View topic on PhilPapers for more information
Related categories

31 found
Order:
More results on PhilPapers
  1. added 2020-03-18
    Reseña de ‘Soy un Bucle Extraño’ ( I am a Strange Loop) de Douglas Hofstadter (2007) (reseña revisado 2019).Michael Richard Starks - 2020 - In Comprender las Conexiones entre Ciencia, Filosofía, Psicología, Religión, Política, Economía, Historia y Literatura - Artículos y reseñas 2006-2019. Las Vegas, NV USA: Reality Press. pp. 265-282.
    Último sermón de la iglesia del naturalismo fundamentalista por el pastor Hofstadter. Al igual que su mucho más famoso (o infame por sus incesantemente errores filosóficos) trabajo Godel, Escher, Bach, tiene una plausibilidad superficial, pero si se entiende que se trata de un científico rampante que mezcla problemas científicos reales con los filosóficos (es decir, el sólo los problemas reales son los juegos de idiomas que debemos jugar) entonces casi todo su interés desaparece. Proporciono un marco para el análisis basado (...)
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  2. added 2020-02-04
    A Dilemma for Mathematical Constructivism.Samuel Kahn - 2020 - Axiomathes:01-10.
    In this paper I argue that constructivism in mathematics faces a dilemma. In particular, I maintain that constructivism is unable to explain (i) the application of mathematics to nature and (ii) the intersubjectivity of mathematics unless (iii) it is conjoined with two theses that reduce it to a form of mathematical Platonism. The paper is divided into five sections. In the first section of the paper, I explain the difference between mathematical constructivism and mathematical Platonism and I outline my argument. (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  3. added 2019-11-29
    Reseña de ‘Soy un Bucle Extraño’ ( I am a Strange Loop) de Douglas Hofstadter.Michael Richard Starks - 2019 - In Observaciones Sobre Imposibilidad, Incompleta, Paracoherencia,Indecisión,Aleatoriedad, Computabilidad, Paradoja E Incertidumbre En Chaitin, Wittgenstein, Hofstadter, Wolpert, Doria, Dacosta, Godel, Searle, Rodych, Berto,Floyd, Moyal-Sharrock Y Yanofsky. Las Vegas, NV USA: Reality Press. pp. 21-43.
    Último sermón de la iglesia del naturalismo fundamentalista por el pastor Hofstadter. Al igual que su mucho más famoso (o infame por sus incesantemente errores filosóficos) trabajo Godel, Escher, Bach, tiene una plausibilidad superficial, pero si se entiende que se trata de un científico rampante que mezcla problemas científicos reales con los filosóficos (es decir, el sólo los problemas reales son los juegos de idiomas que debemos jugar) entonces casi todo su interés desaparece. Proporciono un marco para el análisis basado (...)
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  4. added 2019-10-21
    Takeuti's Proof Theory in the Context of the Kyoto School.Andrew Arana - 2019 - Jahrbuch Für Philosophie Das Tetsugaku-Ronso 46:1-17.
    Gaisi Takeuti (1926–2017) is one of the most distinguished logicians in proof theory after Hilbert and Gentzen. He extensively extended Hilbert's program in the sense that he formulated Gentzen's sequent calculus, conjectured that cut-elimination holds for it (Takeuti's conjecture), and obtained several stunning results in the 1950–60s towards the solution of his conjecture. Though he has been known chiefly as a great mathematician, he wrote many papers in English and Japanese where he expressed his philosophical thoughts. In particular, he used (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  5. added 2019-09-19
    On the Alleged Simplicity of Impure Proof.Andrew Arana - 2017 - In Roman Kossak & Philip Ording (eds.), Simplicity: Ideals of Practice in Mathematics and the Arts. pp. 207-226.
    Roughly, a proof of a theorem, is “pure” if it draws only on what is “close” or “intrinsic” to that theorem. Mathematicians employ a variety of terms to identify pure proofs, saying that a pure proof is one that avoids what is “extrinsic,” “extraneous,” “distant,” “remote,” “alien,” or “foreign” to the problem or theorem under investigation. In the background of these attributions is the view that there is a distance measure (or a variety of such measures) between mathematical statements and (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  6. added 2019-08-28
    ملاحظات على استحالة, عدم اكتمال, بارااتساق,عدم تحديد, عشوائية, الحوسبة, مفارقة, وعدم اليقين في Chaitin, Wittgenstein, Hofstadter, Wolpert, دوريا, دا كوستا, جوديل, سيرل, روديش, بيرتو, فلويد, مويال شاروك ويانوفسكي.Michael Richard Starks - 2019 - Las Vegas, NV USA: Reality Press.
    ويعتقد عادة أن الاستحالة، وعدم اكتمال، وParaconsistency، وعدم تحديد، العشوائية، والحوسبة، والمفارقة، وعدم اليقين وحدود العقل هي قضايا علمية مادية أو رياضية متباينة وجود القليل أو لا شيء في المشتركه. أقترح أنها مشاكل فلسفية قياسية إلى حد كبير (أي ألعاب اللغة) التي تم حلها في الغالب من قبل فيتغنشتاين أكثر من 80years منذ. -/- "إن ما نميل إلى قوله في مثل هذه الحالة هو، بطبيعة الحال، ليس فلسفة، ولكنه مادة خام. وهكذا، على سبيل المثال، ما يميل عالم الرياضيات إلى قوله (...)
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  7. added 2019-08-28
    Pernyataan tentang kemustahilan, ketidaklengkapan, Paraconsistency,Undecidability, Randomness, Komputabilitas, paradoks, dan ketidakpastian dalam Chaitin, Wittgenstein, Hofstadter, Wolpert, Doria, da Costa, Godel, Searle, Rodych, Berto, Floyd, Moyal-Sharrock dan Yanofsky.Michael Richard Starks - 2019 - Las Vegas, NV USA: Reality Press.
    Hal ini sering berpikir bahwa kemustahilan, ketidaklengkapan, Paraconsistency, Undecidability, Randomness, komputasi, Paradox, ketidakpastian dan batas alasan yang berbeda ilmiah fisik atau matematika masalah memiliki sedikit atau tidak ada dalam Umum. Saya menyarankan bahwa mereka sebagian besar masalah filosofis standar (yaitu, Permainan bahasa) yang sebagian besar diselesaikan oleh Wittgenstein lebih dari 80years yang lalu. -/- "Apa yang kita ' tergoda untuk mengatakan ' dalam kasus seperti ini, tentu saja, bukan filsafat, tetapi bahan baku. Jadi, misalnya, apa yang seorang matematikawan cenderung mengatakan (...)
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  8. added 2019-08-28
    असंभव, अपूर्णता, अनिर्णय, अनिर्णय, यादृच्छिकता, गणना, विरोधाभास, और चैटिन, विटगेनस्टीन, Hofstadter, Wolpert, डोरिया, दा कोस्टा, गोडेल, सीरले, Rodych, Berto, Floyd में अनिश्चितता पर टिप्पणी मोयाल-शररॉक और यानोफ्स्की.Michael Richard Starks - 2019 - Las Vegas, NV USA: Reality Press.
    यह आमतौर पर सोचा जाता है कि असंभवता, अपूर्णता, Paraconsistency, अनिर्णितता, Randomness, Computability, विरोधाभास, अनिश्चितता और कारण की सीमा अलग वैज्ञानिक शारीरिक या गणितीय मुद्दों में कम या कुछ भी नहीं कर रहे हैं आम. मेरा सुझाव है कि वे काफी हद तक मानक दार्शनिक समस्याओं (यानी, भाषा का खेल) जो ज्यादातर 80years पहले Wittgenstein द्वारा हल किए गए थे. -/- "क्या हम 'इस तरह के एक मामले में कहने के लिए' कर रहे हैं, ज़ाहिर है, दर्शन नहीं है, लेकिन (...)
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  9. added 2019-08-27
    اظهارات در مورد عدم امکان ، بی کامل بودن ، پاراستشتها، Undecidability ، اتفاقی ، Computability ، پارادوکس ، و عدم قطعیت در Chaitin ، ویتگنشتاین ، Hofstadter ، Wolpert ، doria ، دا کوستا ، گودل ، سرل ، رودیچ ، برتو ، فلوید ، مویال-شرراک و یانفسکی.Michael Richard Starks - 2019 - Las Vegas, NV USA: Reality Press.
    معمولا تصور می شود که عدم امکان ، بی کامل بودن ، پارامونشتها ، Undecidability ، اتفاقی ، قابلیت های مختلف ، پارادوکس ، عدم قطعیت و محدودیت های دلیل ، مسائل فیزیکی و ریاضی علمی و یا با داشتن کمی یا هیچ چیز در مشترک. من پیشنهاد می کنم که آنها تا حد زیادی مشکلات فلسفی استاندارد (به عنوان مثال ، بازی های زبان) که عمدتا توسط ویتگنشتاین بیش از 80 سال پیش حل و فصل شد. -/- "آنچه ما (...)
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  10. added 2019-08-25
    Замечания о невозможности, неполноте Paraconsistency, Нерешающость, Случайность вычислительности, парадокс, и неопределенность в Чайтин, Витгенштейн, Хофштадтер Вольперт, Дориа, да Коста, Годель, Сирл, Родыч Берто, Флойд, Мойал-Шаррок и Янофски.Michael Richard Starks - 2019 - Las Vegas, NV USA: Reality Press.
    Принято считать, что невозможность, неполнота, Парапоследовательность, Несоответствие, Случайность, вычислительность, парадокс, неопределенность и пределы разума являются разрозненными научными физическими или математическими вопросами, имеющими мало или ничего общего. Я полагаю, что они в значительной степени стандартные философские проблемы (т.е. языковые игры), которые были в основном решены Витгенштейном более 80 лет назад. -/- Я предоставляю краткое резюме некоторых из основных выводов двух из самых выдающихся студентов поведения о Fсовременности, Людвиг Витгенштейн и Джон Сирл, на логическую структуру преднамеренности (ум, язык, поведение), принимая в качестве (...)
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  11. added 2019-08-05
    3. Planck Unit Quantum Gravity (Gravitons) for Simulation Hypothesis Modeling.Malcolm J. Macleod - manuscript
    Defined are gravitational formulas in terms of Planck units and units of $\hbar c$. Mass is not assigned as a constant property but is instead treated as a discrete event defined by units of Planck mass with gravity as an interaction between these units, the gravitational orbit as the sum of these mass-mass interactions and the gravitational coupling constant as a measure of the frequency of these interactions and not the magnitude of the gravitational force itself. Each particle that is (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  12. added 2019-06-05
    Mario Bunge’s Philosophy of Mathematics: An Appraisal.Jean-Pierre Marquis - 2012 - Science & Education 21 (10):1567-1594.
    In this paper, I present and discuss critically the main elements of Mario Bunge’s philosophy of mathematics. In particular, I explore how mathematical knowledge is accounted for in Bunge’s systemic emergent materialism.To Mario, with gratitude.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  13. added 2017-07-04
    Two Criticisms Against Mathematical Realism.Seungbae Park - 2017 - Diametros 52:96-106.
    Mathematical realism asserts that mathematical objects exist in the abstract world, and that a mathematical sentence is true or false, depending on whether the abstract world is as the mathematical sentence says it is. I raise two objections against mathematical realism. First, the abstract world is queer in that it allows for contradictory states of affairs. Second, mathematical realism does not have a theoretical resource to explain why a sentence about a tricle is true or false. A tricle is an (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  14. added 2017-05-22
    Proof Phenomenon as a Function of the Phenomenology of Proving.Inês Hipólito - 2015 - Progress in Biophysics and Molecular Biology 119:360-367.
    Kurt Gödel wrote (1964, p. 272), after he had read Husserl, that the notion of objectivity raises a question: “the question of the objective existence of the objects of mathematical intuition (which, incidentally, is an exact replica of the question of the objective existence of the outer world)”. This “exact replica” brings to mind the close analogy Husserl saw between our intuition of essences in Wesensschau and of physical objects in perception. What is it like to experience a mathematical proving (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  15. added 2017-04-18
    Contradictions Inherent in Special Relativity: Space Varies.Kim Joosoak - manuscript
    Special relativity has changed the fundamental view on space and time since Einstein introduced it in 1905. It substitutes four dimensional spacetime for the absolute space and time of Newtonian mechanics. It is believed that the validities of Lorentz invariants are fully confirmed empirically for the last one hundred years and therefore its status are canonical underlying all physical principles. However, spacetime metric is a geometric approach on nature when we interpret the natural phenomenon. A geometric flaw on this will (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  16. added 2017-01-21
    Review of Reading Natural Philosophy: Essays in the History and Philosophy of Science and Mathematics. [REVIEW]Chris Smeenk - 2005 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 36 (1):194-199.
    Book Review for Reading Natural Philosophy: Essays in the History and Philosophy of Science and Mathematics, La Salle, IL: Open Court, 2002. Edited by David Malament. This volume includes thirteen original essays by Howard Stein, spanning a range of topics that Stein has written about with characteristic passion and insight. This review focuses on the essays devoted to history and philosophy of physics.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  17. added 2015-10-11
    Formalization and Infinity.André Porto - 2008 - Manuscrito 31 (1):25-43.
    This article discusses some of Chateaubriand’s views on the connections between the ideas of formalization and infinity, as presented in chapters 19 and 20 of Logical Forms. We basically agree with his criticisms of the standard construal of these connections, a view we named “formal proofs as ultimate provings”, but we suggest an alternative way of picturing that connection based on some ideas of the late Wittgenstein.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  18. added 2015-10-11
    Considerações sobre a Noção Construtiva de Verdade.André Porto & Luiz Carlos Pereira - 2003 - O Que Nos Faz Pensar 17:107-123.
    O artigo discute as recentes propostas de uma noção construtivista de verdade que não se confunda com condições de assertabilidade.
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  19. added 2015-10-07
    How to Say Things with Formalisms.David Auerbach - 1992 - In Michael Detlefsen (ed.), Proof, Logic, and Formalization. Routledge. pp. 77--93.
    Recent attention to "self-consistent" (Rosser-style) systems raises anew the question of the proper interpretation of the Gödel Second Incompleteness Theorem and its effect on Hilbert's Program. The traditional rendering and consequence is defended with new arguments justifying the intensional correctness of the derivability conditions.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  20. added 2015-10-07
    Intensionality and the Gödel Theorems.David D. Auerbach - 1985 - Philosophical Studies 48 (3):337--51.
    Philosophers of language have drawn on metamathematical results in varied ways. Extensionalist philosophers have been particularly impressed with two, not unrelated, facts: the existence, due to Frege/Tarski, of a certain sort of semantics, and the seeming absence of intensional contexts from mathematical discourse. The philosophical import of these facts is at best murky. Extensionalists will emphasize the success and clarity of the model theoretic semantics; others will emphasize the relative poverty of the mathematical idiom; still others will question the aptness (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   4 citations  
  21. added 2015-02-02
    From Mathematics to Quantum Mechanics - On the Conceptual Unity of Cassirer’s Philosophy of Science.Thomas Mormann - 2015 - In Sebastian Luft & J. Tyler Friedman (eds.), The Philosophy of Ernst Cassirer: A Novel Assessment. De Gruyter. pp. 31-64.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  22. added 2014-12-24
    Ian Hacking, Why Is There Philosophy of Mathematics at All? [REVIEW]Max Harris Siegel - forthcoming - Mind 124.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  23. added 2014-12-08
    Kurt Gödels mathematische Anschauung und John P. Burgess’ mathematische Intuition.Eva-Maria Engelen - 2014 - XXIII Deutscher Kongress Für Philosophie Münster 2014, Konferenzveröffentlichung.
    John P. Burgess kritisiert Kurt Gödels Begriff der mathematischen oder rationalen Anschauung und erläutert, warum heuristische Intuition dasselbe leistet wie rationale Anschauung, aber ganz ohne ontologisch überflüssige Vorannahmen auskommt. Laut Burgess müsste Gödel einen Unterschied zwischen rationaler Anschauung und so etwas wie mathematischer Ahnung, aufzeigen können, die auf unbewusster Induktion oder Analogie beruht und eine heuristische Funktion bei der Rechtfertigung mathematischer Aussagen einnimmt. Nur, wozu benötigen wir eine solche Annahme? Reicht es nicht, wenn die mathematische Intuition als Heuristik funktioniert? Für (...)
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  24. added 2013-05-12
    Mathematical Thought in the Light of Matte Blanco’s Work.Giuseppe Iurato - 2013 - Philosophy of Mathematics Education Journal 27:1-9.
    Taking into account some basic epistemological considerations on psychoanalysis by Ignacio Matte Blanco, it is possible to deduce some first simple remarks on certain logical aspects of schizophrenic reasoning. Further remarks on mathematical thought are also made in the light of what established, taking into account the comparison with the schizophrenia pattern.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   3 citations  
  25. added 2013-01-14
    Numbers Without Science.Russell Marcus - 2007 - Dissertation, The Graduate School and University Center of the City University of New York
    Numbers without Science opposes the Quine-Putnam indispensability argument, seeking to undermine the argument and reduce its profound influence. Philosophers rely on indispensability to justify mathematical knowledge using only empiricist epistemology. I argue that we need an independent account of our knowledge of mathematics. The indispensability argument, in broad form, consists of two premises. The major premise alleges that we are committed to mathematical objects if science requires them. The minor premise alleges that science in fact requires mathematical objects. The most (...)
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  26. added 2012-02-11
    Hilary Putnam on Meaning and Necessity.Anders Öberg - 2011 - Dissertation, Uppsala University
    In this dissertation on Hilary Putnam's philosophy, I investigate his development regarding meaning and necessity, in particular mathematical necessity. Putnam has been a leading American philosopher since the end of the 1950s, becoming famous in the 1960s within the school of analytic philosophy, associated in particular with the philosophy of science and the philosophy of language. Under the influence of W.V. Quine, Putnam challenged the logical positivism/empiricism that had become strong in America after World War II, with influential exponents such (...)
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  27. added 2011-12-15
    Philosophical Consequences of the Gödel Theorem.Alfred Driessen - 2005 - In Eeva Martikainen (ed.), Human Approaches to the Universe. Luther-Agricola-Society.
    In this contribution an attempt is made to analyze an important mathematical discovery, the theorem of Gödel, and to explore the possible impact on the consistency of metaphysical systems. It is shown that mathematics is a pointer to a reality that is not exclusively subjected to physical laws. As the Gödel theorem deals with pure mathematics, the philosopher as such can not decide on the rightness of this theorem. What he, instead can do, is evaluating the general acceptance of this (...)
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  28. added 2011-04-07
    Is Euclid's Proof of the Infinitude of Prime Numbers Tautological?Zeeshan Mahmud - manuscript
    Euclid's classic proof about the infinitude of prime numbers has been a standard model of reasoning in student textbooks and books of elementary number theory. It has withstood scrutiny for over 2000 years but we shall prove that despite the deceptive appearance of its analytical reasoning it is tautological in nature. We shall argue that the proof is more of an observation about the general property of a prime numbers than an expository style of natural deduction of the proof of (...)
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  29. added 2011-01-06
    The Case Against Infinity.Kip Sewell - manuscript
    Infinity and infinite sets, as traditionally defined in mathematics, are shown to be logical absurdities. To maintain logical consistency, mathematics ought to abandon the traditional notion of infinity. It is proposed that infinity should be replaced with the concept of “indefiniteness”. This further implies that other fields drawing on mathematics, such as physics and cosmology, ought to reject theories that postulate infinities of space and time. It is concluded that however indefinite our calculations of space and time become, the Universe (...)
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  30. added 2009-04-07
    Review of Ferreiros and Gray's The Architecture of Modern Mathematics. [REVIEW]Andrew Arana - 2008 - Mathematical Intelligencer 30 (4).
    This collection of essays explores what makes modern mathematics ‘modern’, where ‘modern mathematics’ is understood as the mathematics done in the West from roughly 1800 to 1970. This is not the trivial matter of exploring what makes recent mathematics recent. The term ‘modern’ (or ‘modernism’) is used widely in the humanities to describe the era since about 1900, exemplified by Picasso or Kandinsky in the visual arts, Rilke or Pound in poetry, or Le Corbusier or Loos in architecture (a building (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  31. added 2009-04-07
    Review of D. Corfield's Toward A Philosophy Of Real Mathematics. [REVIEW]Andrew Arana - 2007 - Mathematical Intelligencer 29 (2).
    When mathematicians think of the philosophy of mathematics, they probably think of endless debates about what numbers are and whether they exist. Since plenty of mathematical progress continues to be made without taking a stance on either of these questions, mathematicians feel confident they can work without much regard for philosophical reflections. In his sharp–toned, sprawling book, David Corfield acknowledges the irrelevance of much contemporary philosophy of mathematics to current mathematical practice, and proposes reforming the subject accordingly.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark