Switch to: Citations

Add references

You must login to add references.
  1. The Reality of Mathematics and the Case of Set Theory.Daniel Isaacson - 2010 - In Zsolt Novák & András Simonyi (eds.), Truth, reference, and realism. New York: Central European University Press. pp. 1-76.
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • The Rise of non-Archimedean Mathematics and the Roots of a Misconception I: The Emergence of non-Archimedean Systems of Magnitudes.Philip Ehrlich - 2006 - Archive for History of Exact Sciences 60 (1):1-121.
    Download  
     
    Export citation  
     
    Bookmark   49 citations  
  • (2 other versions)Principles of mathematics.Bertrand Russell - 1931 - New York,: W.W. Norton & Company.
    Published in 1903, this book was the first comprehensive treatise on the logical foundations of mathematics written in English. It sets forth, as far as possible without mathematical and logical symbolism, the grounds in favour of the view that mathematics and logic are identical. It proposes simply that what is commonly called mathematics are merely later deductions from logical premises. It provided the thesis for which _Principia Mathematica_ provided the detailed proof, and introduced the work of Frege to a wider (...)
    Download  
     
    Export citation  
     
    Bookmark   462 citations  
  • Is the Dream Solution of the Continuum Hypothesis Attainable?Joel David Hamkins - 2015 - Notre Dame Journal of Formal Logic 56 (1):135-145.
    The dream solution of the continuum hypothesis would be a solution by which we settle the continuum hypothesis on the basis of a newly discovered fundamental principle of set theory, a missing axiom, widely regarded as true. Such a dream solution would indeed be a solution, since we would all accept the new axiom along with its consequences. In this article, however, I argue that such a dream solution to $\mathrm {CH}$ is unattainable.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Proper Forcing.Saharon Shelah - 1985 - Journal of Symbolic Logic 50 (1):237-239.
    Download  
     
    Export citation  
     
    Bookmark   48 citations  
  • The set-theoretic multiverse.Joel David Hamkins - 2012 - Review of Symbolic Logic 5 (3):416-449.
    The multiverse view in set theory, introduced and argued for in this article, is the view that there are many distinct concepts of set, each instantiated in a corresponding set-theoretic universe. The universe view, in contrast, asserts that there is an absolute background set concept, with a corresponding absolute set-theoretic universe in which every set-theoretic question has a definite answer. The multiverse position, I argue, explains our experience with the enormous range of set-theoretic possibilities, a phenomenon that challenges the universe (...)
    Download  
     
    Export citation  
     
    Bookmark   110 citations  
  • A dichotomy for the number of ultrapowers.Ilijas Farah & Saharon Shelah - 2010 - Journal of Mathematical Logic 10 (1):45-81.
    We prove a strong dichotomy for the number of ultrapowers of a given model of cardinality ≤ 2ℵ0 associated with nonprincipal ultrafilters on ℕ. They are either all isomorphic, or else there are 22ℵ0 many nonisomorphic ultrapowers. We prove the analogous result for metric structures, including C*-algebras and II1 factors, as well as their relative commutants and include several applications. We also show that the CAF001-algebra [Formula: see text] always has nonisomorphic relative commutants in its ultrapowers associated with nonprincipal ultrafilters (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A path to the epistemology of mathematics: homotopy theory.Jean-Pierre Marquis - 2006 - In José Ferreirós Domínguez & Jeremy Gray (eds.), The Architecture of Modern Mathematics: Essays in History and Philosophy. Oxford, England: Oxford University Press. pp. 239--260.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Fair infinite lotteries.Sylvia Wenmackers & Leon Horsten - 2013 - Synthese 190 (1):37-61.
    This article discusses how the concept of a fair finite lottery can best be extended to denumerably infinite lotteries. Techniques and ideas from non-standard analysis are brought to bear on the problem.
    Download  
     
    Export citation  
     
    Bookmark   42 citations  
  • Einleitung in Die Mengenlehre.Abraham Fraenkel - 1928 - Springer.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • The consistency of the axiom of choice and of the generalized continuum-hypothesis with the axioms of set theory.Kurt Gödel - 1940 - Princeton university press;: Princeton University Press;. Edited by George William Brown.
    Kurt Gödel, mathematician and logician, was one of the most influential thinkers of the twentieth century. Gödel fled Nazi Germany, fearing for his Jewish wife and fed up with Nazi interference in the affairs of the mathematics institute at the University of Göttingen. In 1933 he settled at the Institute for Advanced Study in Princeton, where he joined the group of world-famous mathematicians who made up its original faculty. His 1940 book, better known by its short title, The Consistency of (...)
    Download  
     
    Export citation  
     
    Bookmark   63 citations  
  • A definable nonstandard model of the reals.Vladimir Kanovei & Saharon Shelah - 2004 - Journal of Symbolic Logic 69 (1):159-164.
    We prove, in ZFC,the existence of a definable, countably saturated elementary extension of the reals.
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Mathematics as a science of patterns.Michael David Resnik - 1997 - New York ;: Oxford University Press.
    This book expounds a system of ideas about the nature of mathematics which Michael Resnik has been elaborating for a number of years. In calling mathematics a science he implies that it has a factual subject-matter and that mathematical knowledge is on a par with other scientific knowledge; in calling it a science of patterns he expresses his commitment to a structuralist philosophy of mathematics. He links this to a defense of realism about the metaphysics of mathematics--the view that mathematics (...)
    Download  
     
    Export citation  
     
    Bookmark   244 citations  
  • What is Mathematics, Really?Reuben Hersh - 1997 - New York: Oxford University Press.
    Platonism is the most pervasive philosophy of mathematics. Indeed, it can be argued that an inarticulate, half-conscious Platonism is nearly universal among mathematicians. The basic idea is that mathematical entities exist outside space and time, outside thought and matter, in an abstract realm. In the more eloquent words of Edward Everett, a distinguished nineteenth-century American scholar, "in pure mathematics we contemplate absolute truths which existed in the divine mind before the morning stars sang together, and which will continue to exist (...)
    Download  
     
    Export citation  
     
    Bookmark   75 citations  
  • Applied Nonstandard Analysis.Martin Davis - 1978 - Journal of Symbolic Logic 43 (2):383-384.
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • Abstract mathematical tools and machines for mathematics.Jean-Pierre Marquis - 1997 - Philosophia Mathematica 5 (3):250-272.
    In this paper, we try to establish that some mathematical theories, like K-theory, homology, cohomology, homotopy theories, spectral sequences, modern Galois theory (in its various applications), representation theory and character theory, etc., should be thought of as (abstract) machines in the same way that there are (concrete) machines in the natural sciences. If this is correct, then many epistemological and ontological issues in the philosophy of mathematics are seen in a different light. We concentrate on one problem which immediately follows (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • (1 other version)On the restricted ordinal theorem.R. L. Goodstein - 1944 - Journal of Symbolic Logic 9 (2):33-41.
    The proposition that a decreasing sequence of ordinals necessarily terminates has been given a new, and perhaps unexpected, importance by the rôle which it plays in Gentzen's proof of the freedom from contradiction of the “reine Zahlentheorie.” Gödel's construction of non-demonstrable propositions and the establishment of the impossibility of a proof of freedom from contradiction, within the framework of a certain type of formal system, showed that a proof of freedom from contradiction could be found only by transcending the axioms (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Consistency results about filters and the number of inequivalent growth types.Andreas Blass & Claude Laflamme - 1989 - Journal of Symbolic Logic 54 (1):50-56.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Real patterns.Daniel C. Dennett - 1991 - Journal of Philosophy 88 (1):27-51.
    Are there really beliefs? Or are we learning (from neuroscience and psychology, presumably) that, strictly speaking, beliefs are figments of our imagination, items in a superceded ontology? Philosophers generally regard such ontological questions as admitting just two possible answers: either beliefs exist or they don't. There is no such state as quasi-existence; there are no stable doctrines of semi-realism. Beliefs must either be vindicated along with the viruses or banished along with the banshees. A bracing conviction prevails, then, to the (...)
    Download  
     
    Export citation  
     
    Bookmark   634 citations  
  • A new look at E.G. Björling and the Cauchy sum theorem.Kajsa Bråting - 2007 - Archive for History of Exact Sciences 61 (5):519-535.
    We give a new account of Björling’s contribution to uniform convergence in connection with Cauchy’s theorem on the continuity of an infinite series. Moreover, we give a complete translation from Swedish into English of Björling’s 1846 proof of the theorem. Our intention is also to discuss Björling’s convergence conditions in view of Grattan-Guinness’ distinction between history and heritage. In connection to Björling’s convergence theory we discuss the interpretation of Cauchy’s infinitesimals.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • (2 other versions)The Principles of Mathematics.Bertrand Russell - 1903 - Revue de Métaphysique et de Morale 11 (4):11-12.
    Download  
     
