given not by a wave function but by a density matrix. I begin by classifying quantum theories into two types: theories with a fundamental wave (...) and theories with a fundamental density matrix. The Past Hypothesis is compatible with infinitely many initial wave functions, none of which seems to be particularly natural. However, once we turn to density matrices, the Past Hypothesis provides a natural choice---the normalized projection onto the Past Hypothesis subspace in the Hilbert space. Nevertheless, the two types of theories can be empirically equivalent. To provide a concrete understanding of the empirical equivalence, I provide a novel subsystem analysis in the context of Bohmian theories. Given the empirical equivalence, it seems empirically underdetermined whether the universe is in a pure state or a mixed state. Finally, I discuss some theoretical payoffs of the density-matrix theories and present some open problems for future research. (Bibliographic note: the thesis was submitted for the Master of Science in mathematics at Rutgers University.). (shrink)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
1 — 50 / 964