Switch to: References

Citations of:

Mathematical Logic

Journal of Symbolic Logic 40 (2):234-236 (1975)

Add citations

You must login to add citations.
  1. Fraïssé’s theorem for logics of formal inconsistency.Bruno R. Mendonça & Walter A. Carnielli - 2020 - Logic Journal of the IGPL 28 (5):1060-1072.
    We prove that the minimal Logic of Formal Inconsistency $\mathsf{QmbC}$ validates a weaker version of Fraïssé’s theorem. LFIs are paraconsistent logics that relativize the Principle of Explosion only to consistent formulas. Now, despite the recent interest in LFIs, their model-theoretic properties are still not fully understood. Our aim in this paper is to investigate the situation. Our interest in FT has to do with its fruitfulness; the preservation of FT indicates that a number of other classical semantic properties can be (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Generalisation of proof simulation procedures for Frege systems by M.L. Bonet and S.R. Buss.Daniil Kozhemiachenko - 2018 - Journal of Applied Non-Classical Logics 28 (4):389-413.
    ABSTRACTIn this paper, we present a generalisation of proof simulation procedures for Frege systems by Bonet and Buss to some logics for which the deduction theorem does not hold. In particular, we study the case of finite-valued Łukasiewicz logics. To this end, we provide proof systems and which augment Avron's Frege system HŁuk with nested and general versions of the disjunction elimination rule, respectively. For these systems, we provide upper bounds on speed-ups w.r.t. both the number of steps in proofs (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Against the iterative conception of set.Edward Ferrier - 2019 - Philosophical Studies 176 (10):2681-2703.
    According to the iterative conception of set, each set is a collection of sets formed prior to it. The notion of priority here plays an essential role in explanations of why contradiction-inducing sets, such as the Russell set, do not exist. Consequently, these explanations are successful only to the extent that a satisfactory priority relation is made out. I argue that attempts to do this have fallen short: understanding priority in a straightforwardly constructivist sense threatens the coherence of the empty (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Three Dogmas of First-Order Logic and some Evidence-based Consequences for Constructive Mathematics of differentiating between Hilbertian Theism, Brouwerian Atheism and Finitary Agnosticism.Bhupinder Singh Anand - manuscript
    We show how removing faith-based beliefs in current philosophies of classical and constructive mathematics admits formal, evidence-based, definitions of constructive mathematics; of a constructively well-defined logic of a formal mathematical language; and of a constructively well-defined model of such a language. -/- We argue that, from an evidence-based perspective, classical approaches which follow Hilbert's formal definitions of quantification can be labelled `theistic'; whilst constructive approaches based on Brouwer's philosophy of Intuitionism can be labelled `atheistic'. -/- We then adopt what may (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Logic in the Tractatus.Max Weiss - 2017 - Review of Symbolic Logic 10 (1):1-50.
    I present a reconstruction of the logical system of the Tractatus, which differs from classical logic in two ways. It includes an account of Wittgenstein’s “form-series” device, which suffices to express some effectively generated countably infinite disjunctions. And its attendant notion of structure is relativized to the fixed underlying universe of what is named. -/- There follow three results. First, the class of concepts definable in the system is closed under finitary induction. Second, if the universe of objects is countably (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Completeness and categoricity (in power): Formalization without foundationalism.John T. Baldwin - 2014 - Bulletin of Symbolic Logic 20 (1):39-79.
    We propose a criterion to regard a property of a theory (in first or second order logic) as virtuous: the property must have significant mathematical consequences for the theory (or its models). We then rehearse results of Ajtai, Marek, Magidor, H. Friedman and Solovay to argue that for second order logic, ‘categoricity’ has little virtue. For first order logic, categoricity is trivial; but ‘categoricity in power’ has enormous structural consequences for any of the theories satisfying it. The stability hierarchy extends (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Variable Binding Term Operators.John Corcoran, William Hatcher & John Herring - 1972 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 18 (12):177-182.
    Chapin reviewed this 1972 ZEITSCHRIFT paper that proves the completeness theorem for the logic of variable-binding-term operators created by Corcoran and his student John Herring in the 1971 LOGIQUE ET ANALYSE paper in which the theorem was conjectured. This leveraging proof extends completeness of ordinary first-order logic to the extension with vbtos. Newton da Costa independently proved the same theorem about the same time using a Henkin-type proof. This 1972 paper builds on the 1971 “Notes on a Semantic Analysis of (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Implicit epistemic aspects of constructive logic.Göran Sundholm - 1997 - Journal of Logic, Language and Information 6 (2):191-212.
    In the present paper I wish to regard constructivelogic as a self-contained system for the treatment ofepistemological issues; the explanations of theconstructivist logical notions are cast in anepistemological mold already from the outset. Thediscussion offered here intends to make explicit thisimplicit epistemic character of constructivism.Particular attention will be given to the intendedinterpretation laid down by Heyting. This interpretation, especially as refined in the type-theoretical work of Per Martin-Löf, puts thesystem on par with the early efforts of Frege andWhitehead-Russell. This quite (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Explicit mathematics with the monotone fixed point principle.Michael Rathjen - 1998 - Journal of Symbolic Logic 63 (2):509-542.
    The context for this paper is Feferman's theory of explicit mathematics, a formal framework serving many purposes. It is suitable for representing Bishop-style constructive mathematics as well as generalized recursion, including direct expression of structural concepts which admit self-application. The object of investigation here is the theory of explicit mathematics augmented by the monotone fixed point principle, which asserts that any monotone operation on classifications (Feferman's notion of set) possesses a least fixed point. To be more precise, the new axiom (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On Gödel Sentences and What They Say.Peter Milne - 2007 - Philosophia Mathematica 15 (2):193-226.
    Proofs of Gödel's First Incompleteness Theorem are often accompanied by claims such as that the gödel sentence constructed in the course of the proof says of itself that it is unprovable and that it is true. The validity of such claims depends closely on how the sentence is constructed. Only by tightly constraining the means of construction can one obtain gödel sentences of which it is correct, without further ado, to say that they say of themselves that they are unprovable (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Generalized logical consequence: Making room for induction in the logic of science. [REVIEW]Samir Chopra & Eric Martin - 2002 - Journal of Philosophical Logic 31 (3):245-280.
    We present a framework that provides a logic for science by generalizing the notion of logical (Tarskian) consequence. This framework will introduce hierarchies of logical consequences, the first level of each of which is identified with deduction. We argue for identification of the second level of the hierarchies with inductive inference. The notion of induction presented here has some resonance with Popper's notion of scientific discovery by refutation. Our framework rests on the assumption of a restricted class of structures in (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Higher-Order Logic and Disquotational Truth.Lavinia Picollo & Thomas Schindler - 2022 - Journal of Philosophical Logic 51 (4):879-918.
    Truth predicates are widely believed to be capable of serving a certain logical or quasi-logical function. There is little consensus, however, on the exact nature of this function. We offer a series of formal results in support of the thesis that disquotational truth is a device to simulate higher-order resources in a first-order setting. More specifically, we show that any theory formulated in a higher-order language can be naturally and conservatively interpreted in a first-order theory with a disquotational truth or (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Strong Normalization via Natural Ordinal.Daniel Durante Pereira Alves - 1999 - Dissertation,
    The main objective of this PhD Thesis is to present a method of obtaining strong normalization via natural ordinal, which is applicable to natural deduction systems and typed lambda calculus. The method includes (a) the definition of a numerical assignment that associates each derivation (or lambda term) to a natural number and (b) the proof that this assignment decreases with reductions of maximal formulas (or redex). Besides, because the numerical assignment used coincide with the length of a specific sequence of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Truth Assignments That Differentiate Human Reasoning From Mechanistic Reasoning: The Evidence-Based Argument for Lucas' Goedelian Thesis.Bhupinder Singh Anand - 2016 - Cognitive Systems Research 40:35-45.
    We consider the argument that Tarski's classic definitions permit an intelligence---whether human or mechanistic---to admit finitary evidence-based definitions of the satisfaction and truth of the atomic formulas of the first-order Peano Arithmetic PA over the domain N of the natural numbers in two, hitherto unsuspected and essentially different, ways: (1) in terms of classical algorithmic verifiabilty; and (2) in terms of finitary algorithmic computability. We then show that the two definitions correspond to two distinctly different assignments of satisfaction and truth (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)End Extensions Which are Models of a Given Theory.A. M. Dawes - 1977 - Mathematical Logic Quarterly 23 (27-30):463-467.
    Download  
     
    Export citation  
     
    Bookmark  
  • Thinking may be more than computing.Peter Kugel - 1986 - Cognition 22 (2):137-198.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • (1 other version)Existência e Contradição.Edelcio Gonçalves de Souza - 2003 - Cognitio 4 (1):80-86.
    Resumo: No presente artigo, discutiremos os aspectos filosóficos de teorias de conjuntos paraconsistentes. A fim de ilustrar nossas considerações de modo mais concreto, abordaremos uma nova teoria de conjuntos baseada em um sistema bem conhecido de Quine e em um cálculo paraconsistente.Palavras-chave: existência, contradição, lógica e paraconsistência.: In the present paper we deal with the philosophical aspects of paraconsistent set theories. In order to illustrate our points more concretely, we will discuss new paraconsistent set theory based both on Quine's well-known (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Intrinsically Hyperarithmetical Sets.Ivan N. Soskov - 1996 - Mathematical Logic Quarterly 42 (1):469-480.
    The main result proved in the paper is that on every recursive structure the intrinsically hyperarithmetical sets coincide with the relatively intrinsically hyperarithmetical sets. As a side effect of the proof an effective version of the Kueker's theorem on definability by means of infinitary formulas is obtained.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Tarski and Lesniewski on Languages with Meaning versus Languages without Use: A 60th Birthday Provocation for Jan Wolenski.B. G. Sundholm - unknown
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Generalizations of Kochen and Specker's theorem and the effectiveness of Gleason's theorem.Itamar Pitowsky - 2003 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 35 (2):177-194.
    Kochen and Specker’s theorem can be seen as a consequence of Gleason’s theorem and logical compactness. Similar compactness arguments lead to stronger results about finite sets of rays in Hilbert space, which we also prove by a direct construction. Finally, we demonstrate that Gleason’s theorem itself has a constructive proof, based on a generic, finite, effectively generated set of rays, on which every quantum state can be approximated. r 2003 Elsevier Ltd. All rights reserved.
    Download  
     
    Export citation  
     
    Bookmark  
  • An addition to Rosser's theorem.Henryk Kotlarski - 1996 - Journal of Symbolic Logic 61 (1):285-292.
    For a primitive recursive consistent and strong enough theory T we construct an independent statement which has some clear metamathematical meaning.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The mathematical development of set theory from Cantor to Cohen.Akihiro Kanamori - 1996 - Bulletin of Symbolic Logic 2 (1):1-71.
    Set theory is an autonomous and sophisticated field of mathematics, enormously successful not only at its continuing development of its historical heritage but also at analyzing mathematical propositions cast in set-theoretic terms and gauging their consistency strength. But set theory is also distinguished by having begun intertwined with pronounced metaphysical attitudes, and these have even been regarded as crucial by some of its great developers. This has encouraged the exaggeration of crises in foundations and of metaphysical doctrines in general. However, (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Book reviews. [REVIEW]A. P. Hazen - 1993 - Philosophia Mathematica 1 (2):173-179.
    Download  
     
    Export citation  
     
    Bookmark  
  • The cylindric algebras of three-valued logic.Norman Feldman - 1998 - Journal of Symbolic Logic 63 (4):1201-1217.
    Download  
     
    Export citation  
     
    Bookmark  
  • Burgess's ‘scientific’ arguments for the existence of mathematical objects.Chihara Charles - 2006 - Philosophia Mathematica 14 (3):318-337.
    This paper addresses John Burgess's answer to the ‘Benacerraf Problem’: How could we come justifiably to believe anything implying that there are numbers, given that it does not make sense to ascribe location or causal powers to numbers? Burgess responds that we should look at how mathematicians come to accept: There are prime numbers greater than 1010 That, according to Burgess, is how one can come justifiably to believe something implying that there are numbers. This paper investigates what lies behind (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Interpreting weak Kőnig's lemma in theories of nonstandard arithmetic.Bruno Dinis & Fernando Ferreira - 2017 - Mathematical Logic Quarterly 63 (1-2):114-123.
    We show how to interpret weak Kőnig's lemma in some recently defined theories of nonstandard arithmetic in all finite types. Two types of interpretations are described, with very different verifications. The celebrated conservation result of Friedman's about weak Kőnig's lemma can be proved using these interpretations. We also address some issues concerning the collecting of witnesses in herbrandized functional interpretations.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Structuralisme et empirisme: l'approche ensembliste des théories physiques.Jean Leroux - 1986 - Dialogue 25 (1):143-.
    La parution de la monographic de Sneed,The Logical Structure of Mathematical Physics a suscité un renouveau d'intérêt en philosophie contemporaine des sciences. Cet ouvrage arrivait à un moment où l'épistémologie des sciences, telle que développée dans les milieux germaniques et anglo-saxons, accusait de graves insuffisances dans la reconstruction rationnelle du développement historique des théories physiques. Mis sur la défensive par les thèses et arguments historiques de Kuhn et de Feyerabend, ces milieux « orthodoxes » devaient reconnaitre l'état embryonnaire de ce (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Logique mathématique et philosophie des mathématiques.Yvon Gauthier - 1971 - Dialogue 10 (2):243-275.
    Pour le philosophe intéressé aux structures et aux fondements du savoir théorétique, à la constitution d'une « méta-théorétique «, θεωρíα., qui, mieux que les « Wissenschaftslehre » fichtéenne ou husserlienne et par-delà les débris de la métaphysique, veut dans une intention nouvelle faire la synthèse du « théorétique », la logique mathématique se révèle un objet privilégié.
    Download  
     
    Export citation  
     
    Bookmark  
  • Computability and recursion.Robert I. Soare - 1996 - Bulletin of Symbolic Logic 2 (3):284-321.
    We consider the informal concept of "computability" or "effective calculability" and two of the formalisms commonly used to define it, "(Turing) computability" and "(general) recursiveness". We consider their origin, exact technical definition, concepts, history, general English meanings, how they became fixed in their present roles, how they were first and are now used, their impact on nonspecialists, how their use will affect the future content of the subject of computability theory, and its connection to other related areas. After a careful (...)
    Download  
     
    Export citation  
     
    Bookmark   52 citations  
  • Model companions and k-model completeness for the complete theories of Boolean algebras.J. Mead & G. C. Nelson - 1980 - Journal of Symbolic Logic 45 (1):47-55.
    Download  
     
    Export citation  
     
    Bookmark  
  • Minimal realizability of intuitionistic arithmetic and elementary analysis.Zlatan Damnjanovic - 1995 - Journal of Symbolic Logic 60 (4):1208-1241.
    A new method of "minimal" realizability is proposed and applied to show that the definable functions of Heyting arithmetic (HA)--functions f such that HA $\vdash \forall x\exists!yA(x, y)\Rightarrow$ for all m, A(m, f(m)) is true, where A(x, y) may be an arbitrary formula of L(HA) with only x, y free--are precisely the provably recursive functions of the classical Peano arithmetic (PA), i.e., the $ -recursive functions. It is proved that, for prenex sentences provable in HA, Skolem functions may always be (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Bimodal logics for extensions of arithmetical theories.Lev D. Beklemishev - 1996 - Journal of Symbolic Logic 61 (1):91-124.
    We characterize the bimodal provability logics for certain natural (classes of) pairs of recursively enumerable theories, mostly related to fragments of arithmetic. For example, we shall give axiomatizations, decision procedures, and introduce natural Kripke semantics for the provability logics of (IΔ 0 + EXP, PRA); (PRA, IΣ 1 ); (IΣ m , IΣ n ) for $1 \leq m etc. For the case of finitely axiomatized extensions of theories these results are extended to modal logics with propositional constants.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Some Notes on Truths and Comprehension.Thomas Schindler - 2018 - Journal of Philosophical Logic 47 (3):449-479.
    In this paper we study several translations that map models and formulae of the language of second-order arithmetic to models and formulae of the language of truth. These translations are useful because they allow us to exploit results from the extensive literature on arithmetic to study the notion of truth. Our purpose is to present these connections in a systematic way, generalize some well-known results in this area, and to provide a number of new results. Sections 3 and 4 contain (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • An isomorphism between monoids of external embeddings: About definability in arithmetic.Mihai Prunescu - 2002 - Journal of Symbolic Logic 67 (2):598-620.
    We use a new version of the Definability Theorem of Beth in order to unify classical theorems of Yuri Matiyasevich and Jan Denef in one structural statement. We give similar forms for other important definability results from Arithmetic and Number Theory.
    Download  
     
    Export citation  
     
    Bookmark  
  • Conceptual Foundations of Operational Set Theory.Kaj Børge Hansen - 2010 - Danish Yearbook of Philosophy 45 (1):29-50.
    I formulate the Zermelo-Russell paradox for naive set theory. A sketch is given of Zermelo’s solution to the paradox: the cumulative type structure. A careful analysis of the set formation process shows a missing component in this solution: the necessity of an assumed imaginary jump out of an infinite universe. Thus a set is formed by a suitable combination of concrete and imaginary operations all of which can be made or assumed by a Turing machine. Some consequences are drawn from (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • In praise of replacement.Akihiro Kanamori - 2012 - Bulletin of Symbolic Logic 18 (1):46-90.
    This article serves to present a large mathematical perspective and historical basis for the Axiom of Replacement as well as to affirm its importance as a central axiom of modern set theory.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Transfinite Progressions: A Second Look At Completeness.Torkel Franzén - 2004 - Bulletin of Symbolic Logic 10 (3):367-389.
    §1. Iterated Gödelian extensions of theories. The idea of iterating ad infinitum the operation of extending a theory T by adding as a new axiom a Gödel sentence for T, or equivalently a formalization of “T is consistent”, thus obtaining an infinite sequence of theories, arose naturally when Godel's incompleteness theorem first appeared, and occurs today to many non-specialists when they ponder the theorem. In the logical literature this idea has been thoroughly explored through two main approaches. One is that (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • (1 other version)Intrinsically II 11 Relations.Ivan N. Soskov - 1996 - Mathematical Logic Quarterly 42 (1):109-126.
    An external characterization of the inductive sets on countable abstract structures is presented. The main result is an abstract version of the classical Suslin-Kleene characterization of the hyperarithmetical sets.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Believing the axioms. II.Penelope Maddy - 1988 - Journal of Symbolic Logic 53 (3):736-764.
    Download  
     
    Export citation  
     
    Bookmark   53 citations  
  • A note on interpretations of many-sorted theories.Julian L. Hook - 1985 - Journal of Symbolic Logic 50 (2):372-374.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Semi-minimal theories and categoricity.Daniel Andler - 1975 - Journal of Symbolic Logic 40 (3):419-438.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Continuity and elementary logic.Leslie H. Tharp - 1974 - Journal of Symbolic Logic 39 (4):700-716.
    The purpose of this paper is to investigate continuity properties arising in elementary (i.e., first-order) logic in the hope of illuminating the special status of this logic. The continuity properties turn out to be closely related to conditions which characterize elementary logic uniquely, and lead to various further questions.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)On the Complexity of Analytic Sets.Karel Hrbacek - 1978 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 24 (25-30):419-425.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The mathematical philosophy of Charles Parsons. [REVIEW]J. M. B. Moss - 1985 - British Journal for the Philosophy of Science 36 (4):437-457.
    Download  
     
    Export citation  
     
    Bookmark  
  • Axioms for the set-theoretic hierarchy.James van Aken - 1986 - Journal of Symbolic Logic 51 (4):992-1004.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Cut-Elimination and Quantification in Canonical Systems.Anna Zamansky & Arnon Avron - 2006 - Studia Logica 82 (1):157-176.
    Canonical Propositional Gentzen-type systems are systems which in addition to the standard axioms and structural rules have only pure logical rules with the sub-formula property, in which exactly one occurrence of a connective is introduced in the conclusion, and no other occurrence of any connective is mentioned anywhere else. In this paper we considerably generalize the notion of a “canonical system” to first-order languages and beyond. We extend the Propositional coherence criterion for the non-triviality of such systems to rules with (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Gödel's Second incompleteness theorem for Q.A. Bezboruah & J. C. Shepherdson - 1976 - Journal of Symbolic Logic 41 (2):503-512.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Gödel, Tarski, Church, and the Liar.György Serény - 2003 - Bulletin of Symbolic Logic 9 (1):3-25.
    The fact that Gödel's famous incompleteness theorem and the archetype of all logical paradoxes, that of the Liar, are related closely is, of course, not only well known, but is a part of the common knowledge of the community of logicians. Indeed, almost every more or less formal treatment of the theorem makes a reference to this connection. Gödel himself remarked in the paper announcing his celebrated result :The analogy between this result and Richard's antinomy leaps to the eye;there is (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Kreisel's 'Unwinding Program'.Solomon Feferman - 1996 - In Piergiorgio Odifreddi (ed.), Kreiseliana: About and Around Georg Kreisel. A K Peters. pp. 247--273.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • On projective ordinals.Alexander S. Kechris - 1974 - Journal of Symbolic Logic 39 (2):269-282.
    Download  
     
    Export citation  
     
    Bookmark   2 citations