    Export citation  
     
    Bookmark   797 citations  
  • (1 other version)The philosophy of symbolic forms.Ernst Cassirer & Ralph Manheim - 2019 - New York, NY: Routledge.
    Ernst Cassirer occupies a unique space in Twentieth-century philosophy. A great liberal humanist, his multi-faceted work spans the history of philosophy, the philosophy of science, intellectual history, aesthetics, epistemology, the study of language and myth, and more. The Philosophy of Symbolic Forms is Cassirer's most important work. It was first published in German in 1923, the third and final volume appearing in 1929. In it Cassirer presents a radical new philosophical worldview - at once rich, creative and controversial - of (...)
    Download  
     
    Export citation  
     
    Bookmark   60 citations  
  • Internal Set Theory: A New Approach to Nonstandard Analysis.Edward Nelson - 1977 - Journal of Symbolic Logic 48 (4):1203-1204.
    Download  
     
    Export citation  
     
    Bookmark   60 citations  
  • (2 other versions)Model Theory.Gebhard Fuhrken - 1976 - Journal of Symbolic Logic 41 (3):697-699.
    Download  
     
    Export citation  
     
    Bookmark   240 citations  
  • Models and Ultraproducts: An Introduction.J. L. Bell & A. B. Slomson - 1972 - Journal of Symbolic Logic 37 (4):763-764.
    Download  
     
    Export citation  
     
    Bookmark   63 citations  
  • (1 other version)Mathematics: Form and Function.Penelope Maddy - 1988 - Journal of Symbolic Logic 53 (2):643-645.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Mathematics, Form and Function.Saunders MacLane - 1986 - Journal of Philosophy 84 (1):33-37.
    Download  
     
    Export citation  
     
    Bookmark   80 citations  
  • An Integer Construction of Infinitesimals: Toward a Theory of Eudoxus Hyperreals.Alexandre Borovik, Renling Jin & Mikhail G. Katz - 2012 - Notre Dame Journal of Formal Logic 53 (4):557-570.
    A construction of the real number system based on almost homomorphisms of the integers $\mathbb {Z}$ was proposed by Schanuel, Arthan, and others. We combine such a construction with the ultrapower or limit ultrapower construction to construct the hyperreals out of integers. In fact, any hyperreal field, whose universe is a set, can be obtained by such a one-step construction directly out of integers. Even the maximal (i.e., On -saturated) hyperreal number system described by Kanovei and Reeken (2004) and independently (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • The absolute arithmetic continuum and the unification of all numbers great and small.Philip Ehrlich - 2012 - Bulletin of Symbolic Logic 18 (1):1-45.
    In his monograph On Numbers and Games, J. H. Conway introduced a real-closed field containing the reals and the ordinals as well as a great many less familiar numbers including $-\omega, \,\omega/2, \,1/\omega, \sqrt{\omega}$ and $\omega-\pi$ to name only a few. Indeed, this particular real-closed field, which Conway calls No, is so remarkably inclusive that, subject to the proviso that numbers—construed here as members of ordered fields—be individually definable in terms of sets of NBG, it may be said to contain (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Set Theory: An Introduction to Independence Proofs.Kenneth Kunen - 1980 - North-Holland.
    Download  
     
    Export citation  
     
    Bookmark   169 citations  
  • (1 other version)Leibniz's philosophy of logic and language.Hidé Ishiguro - 1990 - New York: Cambridge University Press.
    This is the second edition of an important introduction to Leibniz's philosophy of logic and language first published in 1972. It takes issue with several traditional interpretations of Leibniz (by Russell amongst others) while revealing how Leibniz's thought is related to issues of great interest in current logical theory. For this new edition, the author has added new chapters on infinitesimals and conditionals as well as taking account of reviews of the first edition.
    Download  
     
    Export citation  
     
    Bookmark   62 citations  
  • Internal laws of probability, generalized likelihoods and Lewis' infinitesimal chances–a response to Adam Elga.Frederik Herzberg - 2007 - British Journal for the Philosophy of Science 58 (1):25-43.
    The rejection of an infinitesimal solution to the zero-fit problem by A. Elga ([2004]) does not seem to appreciate the opportunities provided by the use of internal finitely-additive probability measures. Indeed, internal laws of probability can be used to find a satisfactory infinitesimal answer to many zero-fit problems, not only to the one suggested by Elga, but also to the Markov chain (that is, discrete and memory-less) models of reality. Moreover, the generalization of likelihoods that Elga has in mind is (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Towards a Philosophy of Real Mathematics.David Corfield - 2003 - Studia Logica 81 (2):285-289.
    In this ambitious study, David Corfield attacks the widely held view that it is the nature of mathematical knowledge which has shaped the way in which mathematics is treated philosophically, and claims that contingent factors have brought us to the present thematically limited discipline. Illustrating his discussion with a wealth of examples, he sets out a variety of new ways to think philosophically about mathematics, ranging from an exploration of whether computers producing mathematical proofs or conjectures are doing real mathematics, (...)
    Download  
     
    Export citation  
     
    Bookmark   73 citations  
  • (1 other version)Model Theory.C. C. Chang & H. Jerome Keisler - 1992 - Studia Logica 51 (1):154-155.
    Download  
     
    Export citation  
     
    Bookmark   117 citations  
  • A Course in Mathematical Logic.J. L. Bell & M. Machover - 1978 - British Journal for the Philosophy of Science 29 (2):207-208.
    Download  
     
    Export citation  
     
    Bookmark   61 citations  
  • (1 other version)Leibniz's Philosophy of Logic and Language.Hidé Ishiguro - 1972 - New York: Cambridge University Press.
    This is the second edition of an important introduction to Leibniz's philosophy of logic and language first published in 1972. It takes issue with several traditional interpretations of Leibniz while revealing how Leibniz's thought is related to issues of great interest in current logical theory. For this new edition, the author has added new chapters on infinitesimals and conditionals as well as taking account of reviews of the first edition.
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • Where Mathematics Comes From How the Embodied Mind Brings Mathematics Into Being.George Lakoff & Rafael E. Núñez - 2000
    Download  
     
    Export citation  
     
    Bookmark   131 citations  
  • (3 other versions)Einleitung in die Mengenlehre.Adolf Frankel - 1926 - Philosophical Review 35:193.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • A course in mathematical logic.J. L. Bell - 1977 - New York: sole distributors for the U.S.A. and Canada American Elsevier Pub. Co.. Edited by Moshé Machover.
    A comprehensive one-year graduate (or advanced undergraduate) course in mathematical logic and foundations of mathematics. No previous knowledge of logic is required; the book is suitable for self-study. Many exercises (with hints) are included.
    Download  
     
    Export citation  
     
    Bookmark   48 citations  
  • Non-standard Analysis.Gert Heinz Müller - 2016 - Princeton University Press.
    Considered by many to be Abraham Robinson's magnum opus, this book offers an explanation of the development and applications of non-standard analysis by the mathematician who founded the subject. Non-standard analysis grew out of Robinson's attempt to resolve the contradictions posed by infinitesimals within calculus. He introduced this new subject in a seminar at Princeton in 1960, and it remains as controversial today as it was then. This paperback reprint of the 1974 revised edition is indispensable reading for anyone interested (...)
    Download  
     
    Export citation  
     
    Bookmark   172 citations  
  • Infinities, Infinitesimals, and Indivisibles: The Leibnizian Labyrinth.John Earman - 1975 - Studia Leibnitiana 7 (2):236 - 251.
    Es werden zwei Bedeutungen von „Infinitesimal“ unterschieden und zwei Thesen verteidigt: (1) Leibniz glaubte, das Infinitesimale in einer der beiden Bedeutungen sei nicht nur eine nützliche Erdichtung, sondern es sei sogar notwendig fur die Differentialrechnung; (2) die moderne Nichtstand-Analysis rechtfertigt weder Leibniz's Griinde fur die Einführung des Infinitesimalen noch seinen Gebrauch desselben.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Leibniz’s Infinitesimals: Their Fictionality, Their Modern Implementations, and Their Foes from Berkeley to Russell and Beyond. [REVIEW]Mikhail G. Katz & David Sherry - 2013 - Erkenntnis 78 (3):571-625.
    Many historians of the calculus deny significant continuity between infinitesimal calculus of the seventeenth century and twentieth century developments such as Robinson’s theory. Robinson’s hyperreals, while providing a consistent theory of infinitesimals, require the resources of modern logic; thus many commentators are comfortable denying a historical continuity. A notable exception is Robinson himself, whose identification with the Leibnizian tradition inspired Lakatos, Laugwitz, and others to consider the history of the infinitesimal in a more favorable light. Inspite of his Leibnizian sympathies, (...)
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • Ten Misconceptions from the History of Analysis and Their Debunking.Piotr Błaszczyk, Mikhail G. Katz & David Sherry - 2013 - Foundations of Science 18 (1):43-74.
    The widespread idea that infinitesimals were “eliminated” by the “great triumvirate” of Cantor, Dedekind, and Weierstrass is refuted by an uninterrupted chain of work on infinitesimal-enriched number systems. The elimination claim is an oversimplification created by triumvirate followers, who tend to view the history of analysis as a pre-ordained march toward the radiant future of Weierstrassian epsilontics. In the present text, we document distortions of the history of analysis stemming from the triumvirate ideology of ontological minimalism, which identified the continuum (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Cauchy's Continuum.Karin U. Katz & Mikhail G. Katz - 2011 - Perspectives on Science 19 (4):426-452.
    One of the most influential scientific treatises in Cauchy's era was J.-L. Lagrange's Mécanique Analytique, the second edition of which came out in 1811, when Cauchy was barely out of his teens. Lagrange opens his treatise with an unequivocal endorsement of infinitesimals. Referring to the system of infinitesimal calculus, Lagrange writes:Lorsqu'on a bien conçu l'esprit de ce système, et qu'on s'est convaincu de l'exactitude de ses résultats par la méthode géométrique des premières et dernières raisons, ou par la méthode analytique (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • (1 other version)On the Restricted Ordinal Theorem.R. L. Goodstein - 1945 - Journal of Symbolic Logic 10 (3):104-105.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The Nature of Physical Reality.H. Margenau - 1951 - British Journal for the Philosophy of Science 2 (5):81-81.
    Download  
     
    Export citation  
     
    Bookmark   59 citations  
  • Infinitesimal Differences: Controversies Between Leibniz and His Contemporaries.Douglas Jesseph & Ursula Goldenbaum (eds.) - 2008 - Walter de Gruyter.
    "The development of the calculus during the 17th century was successful in mathematical practice, but raised questions about the nature of infinitesimals: were they real or rather fictitious? This collection of essays, by scholars from Canada, the US, Germany, United Kingdom and Switzerland, gives a comprehensive study of the controversies over the nature and status of the infinitesimal. Aside from Leibniz, the scholars considered are Hobbes, Wallis, Newton, Bernoulli, Hermann, and Nieuwentijt. The collection also contains newly discovered marginalia of Leibniz (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Towards a Philosophy of Real Mathematics.David Corfield - 2003 - New York: Cambridge University Press.
    In this ambitious study, David Corfield attacks the widely held view that it is the nature of mathematical knowledge which has shaped the way in which mathematics is treated philosophically and claims that contingent factors have brought us to the present thematically limited discipline. Illustrating his discussion with a wealth of examples, he sets out a variety of approaches to new thinking about the philosophy of mathematics, ranging from an exploration of whether computers producing mathematical proofs or conjectures are doing (...)
    Download  
     
    Export citation  
     
    Bookmark   59 citations  
  • On Constructing Models for Arithmetic.Dana Scott - 1973 - Journal of Symbolic Logic 38 (2):336-337.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Triangle Des Pensées.Alain Connes, André Lichnerowicz & Marcel P. Schützenberger - 2001 - Amer Mathematical Society.
    Our view of the world today is fundamentally influenced by twentieth century results in physics and mathematics. Here, three members of the French Academy of Sciences: Alain Connes, Andre Lichnerowicz, and Marcel Paul Schutzenberger, discuss the relations among mathematics, physics and philosophy, and other sciences.Written in the form of conversations among three brilliant scientists and deep thinkers, the book touches on, among others, the following questions: Is there a 'primordial truth' that exists beyond the realm of what is provable? More (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations