Switch to: Citations

Add references

You must login to add references.
  1. Mathematical Explanation in Science.Alan Baker - 2009 - British Journal for the Philosophy of Science 60 (3):611-633.
    Does mathematics ever play an explanatory role in science? If so then this opens the way for scientific realists to argue for the existence of mathematical entities using inference to the best explanation. Elsewhere I have argued, using a case study involving the prime-numbered life cycles of periodical cicadas, that there are examples of indispensable mathematical explanations of purely physical phenomena. In this paper I respond to objections to this claim that have been made by various philosophers, and I discuss (...)
    Download  
     
    Export citation  
     
    Bookmark   173 citations  
  • The Indispensability of Mathematics.Mark Colyvan - 2001 - Oxford, England: Oxford University Press.
    This book not only outlines the indispensability argument in considerable detail but also defends it against various challenges.
    Download  
     
    Export citation  
     
    Bookmark   277 citations  
  • (1 other version)Mathematical explanation and indispensability arguments.Chris Daly & Simon Langford - 2009 - Philosophical Quarterly 59 (237):641-658.
    We defend Joseph Melia's thesis that the role of mathematics in scientific theory is to 'index' quantities, and that even if mathematics is indispensable to scientific explanations of concrete phenomena, it does not explain any of those phenomena. This thesis is defended against objections by Mark Colyvan and Alan Baker.
    Download  
     
    Export citation  
     
    Bookmark   48 citations  
  • Are there genuine mathematical explanations of physical phenomena?Alan Baker - 2005 - Mind 114 (454):223-238.
    Many explanations in science make use of mathematics. But are there cases where the mathematical component of a scientific explanation is explanatory in its own right? This issue of mathematical explanations in science has been for the most part neglected. I argue that there are genuine mathematical explanations in science, and present in some detail an example of such an explanation, taken from evolutionary biology, involving periodical cicadas. I also indicate how the answer to my title question impacts on broader (...)
    Download  
     
    Export citation  
     
    Bookmark   257 citations  
  • Mathematics, explanation, and scientific knowledge.Mark Steiner - 1978 - Noûs 12 (1):17-28.
    Download  
     
    Export citation  
     
    Bookmark   71 citations  
  • Weaseling away the indispensability argument.Joseph Melia - 2000 - Mind 109 (435):455-480.
    According to the indispensability argument, the fact that we quantify over numbers, sets and functions in our best scientific theories gives us reason for believing that such objects exist. I examine a strategy to dispense with such quantification by simply replacing any given platonistic theory by the set of sentences in the nominalist vocabulary it logically entails. I argue that, as a strategy, this response fails: for there is no guarantee that the nominalist world that go beyond the set of (...)
    Download  
     
    Export citation  
     
    Bookmark   176 citations  
  • Inference to the best explanation and mathematical realism.Sorin Ioan Bangu - 2008 - Synthese 160 (1):13-20.
    Arguing for mathematical realism on the basis of Field’s explanationist version of the Quine–Putnam Indispensability argument, Alan Baker has recently claimed to have found an instance of a genuine mathematical explanation of a physical phenomenon. While I agree that Baker presents a very interesting example in which mathematics plays an essential explanatory role, I show that this example, and the argument built upon it, begs the question against the mathematical nominalist.
    Download  
     
    Export citation  
     
    Bookmark   54 citations  
  • Plato's Problem: An Introduction to Mathematical Platonism.Marco Panza & Andrea Sereni - 2013 - New York: Palgrave-Macmillan. Edited by Andrea Sereni & Marco Panza.
    What is mathematics about? And if it is about some sort of mathematical reality, how can we have access to it? This is the problem raised by Plato, which still today is the subject of lively philosophical disputes. This book traces the history of the problem, from its origins to its contemporary treatment. It discusses the answers given by Aristotle, Proclus and Kant, through Frege's and Russell's versions of logicism, Hilbert's formalism, Gödel's platonism, up to the the current debate on (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Physical relativity: Space–time structure from a dynamical perspective.Harvey Brown - 2005 - Philosophy 82 (321):498-503.
    Download  
     
    Export citation  
     
    Bookmark   229 citations  
  • Purity of Methods.Michael Detlefsen & Andrew Arana - 2011 - Philosophers' Imprint 11.
    Throughout history, mathematicians have expressed preference for solutions to problems that avoid introducing concepts that are in one sense or another “foreign” or “alien” to the problem under investigation. This preference for “purity” (which German writers commonly referred to as “methoden Reinheit”) has taken various forms. It has also been persistent. This notwithstanding, it has not been analyzed at even a basic philosophical level. In this paper we give a basic analysis of one conception of purity—what we call topical purity—and (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • Philosophical Foundations of Physics;.Rudolf Carnap - 1966 - New York: Basic Books.
    Download  
     
    Export citation  
     
    Bookmark   166 citations  
  • The explanatory power of phase spaces.Aidan Lyon & Mark Colyvan - 2008 - Philosophia Mathematica 16 (2):227-243.
    David Malament argued that Hartry Field's nominalisation program is unlikely to be able to deal with non-space-time theories such as phase-space theories. We give a specific example of such a phase-space theory and argue that this presentation of the theory delivers explanations that are not available in the classical presentation of the theory. This suggests that even if phase-space theories can be nominalised, the resulting theory will not have the explanatory power of the original. Phase-space theories thus raise problems for (...)
    Download  
     
    Export citation  
     
    Bookmark   108 citations  
  • A Role for Mathematics in the Physical Sciences.Chris Pincock - 2007 - Noûs 41 (2):253-275.
    Conflicting accounts of the role of mathematics in our physical theories can be traced to two principles. Mathematics appears to be both (1) theoretically indispensable, as we have no acceptable non-mathematical versions of our theories, and (2) metaphysically dispensable, as mathematical entities, if they existed, would lack a relevant causal role in the physical world. I offer a new account of a role for mathematics in the physical sciences that emphasizes the epistemic benefits of having mathematics around when we do (...)
    Download  
     
    Export citation  
     
    Bookmark   99 citations  
  • On the explanatory role of mathematics in empirical science.Robert W. Batterman - 2010 - British Journal for the Philosophy of Science 61 (1):1-25.
    This paper examines contemporary attempts to explicate the explanatory role of mathematics in the physical sciences. Most such approaches involve developing so-called mapping accounts of the relationships between the physical world and mathematical structures. The paper argues that the use of idealizations in physical theorizing poses serious difficulties for such mapping accounts. A new approach to the applicability of mathematics is proposed.
    Download  
     
    Export citation  
     
    Bookmark   127 citations  
  • Twin Paradox and the Logical Foundation of Relativity Theory.Judit X. Madarász, István Németi & Gergely Székely - 2006 - Foundations of Physics 36 (5):681-714.
    We study the foundation of space-time theory in the framework of first-order logic (FOL). Since the foundation of mathematics has been successfully carried through (via set theory) in FOL, it is not entirely impossible to do the same for space-time theory (or relativity). First we recall a simple and streamlined FOL-axiomatization Specrel of special relativity from the literature. Specrel is complete with respect to questions about inertial motion. Then we ask ourselves whether we can prove the usual relativistic properties of (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • A logic road from special relativity to general relativity.Hajnal Andréka, Judit X. Madarász, István Németi & Gergely Székely - 2012 - Synthese 186 (3):633 - 649.
    We present a streamlined axiom system of special relativity in first-order logic. From this axiom system we "derive" an axiom system of general relativity in two natural steps. We will also see how the axioms of special relativity transform into those of general relativity. This way we hope to make general relativity more accessible for the non-specialist.
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Philosophy of Logic.Hilary Putnam - 1971 - New York, NY, USA: Routledge. Edited by Stephen Laurence & Cynthia Macdonald.
    First published in 1971, Professor Putnam's essay concerns itself with the ontological problem in the philosophy of logic and mathematics - that is, the issue of whether the abstract entities spoken of in logic and mathematics really exist. He also deals with the question of whether or not reference to these abstract entities is really indispensible in logic and whether it is necessary in physical science in general.
    Download  
     
    Export citation  
     
    Bookmark   164 citations  
  • An Inferential Conception of the Application of Mathematics.Otávio Bueno & Mark Colyvan - 2011 - Noûs 45 (2):345-374.
    A number of people have recently argued for a structural approach to accounting for the applications of mathematics. Such an approach has been called "the mapping account". According to this view, the applicability of mathematics is fully accounted for by appreciating the relevant structural similarities between the empirical system under study and the mathematics used in the investigation ofthat system. This account of applications requires the truth of applied mathematical assertions, but it does not require the existence of mathematical objects. (...)
    Download  
     
    Export citation  
     
    Bookmark   106 citations  
  • Explanation in Mathematics.Paolo Mancosu - 2014 - In Edward N. Zalta (ed.), The Stanford Encyclopedia of Philosophy. Stanford, CA: The Metaphysics Research Lab.
    The philosophical analysis of mathematical explanations concerns itself with two different, although connected, areas of investigation. The first area addresses the problem of whether mathematics can play an explanatory role in the natural and social sciences. The second deals with the problem of whether mathematical explanations occur within mathematics itself. Accordingly, this entry surveys the contributions to both areas, it shows their relevance to the history of philosophy and science, it articulates their connection, and points to the philosophical pay-offs to (...)
    Download  
     
    Export citation  
     
    Bookmark   48 citations  
  • The Enhanced Indispensability Argument: Representational versus Explanatory Role of Mathematics in Science.Juha Saatsi - 2011 - British Journal for the Philosophy of Science 62 (1):143-154.
    The Enhanced Indispensability Argument (Baker [ 2009 ]) exemplifies the new wave of the indispensability argument for mathematical Platonism. The new wave capitalizes on mathematics' role in scientific explanations. I will criticize some analyses of mathematics' explanatory function. In turn, I will emphasize the representational role of mathematics, and argue that the debate would significantly benefit from acknowledging this alternative viewpoint to mathematics' contribution to scientific explanations and knowledge.
    Download  
     
    Export citation  
     
    Bookmark   78 citations  
  • A revealing flaw in Colyvan's indispensability argument.Christopher Pincock† - 2004 - Philosophy of Science 71 (1):61-79.
    Mark Colyvan uses applications of mathematics to argue that mathematical entities exist. I claim that his argument is invalid based on the assumption that a certain way of thinking about applications, called `the mapping account,' is correct. My main contention is that successful applications depend only on there being appropriate structural relations between physical situations and the mathematical domain. As a variety of non-realist interpretations of mathematics deliver these structural relations, indispensability arguments are invalid.
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Mathematical explanation.Mark Steiner - 1978 - Philosophical Studies 34 (2):135 - 151.
    Download  
     
    Export citation  
     
    Bookmark   120 citations  
  • Learning from Euler. From Mathematical Practice to Mathematical Explanation.Daniele Molinini - 2012 - Philosophia Scientiae 16 (1):105-127.
    Dans son « Découverte d'un nouveau principe de mécanique » (1750) Euler a donné, pour la première fois, une preuve du théorème qu'on appelle aujourd'hui le Théorème d'Euler. Dans cet article je vais me concentrer sur la preuve originale d'Euler, et je vais montrer comment la pratique mathématique d Euler peut éclairer le débat philosophique sur la notion de preuves explicatives en mathématiques. En particulier, je montrerai comment l'un des modèles d'explication mathématique les plus connus, celui proposé par Mark Steiner (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Indexing and Mathematical Explanation.Alan Baker & Mark Colyvan - 2011 - Philosophia Mathematica 19 (3):323-334.
    We discuss a recent attempt by Chris Daly and Simon Langford to do away with mathematical explanations of physical phenomena. Daly and Langford suggest that mathematics merely indexes parts of the physical world, and on this understanding of the role of mathematics in science, there is no need to countenance mathematical explanation of physical facts. We argue that their strategy is at best a sketch and only looks plausible in simple cases. We also draw attention to how frequently Daly and (...)
    Download  
     
    Export citation  
     
    Bookmark   52 citations  
  • Explanation and metaphysical controversy.Peter Railton - 1962 - In Philip Kitcher & Wesley C. Salmon (eds.), Scientific Explanation. Univ of Minnesota Pr. pp. 13--220.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Mathematics and aesthetic considerations in science.Mark Colyvan - 2002 - Mind 111 (441):69-74.
    Download  
     
    Export citation  
     
    Bookmark   81 citations  
  • Science-Driven Mathematical Explanation.Alan Baker - 2012 - Mind 121 (482):243-267.
    Philosophers of mathematics have become increasingly interested in the explanatory role of mathematics in empirical science, in the context of new versions of the Quinean ‘Indispensability Argument’ which employ inference to the best explanation for the existence of abstract mathematical objects. However, little attention has been paid to analysing the nature of the explanatory relation involved in these mathematical explanations in science (MES). In this paper, I attack the only articulated account of MES in the literature (an account sketched by (...)
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • (1 other version)Purity as an ideal of proof.Michael Detlefsen - 2008 - In Paolo Mancosu (ed.), The Philosophy of Mathematical Practice. Oxford, England: Oxford University Press. pp. 179-197.
    Various ideals of purity are surveyed and discussed. These include the classical Aristotelian ideal, as well as certain neo-classical and contemporary ideals. The focus is on a type of purity ideal I call topical purity. This is purity which emphasizes a certain symmetry between the conceptual resources used to prove a theorem and those needed for the clarification of its content. The basic idea is that the resources of proof ought ideally to be restricted to those which determine its content.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Explanation—Opening Address.J. J. C. Smart - 1990 - Royal Institute of Philosophy Supplement 27:1-19.
    It is a pleasure for me to give this opening address to the Royal Institute of Philosophy Conference on ‘Explanation’ for two reasons. The first is that it is succeeded by exciting symposia and other papers concerned with various special aspects of the topic of explanation. The second is that the conference is being held in my old alma mater, the University of Glasgow, where I did my first degree. Especially due to C. A. Campbell and George Brown there was (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Sidelights on Relativity.A. Einstein, G. B. Jeffery & W. Perrett - 1925 - Philosophical Review 34 (2):204-205.
    Download  
     
    Export citation  
     
    Bookmark   55 citations