Related

Contents
37 found
Order:
  1. (1 other version)Not So Distinctively Mathematical Explanations.Aditya Jha, Clemency Montelle, Douglas I. Campbell & Phillip Wilson - manuscript
    (Longer version - work in progress) Various accounts of distinctively mathematical explanations (DMEs) of complex systems have been proposed recently which bypass the contingent causal laws and appeal primarily to mathematical necessities constraining the system. These necessities are considered to be modally exalted in that they obtain with a greater necessity than the ordinary laws of nature (Lange 2016). This paper focuses on DMEs of the number of equilibrium positions of n-tuple pendulum systems and considers several different DMEs of these (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  2. Astronomy, Geometry, and Logic, Rev. 1c: An ontological proof of the natural principles that enable and sustain reality and mathematics.Michael Lucas Monterey & Michael Lucas-Monterey - manuscript
    The latest draft (posted 05/14/22) of this short, concise work of proof, theory, and metatheory provides summary meta-proofs and verification of the work and results presented in the Theory and Metatheory of Atemporal Primacy and Riemann, Metatheory, and Proof. In this version, several new and revised definitions of terms were added to subsection SS.1; and many corrected equations, theorems, metatheorems, proofs, and explanations are included in the main text. The body of the text is approximately 18 pages, with 3 sections; (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  3. In Education We Trust.Venkata Rayudu Posina - manuscript
    Beginning with an examination of the deep history of making things and thinking about making things made-up in our minds, I argue that the resultant declarative understanding of the procedural knowledge of abstracting theories and building models—the essence(s) of the practice of science—embodied in Conceptual Mathematics is worth learning beginning with high school, along with grammar and calculus. One of the many profound scientific insights introduced—in a manner accessible to total beginners—in Lawvere and Schanuel's Conceptual Mathematics textbook is: the way (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  4. A Noetic Account of Explanation in Mathematics.William D’Alessandro & Ellen Lehet - forthcoming - Philosophical Quarterly.
    We defend a noetic account of intramathematical explanation. On this view, a piece of mathematics is explanatory just in case it produces understanding of an appropriate type. We motivate the view by presenting some appealing features of noeticism. We then discuss and criticize the most prominent extant version of noeticism, due to Inglis and Mejía Ramos, which identifies explanatory understanding with the possession of well-organized cognitive schemas. Finally, we present a novel noetic account. On our view, explanatory understanding arises from (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  5. Unrealistic Models in Mathematics.William D'Alessandro - 2023 - Philosophers' Imprint 23 (#27).
    Models are indispensable tools of scientific inquiry, and one of their main uses is to improve our understanding of the phenomena they represent. How do models accomplish this? And what does this tell us about the nature of understanding? While much recent work has aimed at answering these questions, philosophers' focus has been squarely on models in empirical science. I aim to show that pure mathematics also deserves a seat at the table. I begin by presenting two cases: Cramér’s random (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  6. On the continuum fallacy: is temperature a continuous function?Aditya Jha, Douglas Campbell, Clemency Montelle & Phillip L. Wilson - 2023 - Foundations of Physics 53 (69):1-29.
    It is often argued that the indispensability of continuum models comes from their empirical adequacy despite their decoupling from the microscopic details of the modelled physical system. There is thus a commonly held misconception that temperature varying across a region of space or time can always be accurately represented as a continuous function. We discuss three inter-related cases of temperature modelling — in phase transitions, thermal boundary resistance and slip flows — and show that the continuum view is fallacious on (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  7. Symmetry and Reformulation: On Intellectual Progress in Science and Mathematics.Josh Hunt - 2022 - Dissertation, University of Michigan
    Science and mathematics continually change in their tools, methods, and concepts. Many of these changes are not just modifications but progress---steps to be admired. But what constitutes progress? This dissertation addresses one central source of intellectual advancement in both disciplines: reformulating a problem-solving plan into a new, logically compatible one. For short, I call these cases of compatible problem-solving plans "reformulations." Two aspects of reformulations are puzzling. First, reformulating is often unnecessary. Given that we could already solve a problem using (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  8. Explanation in Descriptive Set Theory.Carolin Antos & Mark Colyvan - 2021 - In Alastair Wilson & Katie Robertson (eds.), Levels of Explanation. Oxford University Press.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  9. Unification and mathematical explanation in science.Sam Baron - 2021 - Synthese 199 (3-4):7339-7363.
    Mathematics clearly plays an important role in scientific explanation. Debate continues, however, over the kind of role that mathematics plays. I argue that if pure mathematical explananda and physical explananda are unified under a common explanation within science, then we have good reason to believe that mathematics is explanatory in its own right. The argument motivates the search for a new kind of scientific case study, a case in which pure mathematical facts and physical facts are explanatorily unified. I argue (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  10. Naive cubical type theory.Bruno Bentzen - 2021 - Mathematical Structures in Computer Science 31:1205–1231.
    This article proposes a way of doing type theory informally, assuming a cubical style of reasoning. It can thus be viewed as a first step toward a cubical alternative to the program of informalization of type theory carried out in the homotopy type theory book for dependent type theory augmented with axioms for univalence and higher inductive types. We adopt a cartesian cubical type theory proposed by Angiuli, Brunerie, Coquand, Favonia, Harper, and Licata as the implicit foundation, confining our presentation (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  11. How can necessary facts call for explanation.Dan Baras - 2020 - Synthese 198 (12):11607-11624.
    While there has been much discussion about what makes some mathematical proofs more explanatory than others, and what are mathematical coincidences, in this article I explore the distinct phenomenon of mathematical facts that call for explanation. The existence of mathematical facts that call for explanation stands in tension with virtually all existing accounts of “calling for explanation”, which imply that necessary facts cannot call for explanation. In this paper I explore what theoretical revisions are needed in order to accommodate this (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  12. Explicação Matemática.Eduardo Castro - 2020 - Compêndio Em Linha de Problemas de Filosofia Analítica.
    Opinionated state of the art paper on mathematical explanation. After a general introduction to the subject, the paper is divided into two parts. The first part is dedicated to intra-mathematical explanation and the second is dedicated to extra-mathematical explanation. Each of these parts begins to present a set of diverse problems regarding each type of explanation and, afterwards, it analyses relevant models of the literature. Regarding the intra-mathematical explanation, the models of deformable proofs, mathematical saliences and the demonstrative structure of (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  13. Viewing-as explanations and ontic dependence.William D’Alessandro - 2020 - Philosophical Studies 177 (3):769-792.
    According to a widespread view in metaphysics and philosophy of science, all explanations involve relations of ontic dependence between the items appearing in the explanandum and the items appearing in the explanans. I argue that a family of mathematical cases, which I call “viewing-as explanations”, are incompatible with the Dependence Thesis. These cases, I claim, feature genuine explanations that aren’t supported by ontic dependence relations. Hence the thesis isn’t true in general. The first part of the paper defends this claim (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   12 citations  
  14. Proving Quadratic Reciprocity: Explanation, Disagreement, Transparency and Depth.William D’Alessandro - 2020 - Synthese (9):1-44.
    Gauss’s quadratic reciprocity theorem is among the most important results in the history of number theory. It’s also among the most mysterious: since its discovery in the late 18th century, mathematicians have regarded reciprocity as a deeply surprising fact in need of explanation. Intriguingly, though, there’s little agreement on how the theorem is best explained. Two quite different kinds of proof are most often praised as explanatory: an elementary argument that gives the theorem an intuitive geometric interpretation, due to Gauss (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   5 citations  
  15. Proof, Explanation, and Justification in Mathematical Practice.Moti Mizrahi - 2020 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 51 (4):551-568.
    In this paper, I propose that applying the methods of data science to “the problem of whether mathematical explanations occur within mathematics itself” (Mancosu 2018) might be a fruitful way to shed new light on the problem. By carefully selecting indicator words for explanation and justification, and then systematically searching for these indicators in databases of scholarly works in mathematics, we can get an idea of how mathematicians use these terms in mathematical practice and with what frequency. The results of (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  16. Mathematical cognition and enculturation: introduction to the Synthese special issue.Markus Pantsar - 2020 - Synthese 197 (9):3647-3655.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   8 citations  
  17. Modality and constitution in distinctively mathematical explanations.Mark Povich - 2020 - European Journal for Philosophy of Science 10 (3):1-10.
    Lange argues that some natural phenomena can be explained by appeal to mathematical, rather than natural, facts. In these “distinctively mathematical” explanations, the core explanatory facts are either modally stronger than facts about ordinary causal law or understood to be constitutive of the physical task or arrangement at issue. Craver and Povich argue that Lange’s account of DME fails to exclude certain “reversals”. Lange has replied that his account can avoid these directionality charges. Specifically, Lange argues that in legitimate DMEs, (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   5 citations  
  18. Avis sur « Je suis une Boucle Etrange » (I Am a Strange Loop) de Douglas Hofstadter (2007) (examen révisé 2019).Michael Richard Starks - 2020 - In Bienvenue en Enfer sur Terre : Bébés, Changement climatique, Bitcoin, Cartels, Chine, Démocratie, Diversité, Dysgénique, Égalité, Pirates informatiques, Droits de l'homme, Islam, Libéralisme, Prospérité, Le Web, Chaos, Famine, Maladie, Violence, Intellige. Las Vegas, NV USA: Reality Press. pp. 110-127.
    Dernier Sermon de l’Église du naturalisme fondamentaliste par le pasteur Hofstadter. Comme son travail beaucoup plus célèbre (ou infâme pour ses erreurs philosophiques implacables) Godel, Escher, Bach, il a une plausibilité superficielle, mais si l’on comprend que c’est le scientisme rampant qui mélange les vrais problèmes scientifiques avec les questions philosophiques (c’est-à-dire, les seules vraies questions sont ce que les jeux linguistiques que nous devrions jouer), alors presque tout son intérêt disparaît. Je fournis un cadre d’analyse basé sur la psychologie (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  19. (1 other version)Revisão de ‘Eu sou um Loop Estranho’ (I am a Strange Loop) por Douglas Hofstadter (2007) (revisão revisada 2019).Michael Richard Starks - 2020 - In Entendendo as Conexões entre Ciência, Filosofia, Psicologia, Religião, Política, Economia, História e Literatura - Artigos e Avaliações 2006-2019. Las Vegas, NV USA: Reality Press. pp. 251-268.
    Último sermão da Igreja do naturalismo fundamentalista pelo pastor Hofstadter. Como o seu muito mais famoso (ou infame por seus erros filosóficos implacáveis) Godel, Escher, Bach, ele tem uma plausibilidade superficial, mas se se compreende que este é um cientificismo desenfreado que mistura questões científicas reais com os filosóficos (ou seja, o somente as edições reais são que jogos da língua nós devemos jogar) então quase todo seu interesse desaparece. Eu forneci um quadro para análise baseada na psicologia evolutiva e (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  20. (1 other version)Explanation in mathematics: Proofs and practice.William D'Alessandro - 2019 - Philosophy Compass 14 (11):e12629.
    Mathematicians distinguish between proofs that explain their results and those that merely prove. This paper explores the nature of explanatory proofs, their role in mathematical practice, and some of the reasons why philosophers should care about them. Among the questions addressed are the following: what kinds of proofs are generally explanatory (or not)? What makes a proof explanatory? Do all mathematical explanations involve proof in an essential way? Are there really such things as explanatory proofs, and if so, how do (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   7 citations  
  21. (1 other version)Teaching and Learning Guide for: Explanation in Mathematics: Proofs and Practice.William D'Alessandro - 2019 - Philosophy Compass 14 (11):e12629.
    This is a teaching and learning guide to accompany "Explanation in Mathematics: Proofs and Practice".
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  22. Mathematical and Non-causal Explanations: an Introduction.Daniel Kostić - 2019 - Perspectives on Science 1 (27):1-6.
    In the last couple of years, a few seemingly independent debates on scientific explanation have emerged, with several key questions that take different forms in different areas. For example, the questions what makes an explanation distinctly mathematical and are there any non-causal explanations in sciences (i.e., explanations that don’t cite causes in the explanans) sometimes take a form of the question of what makes mathematical models explanatory, especially whether highly idealized models in science can be explanatory and in virtue of (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  23. Using corpus linguistics to investigate mathematical explanation.Juan Pablo Mejía Ramos, Lara Alcock, Kristen Lew, Paolo Rago, Chris Sangwin & Matthew Inglis - 2019 - In Eugen Fischer & Mark Curtis (eds.), Methodological Advances in Experimental Philosophy. London: Bloomsbury Press. pp. 239–263.
    In this chapter we use methods of corpus linguistics to investigate the ways in which mathematicians describe their work as explanatory in their research papers. We analyse use of the words explain/explanation (and various related words and expressions) in a large corpus of texts containing research papers in mathematics and in physical sciences, comparing this with their use in corpora of general, day-to-day English. We find that although mathematicians do use this family of words, such use is considerably less prevalent (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   4 citations  
  24. Reseña de 'The Outer Limits of Reason' por Noson Yanofsky 403p (2013).Michael Richard Starks - 2019 - In OBSERVACIONES SOBRE IMPOSIBILIDAD, INCOMPLETA, PARACOHERENCIA,INDECISIÓN,ALEATORIEDAD, COMPUTABILIDAD, PARADOJA E INCERTIDUMBRE EN CHAITIN, WITTGENSTEIN, HOFSTADTER, WOLPERT, DORIA, DACOSTA, GODEL, SEARLE, RODYCH, BERTO,FLOYD, MOYAL-SHARROCK Y YANO. Reality Press. pp. 71-90.
    Doy una revisión detallada de ' los límites externos de la razón ' por Noson Yanofsky desde una perspectiva unificada de Wittgenstein y la psicología evolutiva. Yo indiqué que la dificultad con cuestiones como la paradoja en el lenguaje y las matemáticas, la incompletitud, la indeterminación, la computabilidad, el cerebro y el universo como ordenadores, etc., surgen de la falta de mirada cuidadosa a nuestro uso del lenguaje en el adecuado contexto y, por tanto, el Error al separar los problemas (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  25. Revisão de ' Os Limites Exteriores da Razão ' (The Outer Limits of Reason)por Noson Yanofsky 403p (2013) (revisão revisada 2019).Michael Richard Starks - 2019 - In Delírios Utópicos Suicidas no Século XXI - Filosofia, Natureza Humana e o Colapso da Civilization - Artigos e Comentários 2006-2019 5ª edição. Las Vegas, NV USA: Reality Press. pp. 188-202.
    Eu dou uma revisão detalhada de "os limites exteriores da razão" por Noson Yanofsky de uma perspectiva unificada de Wittgenstein e psicologia evolutiva. Eu indico que a dificuldade com tais questões como paradoxo na linguagem e matemática, incompletude, undecidabilidade, computabilidade, o cérebro eo universo como computadores, etc., todos surgem a partir da falta de olhar atentamente para o nosso uso da linguagem no apropriado contexto e, consequentemente, a falta de separar questões de fato científico a partir de questões de como (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  26. Замечания о невозможности, неполноте Paraconsistency, Нерешающость, Случайность вычислительности, парадокс, и неопределенность в Чайтин, Витгенштейн, Хофштадтер Вольперт, Дориа, да Коста, Годель, Сирл, Родыч Берто, Флойд, Мойал-Шаррок и Янофски.Michael Richard Starks - 2019 - Las Vegas, NV USA: Reality Press.
    Принято считать, что невозможность, неполнота, Парапоследовательность, Несоответствие, Случайность, вычислительность, парадокс, неопределенность и пределы разума являются разрозненными научными физическими или математическими вопросами, имеющими мало или ничего общего. Я полагаю, что они в значительной степени стандартные философские проблемы (т.е. языковые игры), которые были в основном решены Витгенштейном более 80 лет назад. -/- Я предоставляю краткое резюме некоторых из основных выводов двух из самых выдающихся студентов поведения о Fсовременности, Людвиг Витгенштейн и Джон Сирл, на логическую структуру преднамеренности (ум, язык, поведение), принимая в качестве (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  27. असंभव, अपूर्णता, अनिर्णय, अनिर्णय, यादृच्छिकता, गणना, विरोधाभास, और चैटिन, विटगेनस्टीन, Hofstadter, Wolpert, डोरिया, दा कोस्टा, गोडेल, सीरले, Rodych, Berto, Floyd में अनिश्चितता पर टिप्पणी मोयाल-शररॉक और यानोफ्स्की.Michael Richard Starks - 2019 - Las Vegas, NV USA: Reality Press.
    यह आमतौर पर सोचा जाता है कि असंभवता, अपूर्णता, Paraconsistency, अनिर्णितता, Randomness, Computability, विरोधाभास, अनिश्चितता और कारण की सीमा अलग वैज्ञानिक शारीरिक या गणितीय मुद्दों में कम या कुछ भी नहीं कर रहे हैं आम. मेरा सुझाव है कि वे काफी हद तक मानक दार्शनिक समस्याओं (यानी, भाषा का खेल) जो ज्यादातर 80years पहले Wittgenstein द्वारा हल किए गए थे. -/- "क्या हम 'इस तरह के एक मामले में कहने के लिए' कर रहे हैं, ज़ाहिर है, दर्शन नहीं है, लेकिन (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  28. (1 other version)Reseña de ‘Soy un Bucle Extraño’ ( I am a Strange Loop) de Douglas Hofstadter.Michael Richard Starks - 2019 - In OBSERVACIONES SOBRE IMPOSIBILIDAD, INCOMPLETA, PARACOHERENCIA,INDECISIÓN,ALEATORIEDAD, COMPUTABILIDAD, PARADOJA E INCERTIDUMBRE EN CHAITIN, WITTGENSTEIN, HOFSTADTER, WOLPERT, DORIA, DACOSTA, GODEL, SEARLE, RODYCH, BERTO,FLOYD, MOYAL-SHARROCK Y YANOFSKY. Reality Press. pp. 21-43.
    Último sermón de la iglesia del naturalismo fundamentalista por el pastor Hofstadter. Al igual que su mucho más famoso (o infame por sus incesantemente errores filosóficos) trabajo Godel, Escher, Bach, tiene una plausibilidad superficial, pero si se entiende que se trata de un científico rampante que mezcla problemas científicos reales con los filosóficos (es decir, el sólo los problemas reales son los juegos de idiomas que debemos jugar) entonces casi todo su interés desaparece. Proporciono un marco para el análisis basado (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  29. ملاحظات على استحالة, عدم اكتمال, بارااتساق,عدم تحديد, عشوائية, الحوسبة, مفارقة, وعدم اليقين في Chaitin, Wittgenstein, Hofstadter, Wolpert, دوريا, دا كوستا, جوديل, سيرل, روديش, بيرتو, فلويد, مويال شاروك ويانوفسكي.Michael Richard Starks - 2019 - Las Vegas, NV USA: Reality Press.
    ويعتقد عادة أن الاستحالة، وعدم اكتمال، وParaconsistency، وعدم تحديد، العشوائية، والحوسبة، والمفارقة، وعدم اليقين وحدود العقل هي قضايا علمية مادية أو رياضية متباينة وجود القليل أو لا شيء في المشتركه. أقترح أنها مشاكل فلسفية قياسية إلى حد كبير (أي ألعاب اللغة) التي تم حلها في الغالب من قبل فيتغنشتاين أكثر من 80years منذ. -/- "إن ما نميل إلى قوله في مثل هذه الحالة هو، بطبيعة الحال، ليس فلسفة، ولكنه مادة خام. وهكذا، على سبيل المثال، ما يميل عالم الرياضيات إلى قوله (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  30. Arithmetic, Set Theory, Reduction and Explanation.William D’Alessandro - 2018 - Synthese 195 (11):5059-5089.
    Philosophers of science since Nagel have been interested in the links between intertheoretic reduction and explanation, understanding and other forms of epistemic progress. Although intertheoretic reduction is widely agreed to occur in pure mathematics as well as empirical science, the relationship between reduction and explanation in the mathematical setting has rarely been investigated in a similarly serious way. This paper examines an important particular case: the reduction of arithmetic to set theory. I claim that the reduction is unexplanatory. In defense (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   9 citations  
  31. Introduction: Scientific Explanation Beyond Causation.Alexander Reutlinger & Juha Saatsi - 2018 - In Alexander Reutlinger & Juha Saatsi (eds.), Explanation Beyond Causation: Philosophical Perspectives on Non-Causal Explanations. Oxford, United Kingdom: Oxford University Press.
    This is an introduction to the volume "Explanation Beyond Causation: Philosophical Perspectives on Non-Causal Explanations", edited by A. Reutlinger and J. Saatsi (OUP, forthcoming in 2017). -/- Explanations are very important to us in many contexts: in science, mathematics, philosophy, and also in everyday and juridical contexts. But what is an explanation? In the philosophical study of explanation, there is long-standing, influential tradition that links explanation intimately to causation: we often explain by providing accurate information about the causes of the (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   17 citations  
  32. A pragmatist challenge to constraint laws.Holly Andersen - 2017 - Metascience 27 (1):19-25.
    Meta-laws, including conservation laws, are laws about the form of more specific, phenomenological, laws. Lange distinguishes between meta-laws as coincidences, where the meta-law happens to hold because the more specific laws hold, and meta-laws as constraints to which subsumed laws must conform. He defends this distinction as a genuine metaphysical possibility, such that metaphysics alone ought not to rule one way or another, leaving it an open question for physics. Lange’s distinction marks a genuine difference in how a given meta-law (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  33. Proof phenomenon as a function of the phenomenology of proving.Inês Hipólito - 2015 - Progress in Biophysics and Molecular Biology 119:360-367.
    Kurt Gödel wrote (1964, p. 272), after he had read Husserl, that the notion of objectivity raises a question: “the question of the objective existence of the objects of mathematical intuition (which, incidentally, is an exact replica of the question of the objective existence of the outer world)”. This “exact replica” brings to mind the close analogy Husserl saw between our intuition of essences in Wesensschau and of physical objects in perception. What is it like to experience a mathematical proving (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  34. An Aristotelian Realist Philosophy of Mathematics: Mathematics as the science of quantity and structure.James Franklin - 2014 - London and New York: Palgrave MacMillan.
    An Aristotelian Philosophy of Mathematics breaks the impasse between Platonist and nominalist views of mathematics. Neither a study of abstract objects nor a mere language or logic, mathematics is a science of real aspects of the world as much as biology is. For the first time, a philosophy of mathematics puts applied mathematics at the centre. Quantitative aspects of the world such as ratios of heights, and structural ones such as symmetry and continuity, are parts of the physical world and (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   36 citations  
  35. The epistemic significance of numerals.Jan Heylen - 2014 - Synthese 198 (Suppl 5):1019-1045.
    The central topic of this article is (the possibility of) de re knowledge about natural numbers and its relation with names for numbers. It is held by several prominent philosophers that (Peano) numerals are eligible for existential quantification in epistemic contexts (‘canonical’), whereas other names for natural numbers are not. In other words, (Peano) numerals are intimately linked with de re knowledge about natural numbers, whereas the other names for natural numbers are not. In this article I am looking for (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  36. Mathematical representation: playing a role.Kate Hodesdon - 2014 - Philosophical Studies 168 (3):769-782.
    The primary justification for mathematical structuralism is its capacity to explain two observations about mathematical objects, typically natural numbers. Non-eliminative structuralism attributes these features to the particular ontology of mathematics. I argue that attributing the features to an ontology of structural objects conflicts with claims often made by structuralists to the effect that their structuralist theses are versions of Quine’s ontological relativity or Putnam’s internal realism. I describe and argue for an alternative explanation for these features which instead explains the (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   3 citations  
  37. Inference to the best explanation and mathematical realism.Sorin Ioan Bangu - 2008 - Synthese 160 (1):13-20.
    Arguing for mathematical realism on the basis of Field’s explanationist version of the Quine–Putnam Indispensability argument, Alan Baker has recently claimed to have found an instance of a genuine mathematical explanation of a physical phenomenon. While I agree that Baker presents a very interesting example in which mathematics plays an essential explanatory role, I show that this example, and the argument built upon it, begs the question against the mathematical nominalist.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   53 citations