Switch to: References

Add citations

You must login to add citations.
  1. Relational learning re-examined.Chris Thornton & Andy Clark - 1997 - Behavioral and Brain Sciences 20 (1):83-83.
    We argue that existing learning algorithms are often poorly equipped to solve problems involving a certain type of important and widespread regularity that we call “type-2 regularity.” The solution in these cases is to trade achieved representation against computational search. We investigate several ways in which such a trade-off may be pursued including simple incremental learning, modular connectionism, and the developmental hypothesis of “representational redescription.”.
    Download  
     
    Export citation  
     
    Bookmark  
  • Triviality arguments against functionalism.Peter Godfrey-Smith - 2009 - Philosophical Studies 145 (2):273 - 295.
    “Triviality arguments” against functionalism in the philosophy of mind hold that the claim that some complex physical system exhibits a given functional organization is either trivial or has much less content than is usually supposed. I survey several earlier arguments of this kind, and present a new one that overcomes some limitations in the earlier arguments. Resisting triviality arguments is possible, but requires functionalists to revise popular views about the “autonomy” of functional description.
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • An analysis of the criteria for evaluating adequate theories of computation.Nir Fresco - 2008 - Minds and Machines 18 (3):379-401.
    This paper deals with the question: What are the criteria that an adequate theory of computation has to meet? 1. Smith's answer: it has to meet the empirical criterion (i.e. doing justice to computational practice), the conceptual criterion (i.e. explaining all the underlying concepts) and the cognitive criterion (i.e. providing solid grounds for computationalism). 2. Piccinini's answer: it has to meet the objectivity criterion (i.e. identifying computation as a matter of fact), the explanation criterion (i.e. explaining the computer's behaviour), the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Causality.Jessica M. Wilson - 2005 - In Sahotra Sarkar & Jessica Pfeifer (eds.), The Philosophy of Science: An Encyclopedia. New York: Routledge. pp. 90--100.
    Arguably no concept is more fundamental to science than that of causality, for investigations into cases of existence, persistence, and change in the natural world are largely investigations into the causes of these phenomena. Yet the metaphysics and epistemology of causality remain unclear. For example, the ontological categories of the causal relata have been taken to be objects (Hume 1739), events (Davidson 1967), properties (Armstrong 1978), processes (Salmon 1984), variables (Hitchcock 1993), and facts (Mellor 1995). (For convenience, causes and effects (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Language of thought hypothesis: State of the art.Murat Aydede - manuscript
    [This is an earlier (1997), much longer and more detailed version of my entry on LOTH in the _Stanford Encyclopedia of Philosophy_] The Language of Thought Hypothesis (LOTH) is an empirical thesis about thought and thinking. For their explication, it postulates a physically realized system of representations that have a combinatorial syntax (and semantics) such that operations on representations are causally sensitive only to the syntactic properties of representations. According to LOTH, thought is, roughly, the tokening of a representation that (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Sensational sentences switched.Georges Rey - 1992 - Philosophical Studies 68 (3):289 - 319.
    Download  
     
    Export citation  
     
    Bookmark   110 citations  
  • Logically possible machines.Eric Steinhart - 2002 - Minds and Machines 12 (2):259-280.
    I use modal logic and transfinite set-theory to define metaphysical foundations for a general theory of computation. A possible universe is a certain kind of situation; a situation is a set of facts. An algorithm is a certain kind of inductively defined property. A machine is a series of situations that instantiates an algorithm in a certain way. There are finite as well as transfinite algorithms and machines of any degree of complexity (e.g., Turing and super-Turing machines and more). There (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Towards a computational theory of experience.Tomer Fekete & Shimon Edelman - 2011 - Consciousness and Cognition 20 (3):807-827.
    A standing challenge for the science of mind is to account for the datum that every mind faces in the most immediate – that is, unmediated – fashion: its phenomenal experience. The complementary tasks of explaining what it means for a system to give rise to experience and what constitutes the content of experience (qualia) in computational terms are particularly challenging, given the multiple realizability of computation. In this paper, we identify a set of conditions that a computational theory must (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Evolved Computing Devices and the Implementation Problem.Lukáš Sekanina - 2007 - Minds and Machines 17 (3):311-329.
    The evolutionary circuit design is an approach allowing engineers to realize computational devices. The evolved computational devices represent a distinctive class of devices that exhibits a specific combination of properties, not visible and studied in the scope of all computational devices up till now. Devices that belong to this class show the required behavior; however, in general, we do not understand how and why they perform the required computation. The reason is that the evolution can utilize, in addition to the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Chalmers on consciousness and quantum mechanics.Alex Byrne & Ned Hall - 1999 - Philosophy of Science 66 (3):370-90.
    The textbook presentation of quantum mechanics, in a nutshell, is this. The physical state of any isolated system evolves deterministically in accordance with Schrödinger's equation until a "measurement" of some physical magnitude M (e.g. position, energy, spin) is made. Restricting attention to the case where the values of M are discrete, the system's pre-measurement state-vector f is a linear combination, or "superposition", of vectors f1, f2,... that individually represent states that..
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Can there be a cognitive neuroscience of central cognitive systems?Vinod Goel - 2005 - In Christina E. Erneling & David Martel Johnson (eds.), Mind As a Scientific Object. Oxford University Press. pp. 265.
    Download  
     
    Export citation  
     
    Bookmark  
  • Direct reference in thought and speech.Kirk A. Ludwig - 1993 - Communication and Cognition: An Interdisciplinary Quarterly Journal 26 (1):49-76.
    I begin by distinguishing between what I will call a pure Fregean theory of reference and a theory of direct reference. A pure Fregean theory of reference holds that all reference to objects is determined by a sense or content. The kind of theory I have in mind is obviously inspired by Frege, but I will not be concerned with whether it is the theory that Frege himself held.1 A theory of direct reference, as I will understand it, denies that (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • ?Words lie in our way?Bruce J. MacLennan - 1994 - Minds and Machines 4 (4):421-37.
    The central claim of computationalism is generally taken to be that the brain is a computer, and that any computer implementing the appropriate program would ipso facto have a mind. In this paper I argue for the following propositions: (1) The central claim of computationalism is not about computers, a concept too imprecise for a scientific claim of this sort, but is about physical calculi (instantiated discrete formal systems). (2) In matters of formality, interpretability, and so forth, analog computation and (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • What is computation?B. Jack Copeland - 1996 - Synthese 108 (3):335-59.
    To compute is to execute an algorithm. More precisely, to say that a device or organ computes is to say that there exists a modelling relationship of a certain kind between it and a formal specification of an algorithm and supporting architecture. The key issue is to delimit the phrase of a certain kind. I call this the problem of distinguishing between standard and nonstandard models of computation. The successful drawing of this distinction guards Turing's 1936 analysis of computation against (...)
    Download  
     
    Export citation  
     
    Bookmark   88 citations  
  • Counterfactuals cannot count: A rejoinder to David Chalmers.John Mark Bishop - 2002 - Consciousness and Cognition 11 (4):642-652.
    The initial argument presented herein is not significantly original—it is a simple reflection upon a notion of computation originally developed by Putnam and criticised by Chalmers et al. . In what follows, instead of seeking to justify Putnam’s conclusion that every open system implements every Finite State Automaton and hence that psychological states of the brain cannot be functional states of a computer, I will establish the weaker result that, over a finite time window every open system implements the trace (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Does a rock implement every finite-state automaton?David J. Chalmers - 1996 - Synthese 108 (3):309-33.
    Hilary Putnam has argued that computational functionalism cannot serve as a foundation for the study of the mind, as every ordinary open physical system implements every finite-state automaton. I argue that Putnam's argument fails, but that it points out the need for a better understanding of the bridge between the theory of computation and the theory of physical systems: the relation of implementation. It also raises questions about the class of automata that can serve as a basis for understanding the (...)
    Download  
     
    Export citation  
     
    Bookmark   146 citations  
  • On implementing a computation.David J. Chalmers - 1994 - Minds and Machines 4 (4):391-402.
    To clarify the notion of computation and its role in cognitive science, we need an account of implementation, the nexus between abstract computations and physical systems. I provide such an account, based on the idea that a physical system implements a computation if the causal structure of the system mirrors the formal structure of the computation. The account is developed for the class of combinatorial-state automata, but is sufficiently general to cover all other discrete computational formalisms. The implementation relation is (...)
    Download  
     
    Export citation  
     
    Bookmark   59 citations  
  • Why everything doesn't realize every computation.Ronald L. Chrisley - 1994 - Minds and Machines 4 (4):403-20.
    Some have suggested that there is no fact to the matter as to whether or not a particular physical system relaizes a particular computational description. This suggestion has been taken to imply that computational states are not real, and cannot, for example, provide a foundation for the cognitive sciences. In particular, Putnam has argued that every ordinary open physical system realizes every abstract finite automaton, implying that the fact that a particular computational characterization applies to a physical system does not (...)
    Download  
     
    Export citation  
     
    Bookmark   39 citations  
  • How minds can be computational systems.William J. Rapaport - 1998 - Journal of Experimental and Theoretical Artificial Intelligence 10 (4):403-419.
    The proper treatment of computationalism, as the thesis that cognition is computable, is presented and defended. Some arguments of James H. Fetzer against computationalism are examined and found wanting, and his positive theory of minds as semiotic systems is shown to be consistent with computationalism. An objection is raised to an argument of Selmer Bringsjord against one strand of computationalism, namely, that Turing-Test± passing artifacts are persons, it is argued that, whether or not this objection holds, such artifacts will inevitably (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • The computational theory of mind.Steven Horst - 2005 - Stanford Encyclopedia of Philosophy.
    Over the past thirty years, it is been common to hear the mind likened to a digital computer. This essay is concerned with a particular philosophical view that holds that the mind literally is a digital computer (in a specific sense of “computer” to be developed), and that thought literally is a kind of computation. This view—which will be called the “Computational Theory of Mind” (CTM)—is thus to be distinguished from other and broader attempts to connect the mind with computation, (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • The mind as the software of the brain.Ned Block - 1990 - In Daniel N. Osherson & Edward E. Smith (eds.), An Invitation to Cognitive Science: Visual cognition. 2. MIT Press. pp. 377-425.
    In this section, we will start with an influential attempt to define `intelligence', and then we will move to a consideration of how human intelligence is to be investigated on the machine model. The last part of the section will discuss the relation between the mental and the biological.
    Download  
     
    Export citation  
     
    Bookmark   61 citations  
  • Attractive and in-discrete: A critique of two putative virtues of the dynamicist theory of mind.Chris Eliasmith - 2001 - Minds and Machines 11 (3):417-426.
    I argue that dynamicism does not provide a convincing alternative to currently available cognitive theories. First, I show that the attractor dynamics of dynamicist models are inadequate for accounting for high-level cognition. Second, I argue that dynamicist arguments for the rejection of computation and representation are unsound in light of recent empirical findings. This new evidence provides a basis for questioning the importance of continuity to cognitive function, challenging a central commitment of dynamicism. Coupled with a defense of current connectionist (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Searle's abstract argument against strong AI.Andrew Melnyk - 1996 - Synthese 108 (3):391-419.
    Discussion of Searle's case against strong AI has usually focused upon his Chinese Room thought-experiment. In this paper, however, I expound and then try to refute what I call his abstract argument against strong AI, an argument which turns upon quite general considerations concerning programs, syntax, and semantics, and which seems not to depend on intuitions about the Chinese Room. I claim that this argument fails, since it assumes one particular account of what a program is. I suggest an alternative (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Searle, subsymbolic functionalism, and synthetic intelligence.Diane Law - 1994
    Download  
     
    Export citation  
     
    Bookmark  
  • Virtual symposium on virtual mind.Patrick Hayes, Stevan Harnad, Donald Perlis & Ned Block - 1992 - Minds and Machines 2 (3):217-238.
    When certain formal symbol systems (e.g., computer programs) are implemented as dynamic physical symbol systems (e.g., when they are run on a computer) their activity can be interpreted at higher levels (e.g., binary code can be interpreted as LISP, LISP code can be interpreted as English, and English can be interpreted as a meaningful conversation). These higher levels of interpretability are called "virtual" systems. If such a virtual system is interpretable as if it had a mind, is such a "virtual (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • The chinese room argument--dead but not yet buried.Robert I. Damper - 2004 - Journal of Consciousness Studies 11 (5-6):159-169.
    This article is an accompaniment to Anthony Freeman’s review of Views into the Chinese Room, reflecting on some pertinent outstanding questions about the Chinese room argument. Although there is general agreement in the artificial intelligence community that the CRA is somehow wrong, debate continues on exactly why and how it is wrong. Is there a killer counter-argument and, if so, what is it? One remarkable fact is that the CRA is prototypically a thought experiment, yet it has been very little (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Realization and the metaphysics of mind.Thomas W. Polger - 2007 - Australasian Journal of Philosophy 85 (2):233 – 259.
    According to the received view in philosophy of mind, mental states or properties are _realized_ by brain states or properties but are not identical to them. This view is often called _realization_ _physicalism_. Carl Gillett has recently defended a detailed formulation of the realization relation. However, Gillett’s formulation cannot be the relation that realization physicalists have in mind. I argue that Gillett’s “dimensioned” view of realization fails to apply to a textbook case of realization. I also argue Gillett counts as (...)
    Download  
     
    Export citation  
     
    Bookmark   45 citations  
  • Computational functionalism.Tom Polger - 2009 - In Sarah Robins, John Symons & Paco Calvo (eds.), The Routledge Companion to Philosophy of Psychology. New York, NY: Routledge.
    An introduction to functionalism in the philosophy of psychology/mind, and review of the current state of debate pro and con. Forthcoming in the Routledge Companion to the Philosophy of Psychology (John Symons and Paco Calvo, eds.).
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The compatibility of psychological naturalism and representationalism.Andrew Ward - 2001 - Disputatio 1 (11):3-23.
    Download  
     
    Export citation  
     
    Bookmark  
  • The language of thought hypothesis.Murat Aydede - 2010 - Stanford Encyclopedia of Philosophy.
    A comprehensive introduction to the Language of Though Hypothesis (LOTH) accessible to general audiences. LOTH is an empirical thesis about thought and thinking. For their explication, it postulates a physically realized system of representations that have a combinatorial syntax (and semantics) such that operations on representations are causally sensitive only to the syntactic properties of representations. According to LOTH, thought is, roughly, the tokening of a representation that has a syntactic (constituent) structure with an appropriate semantics. Thinking thus consists in (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Against functionalist theories of consciousness.Michael V. Antony - 1994 - Mind and Language 9 (2):105-23.
    The paper contains an argument against functionalist theories of consciousness. The argument exploits an intuition to the effect that parts of an individual's brain that are not in use at a time t, can have no bearing on whether that individual is conscious at t. After presenting the argument, I defend it against two possible objections, and then distinguish it from two arguments to which it appears, on the surface to be similar.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Omniscience and Semantic Information.Bernardo Alonso - 2017 - Manuscrito 40 (4):77-96.
    ABSTRACT First, I consider a few motivations to idealize epistemic logics1 in such a degree that brings up the problem of logical omniscience [LOP]. I argue that the main motivation to hold omniscience is of a philosophical-scientific2 background, in the sense philosophers have a not so peculiar way of investigating underlying mechanisms, i.e., the interaction of several different components of complex systems may be better understood in isolation, even if such components are not found isolated in a realistic context. It (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Royce's Model of the Absolute.Eric Steinhart - 2012 - Transactions of the Charles S. Peirce Society 48 (3):356-384.
    At the end of the 19th century, Josiah Royce participated in what has come to be called the great debate (Royce, 1897; Armour, 2005).1 The great debate concerned issues in metaphysical theology, and, since metaphysics was primarily idealistic, it dealt considerably with the relations between the divine Self and lesser selves. After the great debate, Royce developed his idealism in his Gifford Lectures (1898-1900). These were published as The World and the Individual. At the end of the first volume, Royce (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • From Biological to Synthetic Neurorobotics Approaches to Understanding the Structure Essential to Consciousness (Part 3).Jeffrey White & Jun Tani - 2017 - APA Newsletter on Philosophy and Computers 17 (1):11-22.
    This third paper locates the synthetic neurorobotics research reviewed in the second paper in terms of themes introduced in the first paper. It begins with biological non-reductionism as understood by Searle. It emphasizes the role of synthetic neurorobotics studies in accessing the dynamic structure essential to consciousness with a focus on system criticality and self, develops a distinction between simulated and formal consciousness based on this emphasis, reviews Tani and colleagues' work in light of this distinction, and ends by forecasting (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Is there any real substance to the claims for a 'new computationalism'?Alberto Hernandez-Espinosa, Hernandez-Quiroz Francisco & Zenil Hector - forthcoming - In Hernandez-Espinosa Alberto, Francisco Hernandez-Quiroz & Hector Zenil (eds.), CiE Computability in Europe 2017. Springer Verlag.
    'Computationalism' is a relatively vague term used to describe attempts to apply Turing's model of computation to phenomena outside its original purview: in modelling the human mind, in physics, mathematics, etc. Early versions of computationalism faced strong objections from many (and varied) quarters, from philosophers to practitioners of the aforementioned disciplines. Here we will not address the fundamental question of whether computational models are appropriate for describing some or all of the wide range of processes that they have been applied (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Philosophy of Computer Science.William J. Rapaport - 2005 - Teaching Philosophy 28 (4):319-341.
    There are many branches of philosophy called “the philosophy of X,” where X = disciplines ranging from history to physics. The philosophy of artificial intelligence has a long history, and there are many courses and texts with that title. Surprisingly, the philosophy of computer science is not nearly as well-developed. This article proposes topics that might constitute the philosophy of computer science and describes a course covering those topics, along with suggested readings and assignments.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Extensive enactivism: why keep it all in?Daniel D. Hutto, Michael D. Kirchhoff & Erik Myin - 2014 - Frontiers in Human Neuroscience 8 (706):102178.
    Radical enactive and embodied approaches to cognitive science oppose the received view in the sciences of the mind in denying that cognition fundamentally involves contentful mental representation. This paper argues that the fate of representationalism in cognitive science matters significantly to how best to understand the extent of cognition. It seeks to establish that any move away from representationalism toward pure, empirical functionalism fails to provide a substantive “mark of the cognitive” and is bereft of other adequate means for individuating (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Evolved biocultural beings.Louise Barrett, Thomas V. Pollet & Gert Stulp - 2015 - Frontiers in Psychology 6.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A Plea for the Plurality of Function.Tony Cheng - 2016 - Review of Contemporary Philosophy 15:70-81.
    In this paper I defend a pluralistic approach in understanding function, both in biological and other contexts. Talks about function are ubiquitous and crucial in biology, and it might be the key to bridge the “manifest image” and the “scientific image” identified by Sellars (1962). However, analysis of function has proven to be extremely difficult. The major puzzle is to make sense of “time-reversed causality”: how can property P be the cause of its realizer R? For example, “pumping blood” is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A dialogue concerning two world systems: Info-computational vs. mechanistic.Gordana Dodig-Crnkovic & Vincent C. Müller - 2011 - In Gordana Dodig Crnkovic & Mark Burgin (eds.), Information and computation: Essays on scientific and philosophical understanding of foundations of information and computation. World Scientific. pp. 149-184.
    The dialogue develops arguments for and against a broad new world system - info-computationalist naturalism - that is supposed to overcome the traditional mechanistic view. It would make the older mechanistic view into a special case of the new general info-computationalist framework (rather like Euclidian geometry remains valid inside a broader notion of geometry). We primarily discuss what the info-computational paradigm would mean, especially its pancomputationalist component. This includes the requirements for a the new generalized notion of computing that would (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Does functionalism entail extended mind?Kengo Miyazono - 2017 - Synthese 194 (9):3523-3541.
    In discussing the famous case of Otto, a patient with Alzheimer’s disease who carries around a notebook to keep important information, Clark and Chalmers argue that some of Otto’s beliefs are physically realized in the notebook. In other words, some of Otto’s beliefs are extended into the environment. Their main argument is a functionalist one. Some of Otto’s beliefs are physically realized in the notebook because, first, some of the beliefs of Inga, a healthy person who remembers important information in (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • On the Possibility of Robots Having Emotions.Cameron Hamilton - unknown
    I argue against the commonly held intuition that robots and virtual agents will never have emotions by contending robots can have emotions in a sense that is functionally similar to humans, even if the robots' emotions are not exactly equivalent to those of humans. To establish a foundation for assessing the robots' emotional capacities, I first define what emotions are by characterizing the components of emotion consistent across emotion theories. Second, I dissect the affective-cognitive architecture of MIT's Kismet and Leonardo, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Varieties of Analog and Digital Representation.Whit Schonbein - 2014 - Minds and Machines 24 (4):415-438.
    The ‘received view’ of the analog–digital distinction holds that analog representations are continuous while digital representations are discrete. In this paper I first provide support for the received view by showing how it (1) emerges from the theory of computation, and (2) explains engineering practices. Second, I critically assess several recently offered alternatives, arguing that to the degree they are justified they demonstrate not that the received view is incorrect, but rather that distinct senses of the terms have become entrenched (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Structure and Dynamics in Implementation of Computations.Jacques Mallah - forthcoming - In Yasemin J. Erden (ed.), Proceedings of the 7th AISB Symposium on Computing and Philosophy:. AISB.
    Without a proper restriction on mappings, virtually any system could be seen as implementing any computation. That would not allow characterization of systems in terms of implemented computations and is not compatible with a computationalist philosophy of mind. Information-based criteria for independence of substates within structured states are proposed as a solution. Objections to the use of requirements for transitions in counterfactual states are addressed, in part using the partial-brain argument as a general counterargument to neural replacement arguments.
    Download  
     
    Export citation  
     
    Bookmark  
  • Trading spaces: Computation, representation, and the limits of uninformed learning.Andy Clark & Chris Thornton - 1997 - Behavioral and Brain Sciences 20 (1):57-66.
    Some regularities enjoy only an attenuated existence in a body of training data. These are regularities whose statistical visibility depends on some systematic recoding of the data. The space of possible recodings is, however, infinitely large – it is the space of applicable Turing machines. As a result, mappings that pivot on such attenuated regularities cannot, in general, be found by brute-force search. The class of problems that present such mappings we call the class of “type-2 problems.” Type-1 problems, by (...)
    Download  
     
    Export citation  
     
    Bookmark   44 citations  
  • The instructional information processing account of digital computation.Nir Fresco & Marty J. Wolf - 2014 - Synthese 191 (7):1469-1492.
    What is nontrivial digital computation? It is the processing of discrete data through discrete state transitions in accordance with finite instructional information. The motivation for our account is that many previous attempts to answer this question are inadequate, and also that this account accords with the common intuition that digital computation is a type of information processing. We use the notion of reachability in a graph to defend this characterization in memory-based systems and underscore the importance of instructional information for (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Information.Pieter Adriaans - 2012 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • The Explanatory Role of Computation in Cognitive Science.Nir Fresco - 2012 - Minds and Machines 22 (4):353-380.
    Which notion of computation (if any) is essential for explaining cognition? Five answers to this question are discussed in the paper. (1) The classicist answer: symbolic (digital) computation is required for explaining cognition; (2) The broad digital computationalist answer: digital computation broadly construed is required for explaining cognition; (3) The connectionist answer: sub-symbolic computation is required for explaining cognition; (4) The computational neuroscientist answer: neural computation (that, strictly, is neither digital nor analogue) is required for explaining cognition; (5) The extreme (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Semiotic Systems, Computers, and the Mind: How Cognition Could Be Computing.William J. Rapaport - 2012 - International Journal of Signs and Semiotic Systems 2 (1):32-71.
    In this reply to James H. Fetzer’s “Minds and Machines: Limits to Simulations of Thought and Action”, I argue that computationalism should not be the view that (human) cognition is computation, but that it should be the view that cognition (simpliciter) is computable. It follows that computationalism can be true even if (human) cognition is not the result of computations in the brain. I also argue that, if semiotic systems are systems that interpret signs, then both humans and computers are (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Searching for General Principles in Cognitive Performance: Reply to Commentators.Damian G. Stephen & Guy Van Orden - 2012 - Topics in Cognitive Science 4 (1):94-102.
    The commentators expressed concerns regarding the relevance and value of non-computational non-symbolic explanations of cognitive performance. But what counts as an “explanation” depends on the pre-theoretical assumptions behind the scenes of empirical science regarding the kinds of variables and relationships that are sought out in the first place, and some of the present disagreements stem from incommensurate assumptions. Traditional cognitive science presumes cognition to be a decomposable system of components interacting according to computational rules to generate cognitive performances (i.e., component-dominant (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations