Switch to: Citations

Add references

You must login to add references.
  1. Elements of Intuitionism.Michael Dummett - 1977 - New York: Oxford University Press. Edited by Roberto Minio.
    This is a long-awaited new edition of one of the best known Oxford Logic Guides. The book gives an introduction to intuitionistic mathematics, leading the reader gently through the fundamental mathematical and philosophical concepts. The treatment of various topics, for example Brouwer's proof of the Bar Theorem, valuation systems, and the completeness of intuitionistic first-order logic, have been completely revised.
    Download  
     
    Export citation  
     
    Bookmark   207 citations  
  • Foundations of Constructive Analysis.Errett Bishop - 1967 - New York, NY, USA: Mcgraw-Hill.
    This book, Foundations of Constructive Analysis, founded the field of constructive analysis because it proved most of the important theorems in real analysis by constructive methods. The author, Errett Albert Bishop, born July 10, 1928, was an American mathematician known for his work on analysis. In the later part of his life Bishop was seen as the leading mathematician in the area of Constructive mathematics. From 1965 until his death, he was professor at the University of California at San Diego.
    Download  
     
    Export citation  
     
    Bookmark   109 citations  
  • Where Mathematics Comes From How the Embodied Mind Brings Mathematics Into Being.George Lakoff & Rafael E. Núñez - 2000
    Download  
     
    Export citation  
     
    Bookmark   134 citations  
  • Constructive Analysis.Errett Bishop & Douglas Bridges - 1987 - Journal of Symbolic Logic 52 (4):1047-1048.
    Download  
     
    Export citation  
     
    Bookmark   88 citations  
  • (2 other versions)Foundations of Constructive Analysis.John Myhill - 1972 - Journal of Symbolic Logic 37 (4):744-747.
    Download  
     
    Export citation  
     
    Bookmark   201 citations  
  • (2 other versions)Intuitionism: An Introduction.Arend Heyting - 1956 - Amsterdam,: North-Holland Pub. Co..
    Download  
     
    Export citation  
     
    Bookmark   104 citations  
  • (1 other version)The myth of the seven.Stephen Yablo - 2005 - In Mark Eli Kalderon (ed.), Fictionalism in Metaphysics. New York: Oxford University Press UK. pp. 88--115.
    Download  
     
    Export citation  
     
    Bookmark   95 citations  
  • Axiomatics, empiricism, and Anschauung in Hilbert's conception of geometry: Between arithmetic and general relativity.Leo Corry - 2006 - In José Ferreirós Domínguez & Jeremy Gray (eds.), The Architecture of Modern Mathematics: Essays in History and Philosophy. Oxford, England: Oxford University Press. pp. 133--156.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Leibniz’s Infinitesimals: Their Fictionality, Their Modern Implementations, and Their Foes from Berkeley to Russell and Beyond. [REVIEW]Mikhail G. Katz & David Sherry - 2013 - Erkenntnis 78 (3):571-625.
    Many historians of the calculus deny significant continuity between infinitesimal calculus of the seventeenth century and twentieth century developments such as Robinson’s theory. Robinson’s hyperreals, while providing a consistent theory of infinitesimals, require the resources of modern logic; thus many commentators are comfortable denying a historical continuity. A notable exception is Robinson himself, whose identification with the Leibnizian tradition inspired Lakatos, Laugwitz, and others to consider the history of the infinitesimal in a more favorable light. Inspite of his Leibnizian sympathies, (...)
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • Who Gave You the Cauchy–Weierstrass Tale? The Dual History of Rigorous Calculus.Alexandre Borovik & Mikhail G. Katz - 2012 - Foundations of Science 17 (3):245-276.
    Cauchy’s contribution to the foundations of analysis is often viewed through the lens of developments that occurred some decades later, namely the formalisation of analysis on the basis of the epsilon-delta doctrine in the context of an Archimedean continuum. What does one see if one refrains from viewing Cauchy as if he had read Weierstrass already? One sees, with Felix Klein, a parallel thread for the development of analysis, in the context of an infinitesimal-enriched continuum. One sees, with Emile Borel, (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Stevin Numbers and Reality.Karin Usadi Katz & Mikhail G. Katz - 2012 - Foundations of Science 17 (2):109-123.
    We explore the potential of Simon Stevin’s numbers, obscured by shifting foundational biases and by 19th century developments in the arithmetisation of analysis.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Intuitionism As A Kuhnian Revolution In Mathematics.Bruce Pourciau - 2000 - Studies in History and Philosophy of Science Part A 31 (2):297-329.
    In this paper it is argued, firstly, that Kuhnian revolutions in mathematics are logically possible, in the sense of not being inconsistent with the nature of mathematics; and, secondly, that Kuhnian revolutions are actually possible, in the sense that a Kuhnian paradigm for mathematics can be exhibited which would, if accepted by the mathematical community, produce a full Kuhnian revolution. These two arguments depend on first proving that a shift from a classical conception of mathematics to an intuitionist conception would (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Why I am not a nominalist.John P. Burgess - 1983 - Notre Dame Journal of Formal Logic 24 (1):93-105.
    Download  
     
    Export citation  
     
    Bookmark   70 citations  
  • The Completeness of the Real Line.Matthew E. Moore - 2007 - Critica 39 (117):61-86.
    It is widely taken for granted that physical lines are real lines, i.e., that the arithmetical structure of the real numbers uniquely matches the geometrical structure of lines in space; and that other number systems, like Robinson's hyperreals, accordingly fail to fit the structure of space. Intuitive justifications for the consensus view are considered and rejected. Insofar as it is justified at all, the conviction that physical lines are real lines is a scientific hypothesis which we may one day reject. (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Applied Nonstandard Analysis.Martin Davis - 1978 - Journal of Symbolic Logic 43 (2):383-384.
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • Conceptions of the continuum.Solomon Feferman - unknown
    Key words: the continuum, structuralism, conceptual structuralism, basic structural conceptions, Euclidean geometry, Hilbertian geometry, the real number system, settheoretical conceptions, phenomenological conceptions, foundational conceptions, physical conceptions.
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • A subject with no object: strategies for nominalistic interpretation of mathematics.John P. Burgess & Gideon Rosen - 1997 - New York: Oxford University Press. Edited by Gideon A. Rosen.
    Numbers and other mathematical objects are exceptional in having no locations in space or time or relations of cause and effect. This makes it difficult to account for the possibility of the knowledge of such objects, leading many philosophers to embrace nominalism, the doctrine that there are no such objects, and to embark on ambitious projects for interpreting mathematics so as to preserve the subject while eliminating its objects. This book cuts through a host of technicalities that have obscured previous (...)
    Download  
     
    Export citation  
     
    Bookmark   155 citations  
  • Constructivism in Mathematics: An Introduction.A. S. Troelstra & Dirk Van Dalen - 1988 - Amsterdam: North Holland. Edited by D. van Dalen.
    The present volume is intended as an all-round introduction to constructivism. Here constructivism is to be understood in the wide sense, and covers in particular Brouwer's intuitionism, Bishop's constructivism and A.A. Markov's constructive recursive mathematics. The ending "-ism" has ideological overtones: "constructive mathematics is the (only) right mathematics"; we hasten, however, to declare that we do not subscribe to this ideology, and that we do not intend to present our material on such a basis.
    Download  
     
    Export citation  
     
    Bookmark   159 citations  
  • Idealization in Cassirer's philosophy of mathematics.Thomas Mormann - 2008 - Philosophia Mathematica 16 (2):151 - 181.
    The notion of idealization has received considerable attention in contemporary philosophy of science but less in philosophy of mathematics. An exception was the ‘critical idealism’ of the neo-Kantian philosopher Ernst Cassirer. According to Cassirer the methodology of idealization plays a central role for mathematics and empirical science. In this paper it is argued that Cassirer's contributions in this area still deserve to be taken into account in the current debates in philosophy of mathematics. For extremely useful criticisms on earlier versions (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Mathematical constructivism in spacetime.Geoffrey Hellman - 1998 - British Journal for the Philosophy of Science 49 (3):425-450.
    To what extent can constructive mathematics based on intuitionistc logic recover the mathematics needed for spacetime physics? Certain aspects of this important question are examined, both technical and philosophical. On the technical side, order, connectivity, and extremization properties of the continuum are reviewed, and attention is called to certain striking results concerning causal structure in General Relativity Theory, in particular the singularity theorems of Hawking and Penrose. As they stand, these results appear to elude constructivization. On the philosophical side, it (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Mathematics and bleak house.John P. Burgess - 2004 - Philosophia Mathematica 12 (1):18-36.
    The form of nominalism known as 'mathematical fictionalism' is examined and found wanting, mainly on grounds that go back to an early antinominalist work of Rudolf Carnap that has unfortunately not been paid sufficient attention by more recent writers.
    Download  
     
    Export citation  
     
    Bookmark   52 citations  
  • Can constructive mathematics be applied in physics?Douglas S. Bridges - 1999 - Journal of Philosophical Logic 28 (5):439-453.
    The nature of modern constructive mathematics, and its applications, actual and potential, to classical and quantum physics, are discussed.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Did Bishop have a philosophy of mathematics?Helen Billinge - 2003 - Philosophia Mathematica 11 (2):176-194.
    When Bishop published Foundations of Constructive Analysis he showed that it was possible to do ordinary analysis within a constructive framework. Bishop's reasons for doing his mathematics constructively are explicitly philosophical. In this paper, I will expound, examine, and amplify his philosophical arguments for constructivism in mathematics. In the end, however, I argue that Bishop's philosophical comments cannot be rounded out into an adequate philosophy of constructive mathematics.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Philosophy of Mathematics: Structure and Ontology.Stewart Shapiro - 1997 - Oxford, England: Oxford University Press USA.
    Moving beyond both realist and anti-realist accounts of mathematics, Shapiro articulates a "structuralist" approach, arguing that the subject matter of a mathematical theory is not a fixed domain of numbers that exist independent of each other, but rather is the natural structure, the pattern common to any system of objects that has an initial object and successor relation satisfying the induction principle.
    Download  
     
    Export citation  
     
    Bookmark   163 citations  
  • A Defence of Mathematical Pluralism.E. Brian Davies - 2005 - Philosophia Mathematica 13 (3):252-276.
    We approach the philosophy of mathematics via a discussion of the differences between classical mathematics and constructive mathematics, arguing that each is a valid activity within its own context.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Elements of Intuitionism.Michael Dummett - 1980 - British Journal for the Philosophy of Science 31 (3):299-301.
    Download  
     
    Export citation  
     
    Bookmark   206 citations  
  • Collected Papers of Charles Sanders Peirce: Pragmatism and pragmaticism and Scientific metaphysics.Charles Sanders Peirce - 1960 - Cambridge: Belknap Press.
    Charles Sanders Peirce has been characterized as the greatest American philosophic genius. He is the creator of pragmatism and one of the founders of modern logic. James, Royce, Schroder, and Dewey have acknowledged their great indebtedness to him. A laboratory scientist, he made notable contributions to geodesy, astronomy, psychology, induction, probability, and scientific method. He introduced into modern philosophy the doctrine of scholastic realism, developed the concepts of chance, continuity, and objective law, and showed the philosophical significance of the theory (...)
    Download  
     
    Export citation  
     
    Bookmark   515 citations  
  • (2 other versions)Philosophy of mathematics: 5 questions.Jeremy Avigad - 2007 - In V. F. Hendricks & Hannes Leitgeb (eds.), Philosophy of Mathematics: Five Questions. Automatic Press/VIP.
    In 1977, when I was nine years old, Doubleday released Asimov on Numbers, a collection of essays that had first appeared in Isaac Asimov’s Science Fiction and Fantasy column. My mother, recognizing my penchant for science fiction and mathematics, bought me a copy as soon as it hit the bookstores. The essays covered topics such as number systems, combinatorial curiosities, imaginary numbers, and π. I was especially taken, however, by an essay titled “Varieties of the infinite,” which included a photograph (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Philosophy of Mathematics: Structure and Ontology.Stewart Shapiro - 2002 - Philosophy and Phenomenological Research 65 (2):467-475.
    Download  
     
    Export citation  
     
    Bookmark   236 citations  
  • Intuitionism, an Introduction by A. Heyting. [REVIEW]Andrzej Grzegorczyk - 1958 - Studia Logica 7:277-278.
    Download  
     
    Export citation  
     
    Bookmark   98 citations  
  • Archimedean Intuitions.Matthew E. Moore - 2002 - Theoria 68 (3):185-204.
    The Archimedean Axiom is often held to be an intuitively obvious truth about the geometry of physical space. After a general discussion of the varieties of geometrical intuition that have been proposed, I single out one variety which we can plausibly be held to have and then argue that it does not underwrite the intuitive obviousness of the Archimedean Axiom. Generalizing that result, I conclude that the Axiom is not intuitively obvious.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (2 other versions)Intuitionism.A. Heyting - 1956 - Amsterdam,: North-Holland Pub. Co..
    Download  
     
    Export citation  
     
    Bookmark   75 citations  
  • (2 other versions)Intuitionism.A. Heyting - 1971 - Amsterdam,: North-Holland Pub. Co..
    Download  
     
    Export citation  
     
    Bookmark   77 citations  
  • Lakatos' philosophy of mathematics: a historical approach.T. Koetsier - 1991 - New York, N.Y., U.S.A.: Distributors for the U.S. and Canada, Elsevier Science Pub. Co..
    In this book, which is both a philosophical and historiographical study, the author investigates the fallibility and the rationality of mathematics by means of rational reconstructions of developments in mathematics. The initial chapters are devoted to a critical discussion of Lakatos' philosophy of mathematics. In the remaining chapters several episodes in the history of mathematics are discussed, such as the appearance of deduction in Greek mathematics and the transition from Eighteenth-Century to Nineteenth-Century analysis. The author aims at developing a notion (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Wittgenstein's remarks on the foundations of mathematics. [REVIEW]G. Kreisel - 1958 - British Journal for the Philosophy of Science 9 (34):135-158.
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Frege: The Royal road from geometry.Mark Wilson - 1992 - Noûs 26 (2):149-180.
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • On Cauchy's notion of infinitesimal.Nigel Cutland, Christoph Kessler, Ekkehard Kopp & David Ross - 1988 - British Journal for the Philosophy of Science 39 (3):375-378.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Schizophrenia in Contemporary Mathematics.Errett Bishop - 1985 - Contemporary Mathematics 39:1–32.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The Wake of Berkeley's Analyst: Rigor Mathematicae?David Sherry - 1987 - Studies in History and Philosophy of Science Part A 18 (4):455.
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Foundations of Constructive Mathematics.Michael J. Beeson - 1932 - Springer Verlag.
    Download  
     
    Export citation  
     
    Bookmark   48 citations  
  • The Invention of the Decimal Fractions and the Application of the Exponential Calculus by Immanuel Bonfils of Tarascon.George Sarton & Solomon Gandz - 1936 - Isis 25 (1):16-45.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A Course in Mathematical Logic.I͡U. I. Manin, Jurij I. Manin, Yu I. Manin, ︠I︡U. I. Manin, Ûrij Ivanovič Manin, I︠U︡riĭ Ivanovich Manin & ëIìU. I. Manin - 1977 - Springer Verlag.
    Offers a text of mathematical logic on a sophisticated level, presenting the reader with several of the most significant discoveries, including the independence of the continuum hypothesis, the Diophantine nature of enumerable sets and the impossibility of finding an algorithmic solution for certain problems.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Non-standard Analysis.Gert Heinz Müller - 2016 - Princeton University Press.
    Considered by many to be Abraham Robinson's magnum opus, this book offers an explanation of the development and applications of non-standard analysis by the mathematician who founded the subject. Non-standard analysis grew out of Robinson's attempt to resolve the contradictions posed by infinitesimals within calculus. He introduced this new subject in a seminar at Princeton in 1960, and it remains as controversial today as it was then. This paperback reprint of the 1974 revised edition is indispensable reading for anyone interested (...)
    Download  
     
    Export citation  
     
    Bookmark   172 citations  
  • Perceiving the infinite and the infinitesimal world: unveiling and optical diagrams and the construction of mathematical concepts.Lorenzo Magnani & Riccardo Dossena - 2005 - Foundations of Science 10 (1):7--23.
    Many important concepts of the calculus are difficult to grasp, and they may appear epistemologically unjustified. For example, how does a real function appear in “small” neighborhoods of its points? How does it appear at infinity? Diagrams allow us to overcome the difficulty in constructing representations of mathematical critical situations and objects. For example, they actually reveal the behavior of a real function not “close to” a point but “in” the point. We are interested in our research in the diagrams (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • The analyst: A discourse addressed to an infidel mathematician.George Berkeley - 1734 - Wilkins, David R.. Edited by David R. Wilkins.
    It hath been an old remark, that Geometry is an excellent Logic.
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • Representational innovation and mathematical ontology.Madeline M. Muntersbjorn - 2003 - Synthese 134 (1-2):159 - 180.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Cauchy's conception of rigour in analysis.F. Smithies - 1986 - Archive for History of Exact Sciences 36 (1):41-61.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Mathematics through diagrams: microscopes in non-standard and smooth analysis.R. Dossena & L. Magnani - 2007 - In L. Magnani & P. Li (eds.), Model-Based Reasoning in Science, Technology, and Medicine. Springer. pp. 193--213.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Against intuitionism: Constructive mathematics is part of classical mathematics.W. W. Tait - 1983 - Journal of Philosophical Logic 12 (2):173 - 195.
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Constructive mathematics and quantum mechanics: Unbounded operators and the spectral theorem. [REVIEW]Geoffrey Hellman - 1993 - Journal of Philosophical Logic 22 (3):221 - 248.
    Download  
     
    Export citation  
     
    Bookmark   17 citations