Switch to: Citations

Add references

You must login to add references.
  1. Renormalizability, Fundamentality, and a Final Theory: The Role of UV-Completion in the Search for Quantum Gravity.Karen Crowther & Niels Linnemann - 2019 - British Journal for the Philosophy of Science 70 (2):377-406.
    Principles are central to physical reasoning, particularly in the search for a theory of quantum gravity, where novel empirical data are lacking. One principle widely adopted in the search for QG is ultraviolet completion: the idea that a theory should hold up to all possible high energies. We argue— contra standard scientific practice—that UV-completion is poorly motivated as a guiding principle in theory-construction, and cannot be used as a criterion of theory-justification in the search for QG. For this, we explore (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • The Value of Science.Henri Poincaré - 2017 - Andesite Press.
    This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work. This work is in the public domain (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Renormalization for philosophers.Jeremy Butterfield & Nazim Bouatta - 2015 - In Tomasz Bigaj & Christian Wüthrich (eds.), Metaphysics in Contemporary Physics. Boston: Brill | Rodopi. pp. 437–485.
    We have two aims. The main one is to expound the idea of renormalization in quantum field theory, with no technical prerequisites. Our motivation is that renormalization is undoubtedly one of the great ideas—and great successes--of twentieth-century physics. Also it has strongly influenced in diverse ways, how physicists conceive of physical theories. So it is of considerable philosophical interest. Second, we will briefly relate renormalization to Ernest Nagel's account of inter-theoretic relations, especially reduction. One theme will be a contrast between (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Background Independence, Diffeomorphism Invariance, and the Meaning of Coordinates.Oliver Pooley - 2016 - In Dennis Lehmkuhl, Gregor Schiemann & Erhard Scholz (eds.), Towards a Theory of Spacetime Theories. New York, NY: Birkhauser.
    Diffeomorphism invariance is sometimes taken to be a criterion of background independence. This claim is commonly accompanied by a second, that the genuine physical magnitudes (the ``observables'') of background-independent theories and those of background-dependent (non-diffeomorphism-invariant) theories are essentially different in nature. I argue against both claims. Background-dependent theories can be formulated in a diffeomorphism-invariant manner. This suggests that the nature of the physical magnitudes of relevantly analogous theories (one background free, the other background dependent) is essentially the same. The temptation (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Time in quantum gravity.Nick Huggett, Tiziana Vistarini & Christian Wuthrich - 2012 - .
    Quantum gravity--the marriage of quantum physics with general relativity--is bound to contain deep and important lessons for the nature of physical time. Some of these lessons shall be canvassed here, particularly as they arise from quantum general relativity and string theory and related approaches. Of particular interest is the question of which of the intuitive aspects of time will turn out to be fundamental, and which 'emergent' in some sense.
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • The value of science.Henri Poincaré - 1907 - New York,: Dover Publications. Edited by George Bruce Halsted.
    THE VALUE OF SCIENCE INTRODUCTION The search for truth should be the goal of our activities; it is the sole end worthy of them. Doubtless we should first bend our efforts to assuage human suffering, but why ? Not to suffer is a negative ...
    Download  
     
    Export citation  
     
    Bookmark   91 citations  
  • On the emergence of time in quantum gravity.Jeremy Butterfield & Chris Isham - 1999 - In The arguments of time. New York: Published for the British Academy by Oxford University Press. pp. 111--168.
    We discuss from a philosophical perspective the way in which the normal concept of time might be said to `emerge' in a quantum theory of gravity. After an introduction, we briefly discuss the notion of emergence, without regard to time. We then introduce the search for a quantum theory of gravity ; and review some general interpretative issues about space, time and matter. We then discuss the emergence of time in simple quantum geometrodynamics, and in the Euclidean approach. Section 6 (...)
    Download  
     
    Export citation  
     
    Bookmark   80 citations  
  • The Structure of Scientific Revolutions.Thomas Samuel Kuhn - 1962 - Chicago: University of Chicago Press. Edited by Otto Neurath.
    A scientific community cannot practice its trade without some set of received beliefs. These beliefs form the foundation of the "educational initiation that prepares and licenses the student for professional practice". The nature of the "rigorous and rigid" preparation helps ensure that the received beliefs are firmly fixed in the student's mind. Scientists take great pains to defend the assumption that scientists know what the world is like...To this end, "normal science" will often suppress novelties which undermine its foundations. Research (...)
    Download  
     
    Export citation  
     
    Bookmark   2705 citations  
  • The Structure of Scientific Revolutions.Thomas S. Kuhn - 1962 - Chicago, IL: University of Chicago Press. Edited by Ian Hacking.
    Thomas S. Kuhn's classic book is now available with a new index.
    Download  
     
    Export citation  
     
    Bookmark   4721 citations  
  • Effective Spacetime: Understanding Emergence in Effective Field Theory and Quantum Gravity.Karen Crowther - 2016 - Cham: Springer.
    This book discusses the notion that quantum gravity may represent the "breakdown" of spacetime at extremely high energy scales. If spacetime does not exist at the fundamental level, then it has to be considered "emergent", in other words an effective structure, valid at low energy scales. The author develops a conception of emergence appropriate to effective theories in physics, and shows how it applies (or could apply) in various approaches to quantum gravity, including condensed matter approaches, discrete approaches, and loop (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • To Quantize or Not to Quantize: Fact and Folklore in Quantum Gravity.Christian Wüthrich - 2005 - Philosophy of Science 72 (5):777-788.
    Does the need to find a quantum theory of gravity imply that the gravitational field must be quantized? Physicists working in quantum gravity routinely assume an affirmative answer, often without being aware of the metaphysical commitments that tend to underlie this assumption. The ambition of this article is to probe these commitments and to analyze some recently adduced arguments pertinent to the issue of quantization. While there exist good reasons to quantize gravity, as this analysis will show, alternative approaches to (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • The case for black hole thermodynamics part II: Statistical mechanics.David Wallace - 2018 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 66 (C):103-117.
    I present in detail the case for regarding black hole thermodynamics as having a statistical-mechanical explanation in exact parallel with the statistical-mechanical explanation believed to underly the thermodynamics of other systems. I focus on three lines of argument: zero-loop and one-loop calculations in quantum general relativity understood as a quantum field theory, using the path-integral formalism; calculations in string theory of the leading-order terms, higher-derivative corrections, and quantum corrections, in the black hole entropy formula for extremal and near-extremal black holes; (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • The case for black hole thermodynamics part I: Phenomenological thermodynamics.David Wallace - 2018 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 64:52-67.
    I give a fairly systematic and thorough presentation of the case for regarding black holes as thermodynamic systems in the fullest sense, aimed at students and non-specialists and not presuming advanced knowledge of quantum gravity. I pay particular attention to the availability in classical black hole thermodynamics of a well-defined notion of adiabatic intervention; the power of the membrane paradigm to make black hole thermodynamics precise and to extend it to local-equilibrium contexts; the central role of Hawking radiation in permitting (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Three denials of time in the interpretation of canonical gravity.Karim P. Y. Thébault - 2012 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 43 (4):277-294.
    The analysis of the temporal structure of canonical general relativity and the connected interpretational questions with regard to the role of time within the theory both rest upon the need to respect the fundamentally dual role of the Hamiltonian constraints found within the formalism. Any consistent philosophical approach towards the theory must pay dues to the role of these constraints in both generating dynamics, in the context of phase space, and generating unphysical symmetry transformations, in the context of a hypersurface (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Holography and emergence.Nicholas J. Teh - 2013 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 44 (3):300-311.
    In this paper, I discuss one form of the idea that spacetime and gravity might ‘emerge’ from quantum theory, i.e. via a holographic duality, and in particular via AdS/CFT duality. I begin by giving a survey of the general notion of duality, as well as its connection to emergence. I then review the AdS/CFT duality and proceed to discuss emergence in this context. We will see that it is difficult to find compelling arguments for the emergence of full quantum gravity (...)
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • Friedman׳s Thesis.Ryan Samaroo - 2015 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 52 (Part B):129-138.
    This essay examines Friedman's recent approach to the analysis of physical theories. Friedman argues against Quine that the identification of certain principles as ‘constitutive’ is essential to a satisfactory methodological analysis of physics. I explicate Friedman's characterization of a constitutive principle, and I evaluate his account of the constitutive principles that Newtonian and Einsteinian gravitation presuppose for their formulation. I argue that something close to Friedman's thesis is defensible.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • A philosopher looks at string dualities.Dean Rickles - 2011 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 42 (1):54-67.
    Download  
     
    Export citation  
     
    Bookmark   49 citations  
  • Motivating dualities.James Read & Thomas Møller-Nielsen - 2020 - Synthese 197 (1):263-291.
    There exists a common view that for theories related by a ‘duality’, dual models typically may be taken ab initio to represent the same physical state of affairs, i.e. to correspond to the same possible world. We question this view, by drawing a parallel with the distinction between ‘interpretational’ and ‘motivational’ approaches to symmetries.
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Heuristics and the generalized correspondence principle.Hans Radder - 1991 - British Journal for the Philosophy of Science 42 (2):195-226.
    Several philosophers of science have claimed that the correspondence principle can be generalized from quantum physics to all of (particularly physical) science and that in fact it constitutes one of the major heuristical rules for the construction of new theories. In order to evaluate these claims, first the use of the correspondence principle in (the genesis of) quantum mechanics will be examined in detail. It is concluded from this and from other examples in the history of science that the principle (...)
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • Correspondence, Invariance and Heuristics: In Praise of Conservative Induction.H. R. Post - 1971 - Studies in History and Philosophy of Science Part A 2 (3):213.
    Download  
     
    Export citation  
     
    Bookmark   109 citations  
  • On Dirac's incomplete analysis of gauge transformations.Josep M. Pons - 2005 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 36 (3):491-518.
    Dirac's approach to gauge symmetries is discussed. We follow closely the steps that led him from his conjecture concerning the generators of gauge transformations {\it at a given time} ---to be contrasted with the common view of gauge transformations as maps from solutions of the equations of motion into other solutions--- to his decision to artificially modify the dynamics, substituting the extended Hamiltonian for the total Hamiltonian. We show in detail that Dirac's analysis was incomplete and, in completing it, we (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Dualities of fields and strings.Joseph Polchinski - 2017 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 59 (C):6-20.
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • The Principles of Mathematical Physics.Henri Poincaré - 1905 - The Monist 15 (1):1-24.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Change in Hamiltonian general relativity from the lack of a time-like Killing vector field.J. Brian Pitts - 2014 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 47:68-89.
    In General Relativity in Hamiltonian form, change has seemed to be missing, defined only asymptotically, or otherwise obscured at best, because the Hamiltonian is a sum of first-class constraints and a boundary term and thus supposedly generates gauge transformations. Attention to the gauge generator G of Rosenfeld, Anderson, Bergmann, Castellani et al., a specially _tuned sum_ of first-class constraints, facilitates seeing that a solitary first-class constraint in fact generates not a gauge transformation, but a bad physical change in electromagnetism or (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Two concepts of intertheoretic reduction.Thomas Nickles - 1973 - Journal of Philosophy 70 (April):181-201.
    Download  
     
    Export citation  
     
    Bookmark   133 citations  
  • Mongrel Gravity.James Mattingly - 2009 - Erkenntnis 70 (3):379-395.
    It was recognized almost from the original formulation of general relativity that the theory was incomplete because it dealt only with classical, rather than quantum, matter. What must be done in order to complete the theory has been a subject of considerable debate over the last century, and here I just mention a few of the various options that have been suggested for a quantum theory of gravity. The aim of what follows is twofold. First, I address worries about the (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • The Structure of Scientific Revolutions.David Bohm - 1964 - Philosophical Quarterly 14 (57):377-379.
    Download  
     
    Export citation  
     
    Bookmark   1157 citations  
  • Why quantize gravity (or any other field for that matter)?Nick Huggett & Craig Callender - 2001 - Proceedings of the Philosophy of Science Association 2001 (3):S382-.
    The quantum gravity program seeks a theory that handles quantum matter fields and gravity consistently. But is such a theory really required and must it involve quantizing the gravitational field? We give reasons for a positive answer to the first question, but dispute a widespread contention that it is inconsistent for the gravitational field to be classical while matter is quantum. In particular, we show how a popular argument (Eppley and Hannah 1997) falls short of a no-go theorem, and discuss (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Why Quantize Gravity (or Any Other Field for That Matter)?Nick Huggett & Craig Callender - 2001 - Philosophy of Science 68 (S3):S382-S394.
    The quantum gravity program seeks a theory that handles quantum matter fields and gravity consistently. But is such a theory really required and must it involve quantizing the gravitational field? We give reasons for a positive answer to the first question, but dispute a widespread contention that it is inconsistent for the gravitational field to be classical while matter is quantum. In particular, we show how a popular argument falls short of a no-go theorem, and discuss possible counterexamples. Important issues (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Time in Quantum Gravity.Nick Huggett, Tiziana Vistarini & Christian Wüthrich - 2013 - In Heather Dyke & Adrian Bardon (eds.), A Companion to the Philosophy of Time. Chichester, UK: Wiley. pp. 242–261.
    Physical time plays a different role in general relativity than in quantum mechanics and the particle physics based on it. The first section of this chapter provides a brief survey of the main approaches to quantum gravity and then proceeds to consider the lessons that can be drawn from two distinct strategies for discovering a theory of quantum gravity. In the next section, the chapter first explicates the fate of time in approaches to quantum gravity that start with general relativity (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Emergent spacetime and empirical (in) coherence.Nick Huggett & Christian Wüthrich - 2013 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 44 (3):276-285.
    Numerous approaches to a quantum theory of gravity posit fundamental ontologies that exclude spacetime, either partially or wholly. This situation raises deep questions about how such theories could relate to the empirical realm, since arguably only entities localized in spacetime can ever be observed. Are such entities even possible in a theory without fundamental spacetime? How might they be derived, formally speaking? Moreover, since by assumption the fundamental entities cannot be smaller than the derived and so cannot ‘compose’ them in (...)
    Download  
     
    Export citation  
     
    Bookmark   132 citations  
  • Deriving General Relativity from String Theory.Nick Huggett & Tiziana Vistarini - 2015 - Philosophy of Science 82 (5):1163-1174.
    Weyl symmetry of the classical bosonic string Lagrangian is broken by quantization, with profound consequences described here. Reimposing symmetry requires that the background space-time satisfy the equations of general relativity: general relativity, hence classical space-time as we know it, arises from string theory. We investigate the logical role of Weyl symmetry in this explanation of general relativity: it is not an independent physical postulate but required in quantum string theory, so from a certain point of view it plays only a (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • On Correspondence.Stephan Hartmann - 2002 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 33 (1):79-94.
    This paper is an essay review of Steven French and Harmke Kamminga (eds.), Correspondence, Invariance and Heuristics. Essays in Honour of Heinz Post (Dordrecht: Kluwer, 1993). I distinguish a varity of correspondence relations between scientific theories (exemplified by cases from the book under review) and examine how one can make sense of the the prevailing continuity in scientific theorizing.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Foundations of Space-Time Theories.Michael Friedman - 1987 - Noûs 21 (4):595-601.
    Download  
     
    Export citation  
     
    Bookmark   242 citations  
  • Foundations of Space-Time Theories.Robert Weingard - 1986 - Philosophy of Science 53 (2):286-299.
    Foundations of Space-Time Theories, by Michael Friedman, falls naturally into two parts. In the first, he presents the general framework within which he will characterize and discuss space-time theories, and then he devotes a chapter each to Newtonian physics, special relativity, and general relativity. Although there is some rich philosophical discussion along the way, these chapters are, of necessity, somewhat technical expositions of the general framework in action. It is in the second part, consisting of two substantial chapters, one on (...)
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • Dualities and emergent gravity: Gauge/gravity duality.Sebastian de Haro - 2017 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 59:109-125.
    In this paper I develop a framework for relating dualities and emergence: two notions that are close to each other but also exclude one another. I adopt the conception of duality as 'isomorphism', from the physics literature, cashing it out in terms of three conditions. These three conditions prompt two conceptually different ways in which a duality can be modified to make room for emergence; and I argue that this exhausts the possibilities for combining dualities and emergence. I apply this (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • String dualities and empirical equivalence.Richard Dawid - 2017 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 59:21-29.
    String dualities establish empirical equivalence between theories that often look entirely different with respect to their basic ontology and physical structure. Therefore, they represent a particularly interesting example of empirical equivalence in physics. However, the status of duality relations in string physics differs substantially from the traditional understanding of the role played by empirical equivalence. The paper specifies three important differences and argues that they are related to a substantially altered view on the underdetermination of theory building.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Renormalizability, fundamentality and a final theory: The role of UV-completion in the search for quantum gravity.Karen Crowther & Niels Linnemann - 2017 - British Journal for the Philosophy of Science 70 (2):377–406.
    Principles are central to physical reasoning, particularly in the search for a theory of quantum gravity (QG), where novel empirical data is lacking. One principle widely adopted in the search for QG is UV completion: the idea that a theory should (formally) hold up to all possible high energies. We argue---/contra/ standard scientific practice---that UV-completion is poorly-motivated as a guiding principle in theory-construction, and cannot be used as a criterion of theory-justification in the search for QG. For this, we explore (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Introduction: Principles of quantum gravity.Karen Crowther & Dean Rickles - 2014 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 46 (2):135-141.
    In this introduction, we describe the rationale behind this special issue on Principles of Quantum Gravity. We explain what we mean by ‘principles’ and relate this to the various contributions. Finally, we draw out some general themes that can be found running throughout these contributions.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The conceptual foundations and the philosophical aspects of renormalization theory.Tian Yu Cao & Silvan S. Schweber - 1993 - Synthese 97 (1):33 - 108.
    Download  
     
    Export citation  
     
    Bookmark   63 citations  
  • Absolute objects and counterexamples: Jones–Geroch dust, Torretti constant curvature, tetrad-spinor, and scalar density.J. Brian Pitts - 2006 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 37 (2):347-371.
    James L. Anderson analyzed the novelty of Einstein's theory of gravity as its lack of "absolute objects." Michael Friedman's related work has been criticized by Roger Jones and Robert Geroch for implausibly admitting as absolute the timelike 4-velocity field of dust in cosmological models in Einstein's theory. Using the Rosen-Sorkin Lagrange multiplier trick, I complete Anna Maidens's argument that the problem is not solved by prohibiting variation of absolute objects in an action principle. Recalling Anderson's proscription of "irrelevant" variables, I (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Absolute objects and counterexamples: Jones–Geroch dust, Torretti constant curvature, tetrad-spinor, and scalar density.J. Brian Pitts - 2006 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 37 (2):347-371.
    James L. Anderson analyzed the novelty of Einstein's theory of gravity as its lack of "absolute objects." Michael Friedman's related work has been criticized by Roger Jones and Robert Geroch for implausibly admitting as absolute the timelike 4-velocity field of dust in cosmological models in Einstein's theory. Using the Rosen-Sorkin Lagrange multiplier trick, I complete Anna Maidens's argument that the problem is not solved by prohibiting variation of absolute objects in an action principle. Recalling Anderson's proscription of "irrelevant" variables, I (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • The Hawking Information Loss Paradox: The Anatomy of a Controversy.Gordon Belot, John Earman & Laura Ruetsche - 1999 - British Journal for the Philosophy of Science 50 (2):189-229.
    Stephen Hawking has argued that universes containing evaporating black holes can evolve from pure initial states to mixed final ones. Such evolution is non-unitary and so contravenes fundamental quantum principles on which Hawking's analysis was based. It disables the retrodiction of the universe's initial state from its final one, and portends the time-asymmetry of quantum gravity. Small wonder that Hawking's paradox has met with considerable resistance. Here we use a simple result for C*-algebras to offer an argument for pure-to-mixed state (...)
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • Physics Meets Philosophy at the Planck Scale: Contemporary Theories in Quantum Gravity.Craig Callender & Nick Huggett - 2001 - Cambridge University Press.
    Was the first book to examine the exciting area of overlap between philosophy and quantum mechanics with chapters by leading experts from around the world.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Quantum Field Theory in a Nutshell.A. Zee - 2010 - Princeton University Press.
    Since it was first published, Quantum Field Theory in a Nutshell has quickly established itself as the most accessible and comprehensive introduction to this profound and deeply fascinating area of theoretical physics. Now in this fully revised and expanded edition, A. Zee covers the latest advances while providing a solid conceptual foundation for students to build on, making this the most up-to-date and modern textbook on quantum field theory available. -/- This expanded edition features several additional chapters, as well as (...)
    Download  
     
    Export citation  
     
    Bookmark   48 citations  
  • Quantum Gravity.Carlo Rovelli - 2007 - Cambridge University Press.
    Quantum gravity poses the problem of merging quantum mechanics and general relativity, the two great conceptual revolutions in the physics of the twentieth century. The loop and spinfoam approach, presented in this book, is one of the leading research programs in the field. The first part of the book discusses the reformulation of the basis of classical and quantum Hamiltonian physics required by general relativity. The second part covers the basic technical research directions. Appendices include a detailed history of the (...)
    Download  
     
    Export citation  
     
    Bookmark   173 citations  
  • String Theory and the Scientific Method.Richard Dawid - 2013 - Cambridge University Press.
    String theory has played a highly influential role in theoretical physics for nearly three decades and has substantially altered our view of the elementary building principles of the Universe. However, the theory remains empirically unconfirmed, and is expected to remain so for the foreseeable future. So why do string theorists have such a strong belief in their theory? This book explores this question, offering a novel insight into the nature of theory assessment itself. Dawid approaches the topic from a unique (...)
    Download  
     
    Export citation  
     
    Bookmark   82 citations  
  • Discrete or Continuous? the Quest for Fundamental Length in Modern Physics.Amit Hagar - 2014 - New York: Cambridge University Press.
    A book on the notion of fundamental length, covering issues in the philosophy of math, metaphysics, and the history and the philosophy of modern physics, from classical electrodynamics to current theories of quantum gravity. Published (2014) in Cambridge University Press.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Foundations of Space-Time Theories.Micheal Friedman - 1983 - Princeton University Press.
    Download  
     
    Export citation  
     
    Bookmark   252 citations  
  • Dynamics of reason: the 1999 Kant lectures at Stanford University.Michael Friedman - 2001 - Stanford, Calif.: CSLI Publications.
    This book introduces a new approach to the issue of radical scientific revolutions, or "paradigm-shifts," given prominence in the work of Thomas Kuhn. The book articulates a dynamical and historicized version of the conception of scientific a priori principles first developed by the philosopher Immanuel Kant. This approach defends the Enlightenment ideal of scientific objectivity and universality while simultaneously doing justice to the revolutionary changes within the sciences that have since undermined Kant's original defense of this ideal. Through a modified (...)
    Download  
     
    Export citation  
     
    Bookmark   91 citations