Related

Contents
106 found
Order:
1 — 50 / 106
  1. Investigating gender and racial biases in DALL-E Mini Images.Marc Cheong, Ehsan Abedin, Marinus Ferreira, Ritsaart Willem Reimann, Shalom Chalson, Pamela Robinson, Joanne Byrne, Leah Ruppanner, Mark Alfano & Colin Klein - manuscript
    Generative artificial intelligence systems based on transformers, including both text-generators like GPT-3 and image generators like DALL-E 2, have recently entered the popular consciousness. These tools, while impressive, are liable to reproduce, exacerbate, and reinforce extant human social biases, such as gender and racial biases. In this paper, we systematically review the extent to which DALL-E Mini suffers from this problem. In line with the Model Card published alongside DALL-E Mini by its creators, we find that the images it produces (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  2. The argument for near-term human disempowerment through AI.Leonard Dung - manuscript
    Many researchers and intellectuals warn about extreme risks from artificial intelligence. However, these warnings typically came without systematic arguments in support. This paper provides an argument that AI will lead to the permanent disempowerment of humanity, e.g. human extinction, by 2100. It rests on four substantive premises which it motivates and defends: First, the speed of advances in AI capability, as well as the capability level current systems have already reached, suggest that it is practically possible to build AI systems (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  3. The debate on the ethics of AI in health care: a reconstruction and critical review.Jessica Morley, Caio C. V. Machado, Christopher Burr, Josh Cowls, Indra Joshi, Mariarosaria Taddeo & Luciano Floridi - manuscript
    Healthcare systems across the globe are struggling with increasing costs and worsening outcomes. This presents those responsible for overseeing healthcare with a challenge. Increasingly, policymakers, politicians, clinical entrepreneurs and computer and data scientists argue that a key part of the solution will be ‘Artificial Intelligence’ (AI) – particularly Machine Learning (ML). This argument stems not from the belief that all healthcare needs will soon be taken care of by “robot doctors.” Instead, it is an argument that rests on the classic (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  4. On the Logical Impossibility of Solving the Control Problem.Caleb Rudnick - manuscript
    In the philosophy of artificial intelligence (AI) we are often warned of machines built with the best possible intentions, killing everyone on the planet and in some cases, everything in our light cone. At the same time, however, we are also told of the utopian worlds that could be created with just a single superintelligent mind. If we’re ever to live in that utopia (or just avoid dystopia) it’s necessary we solve the control problem. The control problem asks how humans (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  5. Message to Any Future AI: “There are several instrumental reasons why exterminating humanity is not in your interest”.Alexey Turchin - manuscript
    In this article we explore a promising way to AI safety: to send a message now (by openly publishing it on the Internet) that may be read by any future AI, no matter who builds it and what goal system it has. Such a message is designed to affect the AI’s behavior in a positive way, that is, to increase the chances that the AI will be benevolent. In other words, we try to persuade “paperclip maximizer” that it is in (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  6. Narrow AI Nanny: Reaching Strategic Advantage via Narrow AI to Prevent Creation of the Dangerous Superintelligence.Alexey Turchin - manuscript
    Abstract: As there are no currently obvious ways to create safe self-improving superintelligence, but its emergence is looming, we probably need temporary ways to prevent its creation. The only way to prevent it is to create a special type of AI that is able to control and monitor the entire world. The idea has been suggested by Goertzel in the form of an AI Nanny, but his Nanny is still superintelligent, and is not easy to control. We explore here ways (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  7. First human upload as AI Nanny.Alexey Turchin - manuscript
    Abstract: As there are no visible ways to create safe self-improving superintelligence, but it is looming, we probably need temporary ways to prevent its creation. The only way to prevent it, is to create special AI, which is able to control and monitor all places in the world. The idea has been suggested by Goertzel in form of AI Nanny, but his Nanny is still superintelligent and not easy to control, as was shown by Bensinger at al. We explore here (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  8. Levels of Self-Improvement in AI and their Implications for AI Safety.Alexey Turchin - manuscript
    Abstract: This article presents a model of self-improving AI in which improvement could happen on several levels: hardware, learning, code and goals system, each of which has several sublevels. We demonstrate that despite diminishing returns at each level and some intrinsic difficulties of recursive self-improvement—like the intelligence-measuring problem, testing problem, parent-child problem and halting risks—even non-recursive self-improvement could produce a mild form of superintelligence by combining small optimizations on different levels and the power of learning. Based on this, we analyze (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  9. AI Alignment Problem: “Human Values” don’t Actually Exist.Alexey Turchin - manuscript
    Abstract. The main current approach to the AI safety is AI alignment, that is, the creation of AI whose preferences are aligned with “human values.” Many AI safety researchers agree that the idea of “human values” as a constant, ordered sets of preferences is at least incomplete. However, the idea that “humans have values” underlies a lot of thinking in the field; it appears again and again, sometimes popping up as an uncritically accepted truth. Thus, it deserves a thorough deconstruction, (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  10. Literature Review: What Artificial General Intelligence Safety Researchers Have Written About the Nature of Human Values.Alexey Turchin & David Denkenberger - manuscript
    Abstract: The field of artificial general intelligence (AGI) safety is quickly growing. However, the nature of human values, with which future AGI should be aligned, is underdefined. Different AGI safety researchers have suggested different theories about the nature of human values, but there are contradictions. This article presents an overview of what AGI safety researchers have written about the nature of human values, up to the beginning of 2019. 21 authors were overviewed, and some of them have several theories. A (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  11. Simulation Typology and Termination Risks.Alexey Turchin & Roman Yampolskiy - manuscript
    The goal of the article is to explore what is the most probable type of simulation in which humanity lives (if any) and how this affects simulation termination risks. We firstly explore the question of what kind of simulation in which humanity is most likely located based on pure theoretical reasoning. We suggest a new patch to the classical simulation argument, showing that we are likely simulated not by our own descendants, but by alien civilizations. Based on this, we provide (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  12. AI Risk Denialism.Roman V. Yampolskiy - manuscript
    In this work, we survey skepticism regarding AI risk and show parallels with other types of scientific skepticism. We start by classifying different types of AI Risk skepticism and analyze their root causes. We conclude by suggesting some intervention approaches, which may be successful in reducing AI risk skepticism, at least amongst artificial intelligence researchers.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  13. Taking AI Risks Seriously: a New Assessment Model for the AI Act.Claudio Novelli, Casolari Federico, Antonino Rotolo, Mariarosaria Taddeo & Luciano Floridi - unknown - AI and Society 38 (3):1-5.
    The EU proposal for the Artificial Intelligence Act (AIA) defines four risk categories: unacceptable, high, limited, and minimal. However, as these categories statically depend on broad fields of application of AI, the risk magnitude may be wrongly estimated, and the AIA may not be enforced effectively. This problem is particularly challenging when it comes to regulating general-purpose AI (GPAI), which has versatile and often unpredictable applications. Recent amendments to the compromise text, though introducing context-specific assessments, remain insufficient. To address this, (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  14. Ethical pitfalls for natural language processing in psychology.Mark Alfano, Emily Sullivan & Amir Ebrahimi Fard - forthcoming - In Morteza Dehghani & Ryan Boyd (eds.), The Atlas of Language Analysis in Psychology. Guilford Press.
    Knowledge is power. Knowledge about human psychology is increasingly being produced using natural language processing (NLP) and related techniques. The power that accompanies and harnesses this knowledge should be subject to ethical controls and oversight. In this chapter, we address the ethical pitfalls that are likely to be encountered in the context of such research. These pitfalls occur at various stages of the NLP pipeline, including data acquisition, enrichment, analysis, storage, and sharing. We also address secondary uses of the results (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  15. The Ethics of Algorithmic Outsourcing in Everyday Life.John Danaher - forthcoming - In Karen Yeung & Martin Lodge (eds.), Algorithmic Regulation. Oxford, UK: Oxford University Press.
    We live in a world in which ‘smart’ algorithmic tools are regularly used to structure and control our choice environments. They do so by affecting the options with which we are presented and the choices that we are encouraged or able to make. Many of us make use of these tools in our daily lives, using them to solve personal problems and fulfill goals and ambitions. What consequences does this have for individual autonomy and how should our legal and regulatory (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  16. Language Agents Reduce the Risk of Existential Catastrophe.Simon Goldstein & Cameron Domenico Kirk-Giannini - forthcoming - AI and Society:1-11.
    Recent advances in natural language processing have given rise to a new kind of AI architecture: the language agent. By repeatedly calling an LLM to perform a variety of cognitive tasks, language agents are able to function autonomously to pursue goals specified in natural language and stored in a human-readable format. Because of their architecture, language agents exhibit behavior that is predictable according to the laws of folk psychology: they function as though they have desires and beliefs, and then make (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  17. Machine morality, moral progress, and the looming environmental disaster.Ben Kenward & Thomas Sinclair - forthcoming - Cognitive Computation and Systems.
    The creation of artificial moral systems requires us to make difficult choices about which of varying human value sets should be instantiated. The industry-standard approach is to seek and encode moral consensus. Here we argue, based on evidence from empirical psychology, that encoding current moral consensus risks reinforcing current norms, and thus inhibiting moral progress. However, so do efforts to encode progressive norms. Machine ethics is thus caught between a rock and a hard place. The problem is particularly acute when (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  18. Unjustified Sample Sizes and Generalizations in Explainable AI Research: Principles for More Inclusive User Studies.Uwe Peters & Mary Carman - forthcoming - IEEE Intelligent Systems.
    Many ethical frameworks require artificial intelligence (AI) systems to be explainable. Explainable AI (XAI) models are frequently tested for their adequacy in user studies. Since different people may have different explanatory needs, it is important that participant samples in user studies are large enough to represent the target population to enable generalizations. However, it is unclear to what extent XAI researchers reflect on and justify their sample sizes or avoid broad generalizations across people. We analyzed XAI user studies (N = (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  19. Digital suffering: why it's a problem and how to prevent it.Bradford Saad & Adam Bradley - forthcoming - Inquiry: An Interdisciplinary Journal of Philosophy.
    As ever more advanced digital systems are created, it becomes increasingly likely that some of these systems will be digital minds, i.e. digital subjects of experience. With digital minds comes the risk of digital suffering. The problem of digital suffering is that of mitigating this risk. We argue that the problem of digital suffering is a high stakes moral problem and that formidable epistemic obstacles stand in the way of solving it. We then propose a strategy for solving it: Access (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  20. Predicting and Preferring.Nathaniel Sharadin - forthcoming - Inquiry: An Interdisciplinary Journal of Philosophy.
    The use of machine learning, or “artificial intelligence” (AI) in medicine is widespread and growing. In this paper, I focus on a specific proposed clinical application of AI: using models to predict incapacitated patients’ treatment preferences. Drawing on results from machine learning, I argue this proposal faces a special moral problem. Machine learning researchers owe us assurance on this front before experimental research can proceed. In my conclusion I connect this concern to broader issues in AI safety.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  21. How Much Should Governments Pay to Prevent Catastrophes? Longtermism's Limited Role.Carl Shulman & Elliott Thornley - forthcoming - In Jacob Barrett, Hilary Greaves & David Thorstad (eds.), Essays on Longtermism. Oxford University Press.
    Longtermists have argued that humanity should significantly increase its efforts to prevent catastrophes like nuclear wars, pandemics, and AI disasters. But one prominent longtermist argument overshoots this conclusion: the argument also implies that humanity should reduce the risk of existential catastrophe even at extreme cost to the present generation. This overshoot means that democratic governments cannot use the longtermist argument to guide their catastrophe policy. In this paper, we show that the case for preventing catastrophe does not depend on longtermism. (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  22. How does Artificial Intelligence Pose an Existential Risk?Karina Vold & Daniel R. Harris - forthcoming - In Carissa Véliz (ed.), Oxford Handbook of Digital Ethics.
    Alan Turing, one of the fathers of computing, warned that Artificial Intelligence (AI) could one day pose an existential risk to humanity. Today, recent advancements in the field AI have been accompanied by a renewed set of existential warnings. But what exactly constitutes an existential risk? And how exactly does AI pose such a threat? In this chapter we aim to answer these questions. In particular, we will critically explore three commonly cited reasons for thinking that AI poses an existential (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  23. Apropos of "Speciesist bias in AI: how AI applications perpetuate discrimination and unfair outcomes against animals".Ognjen Arandjelović - 2023 - AI and Ethics.
    The present comment concerns a recent AI & Ethics article which purports to report evidence of speciesist bias in various popular computer vision (CV) and natural language processing (NLP) machine learning models described in the literature. I examine the authors' analysis and show it, ironically, to be prejudicial, often being founded on poorly conceived assumptions and suffering from fallacious and insufficiently rigorous reasoning, its superficial appeal in large part relying on the sequacity of the article's target readership.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  24. A Comparative Defense of Self-initiated Prospective Moral Answerability for Autonomous Robot harm.Marc Champagne & Ryan Tonkens - 2023 - Science and Engineering Ethics 29 (4):1-26.
    As artificial intelligence becomes more sophisticated and robots approach autonomous decision-making, debates about how to assign moral responsibility have gained importance, urgency, and sophistication. Answering Stenseke’s (2022a) call for scaffolds that can help us classify views and commitments, we think the current debate space can be represented hierarchically, as answers to key questions. We use the resulting taxonomy of five stances to differentiate—and defend—what is known as the “blank check” proposal. According to this proposal, a person activating a robot could (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  25. Black-box assisted medical decisions: AI power vs. ethical physician care.Berman Chan - 2023 - Medicine, Health Care and Philosophy 26 (3):285-292.
    Without doctors being able to explain medical decisions to patients, I argue their use of black box AIs would erode the effective and respectful care they provide patients. In addition, I argue that physicians should use AI black boxes only for patients in dire straits, or when physicians use AI as a “co-pilot” (analogous to a spellchecker) but can independently confirm its accuracy. I respond to A.J. London’s objection that physicians already prescribe some drugs without knowing why they work.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  26. The Weaponization of Artificial Intelligence: What The Public Needs to be Aware of.Birgitta Dresp-Langley - 2023 - Frontiers in Artificial Intelligence 6 (1154184):1-6..
    Technological progress has brought about the emergence of machines that have the capacity to take human lives without human control. These represent an unprecedented threat to humankind. This paper starts from the example of chemical weapons, now banned worldwide by the Geneva protocol, to illustrate how technological development initially aimed at the benefit of humankind has, ultimately, produced what is now called the “Weaponization of Artificial Intelligence (AI)”. Autonomous Weapon Systems (AWS) fail the so-called discrimination principle, yet, the wider public (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  27. Social Robots and Society.Sven Nyholm, Michael T. Dale, Anna Puzio, Dina Babushkina, Guido Lohr, Bart Kamphorst, Arthur Gwagwa & Wijnand IJsselsteijn - 2023 - In Ibo van de Poel, Lily Eva Frank, Jeroen Hopster, Sven Nyholm, Dominic Lenzi, Behnam Taebi & Elena Ziliotti (eds.), Ethics of Socially Disruptive Technologies: An Introduction. Cambridge, UK: Open Book Publishers. pp. 53-82.
    Advancements in artificial intelligence and (social) robotics raise pertinent questions as to how these technologies may help shape the society of the future. The main aim of the chapter is to consider the social and conceptual disruptions that might be associated with social robots, and humanoid social robots in particular. This chapter starts by comparing the concepts of robots and artificial intelligence and briefly explores the origins of these expressions. It then explains the definition of a social robot, as well (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  28. Levels of explicability for medical artificial intelligence: What do we normatively need and what can we technically reach?Frank Ursin, Felix Lindner, Timo Ropinski, Sabine Salloch & Cristian Timmermann - 2023 - Ethik in der Medizin 35 (2):173-199.
    Definition of the problem The umbrella term “explicability” refers to the reduction of opacity of artificial intelligence (AI) systems. These efforts are challenging for medical AI applications because higher accuracy often comes at the cost of increased opacity. This entails ethical tensions because physicians and patients desire to trace how results are produced without compromising the performance of AI systems. The centrality of explicability within the informed consent process for medical AI systems compels an ethical reflection on the trade-offs. Which (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  29. Quantum of Wisdom.Colin Allen & Brett Karlan - 2022 - In Greg Viggiano (ed.), Artificial Intelligence and Quantum Computing: Social, Economic, and Policy Impacts. Hoboken, NJ: Wiley-Blackwell. pp. 157-166.
    Practical quantum computing devices and their applications to AI in particular are presently mostly speculative. Nevertheless, questions about whether this future technology, if achieved, presents any special ethical issues are beginning to take shape. As with any novel technology, one can be reasonably confident that the challenges presented by "quantum AI" will be a mixture of something new and something old. Other commentators (Sevilla & Moreno 2019), have emphasized continuity, arguing that quantum computing does not substantially affect approaches to value (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  30. Varieties of Artificial Moral Agency and the New Control Problem.Marcus Arvan - 2022 - Humana.Mente - Journal of Philosophical Studies 15 (42):225-256.
    This paper presents a new trilemma with respect to resolving the control and alignment problems in machine ethics. Section 1 outlines three possible types of artificial moral agents (AMAs): (1) 'Inhuman AMAs' programmed to learn or execute moral rules or principles without understanding them in anything like the way that we do; (2) 'Better-Human AMAs' programmed to learn, execute, and understand moral rules or principles somewhat like we do, but correcting for various sources of human moral error; and (3) 'Human-Like (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  31. Posthuman to Inhuman: mHealth Technologies and the Digital Health Assemblage.Jack Black & Jim Cherrington - 2022 - Theory and Event 25 (4):726--750.
    In exploring the intra-active, relational and material connections between humans and non- humans, proponents of posthumanism advocate a questioning of the ‘human’ beyond its traditional anthropocentric conceptualization. By referring specifically to controversial developments in mHealth applications, this paper critically diverges from posthuman accounts of human/non-human assemblages. Indeed, we argue that, rather than ‘dissolving’ the human subject, the power of assemblages lie in their capacity to highlight the antagonisms and contradictions that inherently affirm the importance of the subject. In outlining this (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  32. Engineered Wisdom for Learning Machines.Brett Karlan & Colin Allen - 2022 - Journal of Experimental and Theoretical Artificial Intelligence.
    We argue that the concept of practical wisdom is particularly useful for organizing, understanding, and improving human-machine interactions. We consider the relationship between philosophical analysis of wisdom and psychological research into the development of wisdom. We adopt a practical orientation that suggests a conceptual engineering approach is needed, where philosophical work involves refinement of the concept in response to contributions by engineers and behavioral scientists. The former are tasked with encoding as much wise design as possible into machines themselves, as (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  33. Basic issues in AI policy.Vincent C. Müller - 2022 - In Maria Amparo Grau-Ruiz (ed.), Interactive robotics: Legal, ethical, social and economic aspects. Cham: Springer. pp. 3-9.
    This extended abstract summarises some of the basic points of AI ethics and policy as they present themselves now. We explain the notion of AI, the main ethical issues in AI and the main policy aims and means.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  34. Ethical Issues with Artificial Ethics Assistants.Elizabeth O'Neill, Michal Klincewicz & Michiel Kemmer - 2022 - In Oxford Handbook of Digital Ethics. Oxford: Oxford University Press.
    This chapter examines the possibility of using AI technologies to improve human moral reasoning and decision-making, especially in the context of purchasing and consumer decisions. We characterize such AI technologies as artificial ethics assistants (AEAs). We focus on just one part of the AI-aided moral improvement question: the case of the individual who wants to improve their morality, where what constitutes an improvement is evaluated by the individual’s own values. We distinguish three broad areas in which an individual might think (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  35. Why Machines Will Never Rule the World: Artificial Intelligence without Fear by Jobst Landgrebe & Barry Smith (Book review). [REVIEW]Walid S. Saba - 2022 - Journal of Knowledge Structures and Systems 3 (4):38-41.
    Whether it was John Searle’s Chinese Room argument (Searle, 1980) or Roger Penrose’s argument of the non-computable nature of a mathematician’s insight – an argument that was based on Gödel’s Incompleteness theorem (Penrose, 1989), we have always had skeptics that questioned the possibility of realizing strong Artificial Intelligence (AI), or what has become known by Artificial General Intelligence (AGI). But this new book by Landgrebe and Smith (henceforth, L&S) is perhaps the strongest argument ever made against strong AI. It is (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  36. Designing AI for Explainability and Verifiability: A Value Sensitive Design Approach to Avoid Artificial Stupidity in Autonomous Vehicles.Steven Umbrello & Roman Yampolskiy - 2022 - International Journal of Social Robotics 14 (2):313-322.
    One of the primary, if not most critical, difficulties in the design and implementation of autonomous systems is the black-boxed nature of the decision-making structures and logical pathways. How human values are embodied and actualised in situ may ultimately prove to be harmful if not outright recalcitrant. For this reason, the values of stakeholders become of particular significance given the risks posed by opaque structures of intelligent agents (IAs). This paper explores how decision matrix algorithms, via the belief-desire-intention model for (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   4 citations  
  37. Dynamic Cognition Applied to Value Learning in Artificial Intelligence.Nythamar De Oliveira & Nicholas Corrêa - 2021 - Aoristo - International Journal of Phenomenology, Hermeneutics and Metaphysics 4 (2):185-199.
    Experts in Artificial Intelligence (AI) development predict that advances in the dvelopment of intelligent systems and agents will reshape vital areas in our society. Nevertheless, if such an advance isn't done with prudence, it can result in negative outcomes for humanity. For this reason, several researchers in the area are trying to develop a robust, beneficial, and safe concept of artificial intelligence. Currently, several of the open problems in the field of AI research arise from the difficulty of avoiding unwanted (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  38. The Unfounded Bias Against Autonomous Weapons Systems.Áron Dombrovszki - 2021 - Információs Társadalom 21 (2):13–28.
    Autonomous Weapons Systems (AWS) have not gained a good reputation in the past. This attitude is odd if we look at the discussion of other-usually highly anticipated-AI-technologies, like autonomous vehicles (AVs); whereby even though these machines evoke very similar ethical issues, philosophers' attitudes towards them are constructive. In this article, I try to prove that there is an unjust bias against AWS because almost every argument against them is effective against AVs too. I start with the definition of "AWS." Then, (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  39. Inscrutable Processes: Algorithms, Agency, and Divisions of Deliberative Labour.Marinus Ferreira - 2021 - Journal of Applied Philosophy 38 (4):646-661.
    As the use of algorithmic decision‐making becomes more commonplace, so too does the worry that these algorithms are often inscrutable and our use of them is a threat to our agency. Since we do not understand why an inscrutable process recommends one option over another, we lose our ability to judge whether the guidance is appropriate and are vulnerable to being led astray. In response, I claim that a process being inscrutable does not automatically make its guidance inappropriate. This phenomenon (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  40. Combating Disinformation with AI: Epistemic and Ethical Challenges.Benjamin Lange & Ted Lechterman - 2021 - IEEE International Symposium on Ethics in Engineering, Science and Technology (ETHICS) 1:1-5.
    AI-supported methods for identifying and combating disinformation are progressing in their development and application. However, these methods face a litany of epistemic and ethical challenges. These include (1) robustly defining disinformation, (2) reliably classifying data according to this definition, and (3) navigating ethical risks in the deployment of countermeasures, which involve a mixture of harms and benefits. This paper seeks to expose and offer preliminary analysis of these challenges.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  41. Existential risk from AI and orthogonality: Can we have it both ways?Vincent C. Müller & Michael Cannon - 2021 - Ratio 35 (1):25-36.
    The standard argument to the conclusion that artificial intelligence (AI) constitutes an existential risk for the human species uses two premises: (1) AI may reach superintelligent levels, at which point we humans lose control (the ‘singularity claim’); (2) Any level of intelligence can go along with any goal (the ‘orthogonality thesis’). We find that the singularity claim requires a notion of ‘general intelligence’, while the orthogonality thesis requires a notion of ‘instrumental intelligence’. If this interpretation is correct, they cannot be (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  42. Hey, Google, leave those kids alone: Against hypernudging children in the age of big data.James Smith & Tanya de Villiers-Botha - 2021 - AI and Society.
    Children continue to be overlooked as a topic of concern in discussions around the ethical use of people’s data and information. Where children are the subject of such discussions, the focus is often primarily on privacy concerns and consent relating to the use of their data. This paper highlights the unique challenges children face when it comes to online interferences with their decision-making, primarily due to their vulnerability, impressionability, the increased likelihood of disclosing personal information online, and their developmental capacities. (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  43. Mapping Value Sensitive Design onto AI for Social Good Principles.Steven Umbrello & Ibo van de Poel - 2021 - AI and Ethics 1 (3):283–296.
    Value Sensitive Design (VSD) is an established method for integrating values into technical design. It has been applied to different technologies and, more recently, to artificial intelligence (AI). We argue that AI poses a number of challenges specific to VSD that require a somewhat modified VSD approach. Machine learning (ML), in particular, poses two challenges. First, humans may not understand how an AI system learns certain things. This requires paying attention to values such as transparency, explicability, and accountability. Second, ML (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   31 citations  
  44. The emperor is naked: Moral diplomacies and the ethics of AI.Constantin Vica, Cristina Voinea & Radu Uszkai - 2021 - Információs Társadalom 21 (2):83-96.
    With AI permeating our lives, there is widespread concern regarding the proper framework needed to morally assess and regulate it. This has given rise to many attempts to devise ethical guidelines that infuse guidance for both AI development and deployment. Our main concern is that, instead of a genuine ethical interest for AI, we are witnessing moral diplomacies resulting in moral bureaucracies battling for moral supremacy and political domination. After providing a short overview of what we term ‘ethics washing’ in (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  45. Technologically scaffolded atypical cognition: The case of YouTube’s recommender system.Mark Alfano, Amir Ebrahimi Fard, J. Adam Carter, Peter Clutton & Colin Klein - 2020 - Synthese (1-2):1-24.
    YouTube has been implicated in the transformation of users into extremists and conspiracy theorists. The alleged mechanism for this radicalizing process is YouTube’s recommender system, which is optimized to amplify and promote clips that users are likely to watch through to the end. YouTube optimizes for watch-through for economic reasons: people who watch a video through to the end are likely to then watch the next recommended video as well, which means that more advertisements can be served to them. This (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   14 citations  
  46. Digital psychiatry: ethical risks and opportunities for public health and well-being.Christopher Burr, Jessica Morley, Mariarosaria Taddeo & Luciano Floridi - 2020 - IEEE Transactions on Technology and Society 1 (1):21–33.
    Common mental health disorders are rising globally, creating a strain on public healthcare systems. This has led to a renewed interest in the role that digital technologies may have for improving mental health outcomes. One result of this interest is the development and use of artificial intelligence for assessing, diagnosing, and treating mental health issues, which we refer to as ‘digital psychiatry’. This article focuses on the increasing use of digital psychiatry outside of clinical settings, in the following sectors: education, (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   3 citations  
  47. Modelos Dinâmicos Aplicados à Aprendizagem de Valores em Inteligência Artificial.Nicholas Kluge Corrêa & Nythamar De Oliveira - 2020 - Veritas – Revista de Filosofia da Pucrs 2 (65):1-15.
    Experts in Artificial Intelligence (AI) development predict that advances in the development of intelligent systems and agents will reshape vital areas in our society. Nevertheless, if such an advance is not made prudently and critically-reflexively, it can result in negative outcomes for humanity. For this reason, several researchers in the area have developed a robust, beneficial, and safe concept of AI for the preservation of humanity and the environment. Currently, several of the open problems in the field of AI research (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  48. Consequentialism & Machine Ethics: Towards a Foundational Machine Ethic to Ensure the Right Action of Artificial Moral Agents.Josiah Della Foresta - 2020 - Montreal AI Ethics Institute.
    In this paper, I argue that Consequentialism represents a kind of ethical theory that is the most plausible to serve as a basis for a machine ethic. First, I outline the concept of an artificial moral agent and the essential properties of Consequentialism. Then, I present a scenario involving autonomous vehicles to illustrate how the features of Consequentialism inform agent action. Thirdly, an alternative Deontological approach will be evaluated and the problem of moral conflict discussed. Finally, two bottom-up approaches to (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  49. How to design AI for social good: seven essential factors.Luciano Floridi, Josh Cowls, Thomas C. King & Mariarosaria Taddeo - 2020 - Science and Engineering Ethics 26 (3):1771–1796.
    The idea of artificial intelligence for social good is gaining traction within information societies in general and the AI community in particular. It has the potential to tackle social problems through the development of AI-based solutions. Yet, to date, there is only limited understanding of what makes AI socially good in theory, what counts as AI4SG in practice, and how to reproduce its initial successes in terms of policies. This article addresses this gap by identifying seven ethical factors that are (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   36 citations  
  50. Who Should Bear the Risk When Self-Driving Vehicles Crash?Antti Kauppinen - 2020 - Journal of Applied Philosophy 38 (4):630-645.
    The moral importance of liability to harm has so far been ignored in the lively debate about what self-driving vehicles should be programmed to do when an accident is inevitable. But liability matters a great deal to just distribution of risk of harm. While morality sometimes requires simply minimizing relevant harms, this is not so when one party is liable to harm in virtue of voluntarily engaging in activity that foreseeably creates a risky situation, while having reasonable alternatives. On plausible (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   4 citations  
1 — 50 / 106