Switch to: References

Citations of:

Mathematical recreation versus mathematical knowledge

In Mary Leng, Alexander Paseau & Michael D. Potter (eds.), Mathematical Knowledge. Oxford, England: Oxford University Press. pp. 109--122 (2007)

Add citations

You must login to add citations.
  1. Mathematical Contingentism.Kristie Miller - 2012 - Erkenntnis 77 (3):335-359.
    Platonists and nominalists disagree about whether mathematical objects exist. But they almost uniformly agree about one thing: whatever the status of the existence of mathematical objects, that status is modally necessary. Two notable dissenters from this orthodoxy are Hartry Field, who defends contingent nominalism, and Mark Colyvan, who defends contingent Platonism. The source of their dissent is their view that the indispensability argument provides our justification for believing in the existence, or not, of mathematical objects. This paper considers whether commitment (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Wigner’s Puzzle for Mathematical Naturalism.Sorin Bangu - 2009 - International Studies in the Philosophy of Science 23 (3):245-263.
    I argue that a recent version of the doctrine of mathematical naturalism faces difficulties arising in connection with Wigner's old puzzle about the applicability of mathematics to natural science. I discuss the strategies to solve the puzzle and I show that they may not be available to the naturalist.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Mirror Symmetry and Other Miracles in Superstring Theory.Dean Rickles - 2013 - Foundations of Physics 43 (1):54-80.
    The dominance of string theory in the research landscape of quantum gravity physics (despite any direct experimental evidence) can, I think, be justified in a variety of ways. Here I focus on an argument from mathematical fertility, broadly similar to Hilary Putnam’s ‘no miracles argument’ that, I argue, many string theorists in fact espouse in some form or other. String theory has generated many surprising, useful, and well-confirmed mathematical ‘predictions’—here I focus on mirror symmetry and the mirror theorem. These predictions (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • (1 other version)Mathematical Pluralism and Indispensability.Silvia Jonas - 2023 - Erkenntnis 1:1-25.
    Pluralist mathematical realism, the view that there exists more than one mathematical universe, has become an influential position in the philosophy of mathematics. I argue that, if mathematical pluralism is true (and we have good reason to believe that it is), then mathematical realism cannot (easily) be justified by arguments from the indispensability of mathematics to science. This is because any justificatory chain of inferences from mathematical applications in science to the total body of mathematical theorems can cover at most (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • What Can Our Best Scientific Theories Tell Us About The Modal Status of Mathematical Objects?Joe Morrison - 2023 - Erkenntnis 88 (4):1391-1408.
    Indispensability arguments are used as a way of working out what there is: our best science tells us what things there are. Some philosophers think that indispensability arguments can be used to show that we should be committed to the existence of mathematical objects (numbers, functions, sets). Do indispensability arguments also deliver conclusions about the modal properties of these mathematical entities? Colyvan (in Leng, Paseau, Potter (eds) Mathematical knowledge, OUP, Oxford, 109-122, 2007) and Hartry Field (Realism, mathematics and modality, Blackwell, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Non-naturalistic moral explanation.Samuel Baron, Mark Colyvan, Kristie Miller & Michael Rubin - 2019 - Synthese 198 (5):4273-4294.
    It has seemed, to many, that there is an important connection between the ways in which some theoretical posits explain our observations, and our reasons for being ontologically committed to those posits. One way to spell out this connection is in terms of what has become known as the explanatory criterion of ontological commitment. This is, roughly, the view that we ought to posit only those entities that are indispensable to our best explanations. Our primary aim is to argue that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Current Epistemic Status of the Indispensability Arguments in the Philosophy of Science.Catalin Barboianu - 2016 - Analele Universitatii Din Craiova 36 (2):108-132.
    The predisposition of the Indispensability Argument to objections, rephrasing and versions associated with the various views in philosophy of mathematics grants it a special status of a “blueprint” type rather than a debatable theme in the philosophy of science. From this point of view, it follows that the Argument has more an epistemic character than ontological.
    Download  
     
    Export citation  
     
    Bookmark  
  • A Formal Apology for Metaphysics.Samuel Baron - 2018 - Ergo: An Open Access Journal of Philosophy 5.
    There is an old meta-philosophical worry: very roughly, metaphysical theories have no observational consequences and so the study of metaphysics has no value. The worry has been around in some form since the rise of logical positivism in the early twentieth century but has seen a bit of a renaissance recently. In this paper, I provide an apology for metaphysics in the face of this kind of concern. The core of the argument is this: pure mathematics detaches from science in (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Why inference to the best explanation doesn’t secure empirical grounds for mathematical platonism.Kenneth Boyce - 2018 - Synthese 198 (1):1-13.
    Proponents of the explanatory indispensability argument for mathematical platonism maintain that claims about mathematical entities play an essential explanatory role in some of our best scientific explanations. They infer that the existence of mathematical entities is supported by way of inference to the best explanation from empirical phenomena and therefore that there are the same sort of empirical grounds for believing in mathematical entities as there are for believing in concrete unobservables such as quarks. I object that this inference depends (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Set-theoretic pluralism and the Benacerraf problem.Justin Clarke-Doane - 2020 - Philosophical Studies 177 (7):2013-2030.
    Set-theoretic pluralism is an increasingly influential position in the philosophy of set theory (Balaguer [1998], Linksy and Zalta [1995], Hamkins [2012]). There is considerable room for debate about how best to formulate set-theoretic pluralism, and even about whether the view is coherent. But there is widespread agreement as to what there is to recommend the view (given that it can be formulated coherently). Unlike set-theoretic universalism, set-theoretic pluralism affords an answer to Benacerraf’s epistemological challenge. The purpose of this paper is (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • An Inferential Conception of the Application of Mathematics.Otávio Bueno & Mark Colyvan - 2011 - Noûs 45 (2):345-374.
    A number of people have recently argued for a structural approach to accounting for the applications of mathematics. Such an approach has been called "the mapping account". According to this view, the applicability of mathematics is fully accounted for by appreciating the relevant structural similarities between the empirical system under study and the mathematics used in the investigation ofthat system. This account of applications requires the truth of applied mathematical assertions, but it does not require the existence of mathematical objects. (...)
    Download  
     
    Export citation  
     
    Bookmark   107 citations  
  • Which explanatory role for mathematics in scientific models? Reply to “The Explanatory Dispensability of Idealizations”.Silvia De Bianchi - 2016 - Synthese 193 (2):387-401.
    In The Explanatory Dispensability of Idealizations, Sam Baron suggests a possible strategy enabling the indispensability argument to break the symmetry between mathematical claims and idealization assumptions in scientific models. Baron’s distinction between mathematical and non-mathematical idealization, I claim, is in need of a more compelling criterion, because in scientific models idealization assumptions are expressed through mathematical claims. In this paper I argue that this mutual dependence of idealization and mathematics cannot be read in terms of symmetry and that Baron’s non-causal (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Indexing and Mathematical Explanation.Alan Baker & Mark Colyvan - 2011 - Philosophia Mathematica 19 (3):323-334.
    We discuss a recent attempt by Chris Daly and Simon Langford to do away with mathematical explanations of physical phenomena. Daly and Langford suggest that mathematics merely indexes parts of the physical world, and on this understanding of the role of mathematics in science, there is no need to countenance mathematical explanation of physical facts. We argue that their strategy is at best a sketch and only looks plausible in simple cases. We also draw attention to how frequently Daly and (...)
    Download  
     
    Export citation  
     
    Bookmark   52 citations  
  • Indispensability arguments in the philosophy of mathematics.Mark Colyvan - 2008 - Stanford Encyclopedia of Philosophy.
    One of the most intriguing features of mathematics is its applicability to empirical science. Every branch of science draws upon large and often diverse portions of mathematics, from the use of Hilbert spaces in quantum mechanics to the use of differential geometry in general relativity. It's not just the physical sciences that avail themselves of the services of mathematics either. Biology, for instance, makes extensive use of difference equations and statistics. The roles mathematics plays in these theories is also varied. (...)
    Download  
     
    Export citation  
     
    Bookmark   58 citations  
  • Inference to the best explanation as supporting the expansion of mathematicians’ ontological commitments.Marc Lange - 2022 - Synthese 200 (2):1-26.
    This paper argues that in mathematical practice, conjectures are sometimes confirmed by “Inference to the Best Explanation” as applied to some mathematical evidence. IBE operates in mathematics in the same way as IBE in science. When applied to empirical evidence, IBE sometimes helps to justify the expansion of scientists’ ontological commitments. Analogously, when applied to mathematical evidence, IBE sometimes helps to justify mathematicians' in expanding the range of their ontological commitments. IBE supplements other forms of non-deductive reasoning in mathematics, avoiding (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Mathematics and Metaphilosophy.Justin Clarke-Doane - 2022 - Cambridge: Cambridge University Press.
    This book discusses the problem of mathematical knowledge, and its broader philosophical ramifications. It argues that the problem of explaining the (defeasible) justification of our mathematical beliefs (‘the justificatory challenge’), arises insofar as disagreement over axioms bottoms out in disagreement over intuitions. And it argues that the problem of explaining their reliability (‘the reliability challenge’), arises to the extent that we could have easily had different beliefs. The book shows that mathematical facts are not, in general, empirically accessible, contra Quine, (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • How Not to Enhance the Indispensability Argument.Russell Marcus - 2014 - Philosophia Mathematica 22 (3):345-360.
    The new explanatory or enhanced indispensability argument alleges that our mathematical beliefs are justified by their indispensable appearances in scientific explanations. This argument differs from the standard indispensability argument which focuses on the uses of mathematics in scientific theories. I argue that the new argument depends for its plausibility on an equivocation between two senses of explanation. On one sense the new argument is an oblique restatement of the standard argument. On the other sense, it is vulnerable to an instrumentalist (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On Naturalizing the Epistemology of Mathematics.Jeffrey W. Roland - 2009 - Pacific Philosophical Quarterly 90 (1):63-97.
    In this paper, I consider an argument for the claim that any satisfactory epistemology of mathematics will violate core tenets of naturalism, i.e. that mathematics cannot be naturalized. I find little reason for optimism that the argument can be effectively answered.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Frege, Indispensability, and the Compatibilist Heresy.Andrea Sereni - 2015 - Philosophia Mathematica 23 (1):11-30.
    In Grundgesetze, Vol. II, §91, Frege argues that ‘it is applicability alone which elevates arithmetic from a game to the rank of a science’. Many view this as an in nuce statement of the indispensability argument later championed by Quine. Garavaso has questioned this attribution. I argue that even though Frege's applicability argument is not a version of ia, it facilitates acceptance of suitable formulations of ia. The prospects for making the empiricist ia compatible with a rationalist Fregean framework appear (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Infinitesimal idealization, easy road nominalism, and fractional quantum statistics.Elay Shech - 2019 - Synthese 196 (5):1963-1990.
    It has been recently debated whether there exists a so-called “easy road” to nominalism. In this essay, I attempt to fill a lacuna in the debate by making a connection with the literature on infinite and infinitesimal idealization in science through an example from mathematical physics that has been largely ignored by philosophers. Specifically, by appealing to John Norton’s distinction between idealization and approximation, I argue that the phenomena of fractional quantum statistics bears negatively on Mary Leng’s proposed path to (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)Justification and Explanation in Mathematics and Morality.Justin Clarke-Doane - 2006 - In Russ Shafer-Landau (ed.), Oxford Studies in Metaethics: Volume 1. Clarendon Press.
    In an influential book, Gilbert Harman writes, "In explaining the observations that support a physical theory, scientists typically appeal to mathematical principles. On the other hand, one never seems to need to appeal in this way to moral principles [1977, 9 – 10]." What is the epistemological relevance of this contrast, if genuine? In this article, I argue that ethicists and philosophers of mathematics have misunderstood it. They have confused what I will call the justificatory challenge for realism about an (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Naturalising Mathematics: A Critical Look at the Quine-Maddy Debate.Marianna Antonutti Marfori - 2012 - Disputatio 4 (32):323-342.
    This paper considers Maddy’s strategy for naturalising mathematics in the context of Quine’s scientific naturalism. The aim of this proposal is to account for the acceptability of mathematics on scientific grounds without committing to revisionism about mathematical practice entailed by the Quine-Putnam indispensability argument. It has been argued that Maddy’s mathematical naturalism makes inconsistent assumptions on the role of mathematics in scientific explanations to the effect that it cannot distinguish mathematics from pseudo-science. I shall clarify Maddy’s arguments and show that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Indispensability Arguments and Their Quinean Heritage.Jacob Busch & Andrea Sereni - 2012 - Disputatio 4 (32):343 - 360.
    Indispensability arguments for mathematical realism are commonly traced back to Quine. We identify two different Quinean strands in the interpretation of IA, what we label the ‘logical point of view’ and the ‘theory-contribution’ point of view. Focusing on each of the latter, we offer two minimal versions of IA. These both dispense with a number of theoretical assumptions commonly thought to be relevant to IA. We then show that the attribution of both minimal arguments to Quine is controversial, and stress (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Which explanatory role for mathematics in scientific models? Reply to “The Explanatory Dispensability of Idealizations”.Silvia Bianchi - 2016 - Synthese 193 (2):387-401.
    In The Explanatory Dispensability of Idealizations, Sam Baron suggests a possible strategy enabling the indispensability argument to break the symmetry between mathematical claims and idealization assumptions in scientific models. Baron’s distinction between mathematical and non-mathematical idealization, I claim, is in need of a more compelling criterion, because in scientific models idealization assumptions are expressed through mathematical claims. In this paper I argue that this mutual dependence of idealization and mathematics cannot be read in terms of symmetry and that Baron’s non-causal (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations