Results for 'Artificial Neural Networks'

998 found
Order:
  1. Artificial Neural Network for Forecasting Car Mileage per Gallon in the City.Mohsen Afana, Jomana Ahmed, Bayan Harb, Bassem S. Abu-Nasser & Samy S. Abu-Naser - 2018 - International Journal of Advanced Science and Technology 124:51-59.
    In this paper an Artificial Neural Network (ANN) model was used to help cars dealers recognize the many characteristics of cars, including manufacturers, their location and classification of cars according to several categories including: Make, Model, Type, Origin, DriveTrain, MSRP, Invoice, EngineSize, Cylinders, Horsepower, MPG_Highway, Weight, Wheelbase, Length. ANN was used in prediction of the number of miles per gallon when the car is driven in the city(MPG_City). The results showed that ANN model was able to predict MPG_City (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  2. Artificial Neural Network for Predicting Car Performance Using JNN.Awni Ahmed Al-Mobayed, Youssef Mahmoud Al-Madhoun, Mohammed Nasser Al-Shuwaikh & Samy S. Abu-Naser - 2020 - International Journal of Engineering and Information Systems (IJEAIS) 4 (9):139-145.
    In this paper an Artificial Neural Network (ANN) model was used to help cars dealers recognize the many characteristics of cars, including manufacturers, their location and classification of cars according to several categories including: Buying, Maint, Doors, Persons, Lug_boot, Safety, and Overall. ANN was used in forecasting car acceptability. The results showed that ANN model was able to predict the car acceptability with 99.12 %. The factor of Safety has the most influence on car acceptability evaluation. Comparative study (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  3. Predicting Birth Weight Using Artificial Neural Network.Mohammed Al-Shawwa & Samy S. Abu-Naser - 2019 - International Journal of Academic Health and Medical Research (IJAHMR) 3 (1):9-14.
    In this research, an Artificial Neural Network (ANN) model was developed and tested to predict Birth Weight. A number of factors were identified that may affect birth weight. Factors such as smoke, race, age, weight (lbs) at last menstrual period, hypertension, uterine irritability, number of physician visits in 1st trimester, among others, as input variables for the ANN model. A model based on multi-layer concept topology was developed and trained using the data from some birth cases in hospitals. (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  4. Predicting Tumor Category Using Artificial Neural Networks.Ibrahim M. Nasser & Samy S. Abu-Naser - 2019 - International Journal of Academic Health and Medical Research (IJAHMR) 3 (2):1-7.
    In this paper an Artificial Neural Network (ANN) model, for predicting the category of a tumor was developed and tested. Taking patients’ tests, a number of information gained that influence the classification of the tumor. Such information as age, sex, histologic-type, degree-of-diffe, status of bone, bone-marrow, lung, pleura, peritoneum, liver, brain, skin, neck, supraclavicular, axillar, mediastinum, and abdominal. They were used as input variables for the ANN model. A model based on the Multilayer Perceptron Topology was established and (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  5. Comparing Artificial Neural Networks with Multiple Linear Regression for Forecasting Heavy Metal Content.Rachid El Chaal & Moulay Othman Aboutafail - 2022 - Acadlore Transactions on Geosciences 1 (1):2-11.
    This paper adopts two modeling tools, namely, multiple linear regression (MLR) and artificial neural networks (ANNs), to predict the concentrations of heavy metals (zinc, boron, and manganese) in surface waters of the Oued Inaouen watershed flowing towards Inaouen, using a set of physical-chemical parameters. XLStat was employed to perform multiple linear and nonlinear regressions, and Statista 10 was chosen to construct neural networks for modeling and prediction. The effectiveness of the ANN- and MLR-based stochastic models (...)
    Download  
     
    Export citation  
     
    Bookmark  
  6. Diabetes Prediction Using Artificial Neural Network.Nesreen Samer El_Jerjawi & Samy S. Abu-Naser - 2018 - International Journal of Advanced Science and Technology 121:54-64.
    Diabetes is one of the most common diseases worldwide where a cure is not found for it yet. Annually it cost a lot of money to care for people with diabetes. Thus the most important issue is the prediction to be very accurate and to use a reliable method for that. One of these methods is using artificial intelligence systems and in particular is the use of Artificial Neural Networks (ANN). So in this paper, we used (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  7. Glass Classification Using Artificial Neural Network.Mohmmad Jamal El-Khatib, Bassem S. Abu-Nasser & Samy S. Abu-Naser - 2019 - International Journal of Academic Pedagogical Research (IJAPR) 3 (23):25-31.
    As a type of evidence glass can be very useful contact trace material in a wide range of offences including burglaries and robberies, hit-and-run accidents, murders, assaults, ram-raids, criminal damage and thefts of and from motor vehicles. All of that offer the potential for glass fragments to be transferred from anything made of glass which breaks, to whoever or whatever was responsible. Variation in manufacture of glass allows considerable discrimination even with tiny fragments. In this study, we worked glass classification (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  8. Energy Efficiency Prediction using Artificial Neural Network.Ahmed J. Khalil, Alaa M. Barhoom, Bassem S. Abu-Nasser, Musleh M. Musleh & Samy S. Abu-Naser - 2019 - International Journal of Academic Pedagogical Research (IJAPR) 3 (9):1-7.
    Buildings energy consumption is growing gradually and put away around 40% of total energy use. Predicting heating and cooling loads of a building in the initial phase of the design to find out optimal solutions amongst different designs is very important, as ell as in the operating phase after the building has been finished for efficient energy. In this study, an artificial neural network model was designed and developed for predicting heating and cooling loads of a building based (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  9. Lung Cancer Detection Using Artificial Neural Network.Ibrahim M. Nasser & Samy S. Abu-Naser - 2019 - International Journal of Engineering and Information Systems (IJEAIS) 3 (3):17-23.
    In this paper, we developed an Artificial Neural Network (ANN) for detect the absence or presence of lung cancer in human body. Symptoms were used to diagnose the lung cancer, these symptoms such as Yellow fingers, Anxiety, Chronic Disease, Fatigue, Allergy, Wheezing, Coughing, Shortness of Breath, Swallowing Difficulty and Chest pain. They were used and other information about the person as input variables for our ANN. Our ANN established, trained, and validated using data set, which its title is (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  10. Artificial Neural Network Heart Failure Prediction Using JNN.Khaled M. Abu Al-Jalil & Samy S. Abu-Naser - 2023 - International Journal of Academic Engineering Research (IJAER) 7 (9):26-34.
    Heart failure is a major cause of death worldwide. Early detection and intervention are essential for improving the chances of a positive outcome. This study presents a novel approach to predicting the likelihood of a person having heart failure using a neural network model. The dataset comprises 918 samples with 11 features, such as age, sex, chest pain type, resting blood pressure, cholesterol, fasting blood sugar, resting electrocardiogram results, maximum heart rate achieved, exercise-induced angina, oldpeak, ST_Slope, and HeartDisease. A (...)
    Download  
     
    Export citation  
     
    Bookmark  
  11. Tic-Tac-Toe Learning Using Artificial Neural Networks.Mohaned Abu Dalffa, Bassem S. Abu-Nasser & Samy S. Abu-Naser - 2019 - International Journal of Engineering and Information Systems (IJEAIS) 3 (2):9-19.
    Throughout this research, imposing the training of an Artificial Neural Network (ANN) to play tic-tac-toe bored game, by training the ANN to play the tic-tac-toe logic using the set of mathematical combination of the sequences that could be played by the system and using both the Gradient Descent Algorithm explicitly and the Elimination theory rules implicitly. And so on the system should be able to produce imunate amalgamations to solve every state within the game course to make better (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  12. Parkinson’s Disease Prediction Using Artificial Neural Network.Ramzi M. Sadek, Salah A. Mohammed, Abdul Rahman K. Abunbehan, Abdul Karim H. Abdul Ghattas, Majed R. Badawi, Mohamed N. Mortaja, Bassem S. Abu-Nasser & Samy S. Abu-Naser - 2019 - International Journal of Academic Health and Medical Research (IJAHMR) 3 (1):1-8.
    Parkinson's Disease (PD) is a long-term degenerative disorder of the central nervous system that mainly affects the motor system. The symptoms generally come on slowly over time. Early in the disease, the most obvious are shaking, rigidity, slowness of movement, and difficulty with walking. Doctors do not know what causes it and finds difficulty in early diagnosing the presence of Parkinson’s disease. An artificial neural network system with back propagation algorithm is presented in this paper for helping doctors (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  13. Revelation and Artificial Neural Networks.Lascelles G. B. James - manuscript
    The grammatical forms and material of the book of Revelation suggest a complex interplay of Old Testament and 1st century literature and language. As well, the book does not lack its own peculiarity and character that is unparalleled in the literate world. Various analytical tools including historical-comparative methodologies have been employed to reconstruct the linguistic paradigm of the book. Artificial intelligence and its derivatives provide alternate methods of probing this paradigm.
    Download  
     
    Export citation  
     
    Bookmark  
  14. Uncovering the antecedents of trust in social commerce: an application of the non-linear artificial neural network approach.Hussam Al Halbusi - 2022 - Competitiveness Review 4.
    Purpose – The internet creates ample opportunities to start a mobile social commerce business. The literature confirms the issue of customer trust for social commerce businesses is a challenge that must be addressed. Hence, this study aims to examine the antecedents of trust in mobile social commerce by applying linear and non-linear relationships based on partial least squares structural equation modeling and an artificial neural network model. -/- Design/methodology/approach – This study applied a non-linear artificial neural (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15. Predicting Whether a Couple is Going to Get Divorced or Not Using Artificial Neural Networks.Ibrahim M. Nasser - 2019 - International Journal of Engineering and Information Systems (IJEAIS) 3 (10):49-55.
    In this paper, an artificial neural network (ANN) model was developed and validated to predict whether a couple is going to get divorced or not. Prediction is done based on some questions that the couple answered, answers of those questions were used as the input to the ANN. The model went through multiple learning-validation cycles until it got 100% accuracy.
    Download  
     
    Export citation  
     
    Bookmark  
  16.  74
    Proceedings of the First Turkish Conference on AI and Artificial Neural Networks.Kemal Oflazer, Varol Akman, H. Altay Guvenir & Ugur Halici - 1992 - Ankara, Turkey: Bilkent Meteksan Publishing.
    This is the proceedings of the "1st Turkish Conference on AI and ANNs," K. Oflazer, V. Akman, H. A. Guvenir, and U. Halici (editors). The conference was held at Bilkent University, Bilkent, Ankara on 25-26 June 1992. -/- Language of contributions: English and Turkish.
    Download  
     
    Export citation  
     
    Bookmark  
  17. NEW PRINCIPLE FOR ENCODING INFORMATION TO CREATE SUBJECTIVE REALITY IN ARTIFICIAL NEURAL NETWORKS.Alexey Bakhirev - manuscript
    The paper outlines an analysis of two types of information - ordinary and subjective, consideration is given to the difference between the concepts of intelligence and perceiving mind. It also provides description of some logical functional features of consciousness. A technical approach is proposed to technical obtaining of subjective information by changing the signal’s time degree of freedom to the spatial one in order to obtain the "observer" function in the system and information signals appearing in relation to it, that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  18. Discourseology of Linguistic Consciousness: Neural Network Modeling of Some Structural and Semantic Relationships.Vitalii Shymko - 2021 - Psycholinguistics 29 (1):193-207.
    Objective. Study of the validity and reliability of the discourse approach for the psycholinguistic understanding of the nature, structure, and features of the linguistic consciousness functioning. -/- Materials & Methods. This paper analyzes artificial neural network models built on the corpus of texts, which were obtained in the process of experimental research of the coronavirus quarantine concept as a new category of linguistic consciousness. The methodology of feedforward artificial neural networks (multilayer perceptron) was used in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  19. Knowledge Bases and Neural Network Synthesis.Todd R. Davies - 1991 - In Hozumi Tanaka (ed.), Artificial Intelligence in the Pacific Rim: Proceedings of the Pacific Rim International Conference on Artificial Intelligence. IOS Press. pp. 717-722.
    We describe and try to motivate our project to build systems using both a knowledge based and a neural network approach. These two approaches are used at different stages in the solution of a problem, instead of using knowledge bases exclusively on some problems, and neural nets exclusively on others. The knowledge base (KB) is defined first in a declarative, symbolic language that is easy to use. It is then compiled into an efficient neural network (NN) representation, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  20. Books’ Rating Prediction Using Just Neural Network.Alaa Mazen Maghari, Iman Ali Al-Najjar, Said Jamil Al-Laqtah & Samy S. Abu-Naser - 2020 - International Journal of Engineering and Information Systems (IJEAIS) 4 (10):17-22.
    Abstract: The aim behind analyzing the Goodreads dataset is to get a fair idea about the relationships between the multiple attributes a book might have, such as: the aggregate rating of each book, the trend of the authors over the years and books with numerous languages. With over a hundred thousand ratings, there are books which just tend to become popular as each day seems to pass. We proposed an Artificial Neural Network (ANN) model for predicting the overall (...)
    Download  
     
    Export citation  
     
    Bookmark  
  21. Empiricism without Magic: Transformational Abstraction in Deep Convolutional Neural Networks.Cameron Buckner - 2018 - Synthese (12):1-34.
    In artificial intelligence, recent research has demonstrated the remarkable potential of Deep Convolutional Neural Networks (DCNNs), which seem to exceed state-of-the-art performance in new domains weekly, especially on the sorts of very difficult perceptual discrimination tasks that skeptics thought would remain beyond the reach of artificial intelligence. However, it has proven difficult to explain why DCNNs perform so well. In philosophy of mind, empiricists have long suggested that complex cognition is based on information derived from sensory (...)
    Download  
     
    Export citation  
     
    Bookmark   39 citations  
  22. Human Symmetry Uncertainty Detected by a Self-Organizing Neural Network Map.Birgitta Dresp-Langley - 2021 - Symmetry 13:299.
    Symmetry in biological and physical systems is a product of self-organization driven by evolutionary processes, or mechanical systems under constraints. Symmetry-based feature extraction or representation by neural networks may unravel the most informative contents in large image databases. Despite significant achievements of artificial intelligence in recognition and classification of regular patterns, the problem of uncertainty remains a major challenge in ambiguous data. In this study, we present an artificial neural network that detects symmetry uncertainty states (...)
    Download  
     
    Export citation  
     
    Bookmark  
  23. Varieties of representation in evolved and embodied neural networks.Pete Mandik - 2003 - Biology and Philosophy 18 (1):95-130.
    In this paper I discuss one of the key issuesin the philosophy of neuroscience:neurosemantics. The project of neurosemanticsinvolves explaining what it means for states ofneurons and neural systems to haverepresentational contents. Neurosemantics thusinvolves issues of common concern between thephilosophy of neuroscience and philosophy ofmind. I discuss a problem that arises foraccounts of representational content that Icall ``the economy problem'': the problem ofshowing that a candidate theory of mentalrepresentation can bear the work requiredwithin in the causal economy of a mind (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  24. THE SPECTACLE OF REFLECTION: ON DREAMS, NEURAL NETWORKS AND THE VISUAL NATURE OF THOUGHT.Magdalena Szalewicz - manuscript
    The article considers the problem of images and the role they play in our reflection turning to evidence provided by two seemingly very distant theories of mind together with two sorts of corresponding visions: dreams as analyzed by Freud who claimed that they are pictures of our thoughts, and their mechanical counterparts produced by neural networks designed for object recognition and classification. Freud’s theory of dreams has largely been ignored by philosophers interested in cognition, most of whom focused (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25. Climate Change temperature Prediction Using Just Neural Network.Saja Kh Abu Safiah & Samy S. Abu-Naser - 2023 - International Journal of Academic Engineering Research (IJAER) 7 (9):35-45.
    Climate change temperature prediction plays a crucial role in effective environmental planning. This study introduces an innovative approach that harnesses the power of Artificial Neural Networks (ANNs) within the Just Neural Network (JustNN) framework to enhance temperature forecasting in the context of climate change. By leveraging historical climate data, our model achieves exceptional accuracy, redefining the landscape of temperature prediction without intricate preprocessing. This model sets a new standard for precise temperature forecasting in the context of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  26.  9
    Developing Artificial Human-Like Arithmetical Intelligence (and Why).Markus Pantsar - 2023 - Minds and Machines 33 (3):379-396.
    Why would we want to develop artificial human-like arithmetical intelligence, when computers already outperform humans in arithmetical calculations? Aside from arithmetic consisting of much more than mere calculations, one suggested reason is that AI research can help us explain the development of human arithmetical cognition. Here I argue that this question needs to be studied already in the context of basic, non-symbolic, numerical cognition. Analyzing recent machine learning research on artificial neural networks, I show how AI (...)
    Download  
     
    Export citation  
     
    Bookmark  
  27. AISC 17 Talk: The Explanatory Problems of Deep Learning in Artificial Intelligence and Computational Cognitive Science: Two Possible Research Agendas.Antonio Lieto - 2018 - In Proceedings of AISC 2017.
    Endowing artificial systems with explanatory capacities about the reasons guiding their decisions, represents a crucial challenge and research objective in the current fields of Artificial Intelligence (AI) and Computational Cognitive Science [Langley et al., 2017]. Current mainstream AI systems, in fact, despite the enormous progresses reached in specific tasks, mostly fail to provide a transparent account of the reasons determining their behavior (both in cases of a successful or unsuccessful output). This is due to the fact that the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  28. Trusting artificial intelligence in cybersecurity is a double-edged sword.Mariarosaria Taddeo, Tom McCutcheon & Luciano Floridi - 2019 - Philosophy and Technology 32 (1):1-15.
    Applications of artificial intelligence (AI) for cybersecurity tasks are attracting greater attention from the private and the public sectors. Estimates indicate that the market for AI in cybersecurity will grow from US$1 billion in 2016 to a US$34.8 billion net worth by 2025. The latest national cybersecurity and defence strategies of several governments explicitly mention AI capabilities. At the same time, initiatives to define new standards and certification procedures to elicit users’ trust in AI are emerging on a global (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  29. Predicting Car Mileage per Gallon.Mohsen Afana, Jomana Ahmed, Bayan Harb, Basem Nasser & Rafiq Madhoun - 2015 - International Journal of Advanced Science and Technology 124 (124):51-59.
    In this paper an Artificial Neural Network (ANN) model was used to help cars dealers recognize the many characteristics of cars, including manufacturers, their location and classification of cars according to several categories including: Make, Model, Type, Origin, DriveTrain, MSRP, Invoice, EngineSize, Cylinders, Horsepower, MPG_Highway, Weight, Wheelbase, Length. ANN was used in prediction of the number of miles per gallon when the car is driven in the city(MPG_City). The results showed that ANN model was able to predict MPG_City (...)
    Download  
     
    Export citation  
     
    Bookmark  
  30. ANN for Predicting Birth Weight.Shawwah Mohammad & Murshidy Suheil - 2020 - International Journal of Academic Health and Medical Research (IJAHMR) 1 (3):9-12.
    In this research, an Artificial Neural Network (ANN) model was developed and tested to predict Birth Weight. A number of factors were identified that may affect birth weight. Factors such as smoke, race, age, weight (lbs) at last menstrual period, hypertension, uterine irritability, number of physician visits in 1st trimester, among others, as input variables for the ANN model. A model based on multi-layer concept topology was developed and trained using the data from some birth cases in hospitals. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  31.  96
    Toward biologically plausible artificial vision.Mason Westfall - 2023 - Behavioral and Brain Sciences 46:e290.
    Quilty-Dunn et al. argue that deep convolutional neural networks (DCNNs) optimized for image classification exemplify structural disanalogies to human vision. A different kind of artificial vision – found in reinforcement-learning agents navigating artificial three-dimensional environments – can be expected to be more human-like. Recent work suggests that language-like representations substantially improves these agents’ performance, lending some indirect support to the language-of-thought hypothesis (LoTH).
    Download  
     
    Export citation  
     
    Bookmark  
  32. Philosophy and theory of artificial intelligence 2017.Vincent C. Müller (ed.) - 2017 - Berlin: Springer.
    This book reports on the results of the third edition of the premier conference in the field of philosophy of artificial intelligence, PT-AI 2017, held on November 4 - 5, 2017 at the University of Leeds, UK. It covers: advanced knowledge on key AI concepts, including complexity, computation, creativity, embodiment, representation and superintelligence; cutting-edge ethical issues, such as the AI impact on human dignity and society, responsibilities and rights of machines, as well as AI threats to humanity and AI (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  33. Examining the Intelligence in Artificial Intelligence.David Cycleback - 2020 - Center for Artifact Studies.
    The following looks at several problems and questions concerning our understanding of the word ‘intelligence’ and the phrase ‘artificial intelligence’ (AI), including: how to define these terms; whether intelligence can exist in AI; if artificial intelligence in AI is identifiable; and what (if any) kind of intelligence is important to AI.
    Download  
     
    Export citation  
     
    Bookmark  
  34. ANN for Predicting Medical Expenses.Khaled Salah & Ahmed Altalla - 2016 - International Journal of Engineering and Information Systems (IJEAIS) 2 (10):11-16.
    Abstract: In this research, the Artificial Neural Network (ANN) model was developed and tested to predict the rate of treatment expenditure on an individual or family in a country. A number of factors have been identified that may affect treatment expenses. Factors such as age, grade level such as primary, preparatory, secondary or college, sex, size of disability, social status, and annual medical expenses in fixed dollars excluding dental and outpatient clinics among others, as input variables for the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  35. Evolving artificial minds and brains.Alex Vereschagin, Mike Collins & Pete Mandik - 2007 - In Drew Khlentzos & Andrea Schalley (eds.), Mental States Volume 1: Evolution, function, nature. John Benjamins.
    We explicate representational content by addressing how representations that ex- plain intelligent behavior might be acquired through processes of Darwinian evo- lution. We present the results of computer simulations of evolved neural network controllers and discuss the similarity of the simulations to real-world examples of neural network control of animal behavior. We argue that focusing on the simplest cases of evolved intelligent behavior, in both simulated and real organisms, reveals that evolved representations must carry information about the creature’s (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  36. The Rhetoric and Reality of Anthropomorphism in Artificial Intelligence.David Watson - 2019 - Minds and Machines 29 (3):417-440.
    Artificial intelligence has historically been conceptualized in anthropomorphic terms. Some algorithms deploy biomimetic designs in a deliberate attempt to effect a sort of digital isomorphism of the human brain. Others leverage more general learning strategies that happen to coincide with popular theories of cognitive science and social epistemology. In this paper, I challenge the anthropomorphic credentials of the neural network algorithm, whose similarities to human cognition I argue are vastly overstated and narrowly construed. I submit that three alternative (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  37. ANN for Diagnosing Hepatitis Virus.Fathi Metwally, Khaled AbuSharekh & Bastami Bashhar - 2017 - International Journal of Academic Pedagogical Research (IJAPR) 11 (2):1-6.
    Abstract: This paper presents an artificial neural network based approach for the diagnosis of hepatitis virus. A number of factors that may possibly influence the performance of patients were outlined. Such factors as age, sex, Steroid, Antivirals, Fatigue, Malaise, Anorexia, Liver Big, Liver Firm Splean Palpable, Spiders, Ascites, Varices, Bilirubin, Alk Phosphate, SGOT, Albumin, Protine and Histology, were then used as input variables for the ANN model . Test data evaluation shows that the ANN model is able to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  38. The Use of Artificial Intelligence Techniques and Their Impact on Improving the Higher Education Outcomes of Business Administrative Colleges in Palestinian Universities.Khalid Abdel Fattah Tawfiq Atieh, Ghadir Mohammad Said Ali Ahmad, Mays Ala'din Qasem Awwad & Mazen J. Al Shobaki - 2023 - International Journal of Engineering and Information Systems (IJEAIS) 7 (1):83-92.
    The study aims to identify the impact of the use of artificial intelligence techniques in improving the outputs of higher education in Business Administrative Colleges in the universities under study that formed the research community. As for the sample, it consisted of (130) academic respondents in these universities under study. The research concluded that there is a statistically significant effect of using artificial intelligence techniques (expert systems, neural networks) in improving the outputs of higher education in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  39.  74
    ANN for Predicting Antibiotic Susceptibility.Maaruf Ahmed & Qassas Randa - 2016 - International Journal of Academic Pedagogical Research (IJAPR) 10 (2):1-4.
    Abstract: In this research, an Artificial Neural Network (ANN) model was developed and tested to predict efficiency of antibiotics in treating various bacteria types. Attributes that were taken in account are: organism name, specimen type, and antibiotic name as input and susceptibility as an output. A model based on one input, one hidden, and one output layers concept topology was developed and trained using a data from Queensland government's website. The evaluation shows that the ANN model is capable (...)
    Download  
     
    Export citation  
     
    Bookmark  
  40. ANN for English Alphabet Prediction.Hamza H. Heriz, Sharief M. Salah, Mohammad Abu Abdu & Qassas Randa - 2016 - International Journal of Academic Pedagogical Research (IJAPR) 11 (2):8-13.
    Abstract: In this paper an Artificial Neural Network (ANN) model, for predicting the Letters from twenty dissimilar fonts for each letter. The character images were, initially, based on twenty dissimilar fonts and each letter inside these twenty fonts was arbitrarily distorted to yield a file of 20,000 distinctive stimuli. Every stimulus was transformed into 16 simple numerical attributes (arithmetical moments and edge amounts) which were then ascended to be suitable into a range of numeral values from 0 to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  41. ARTIFICIAL INTELLIGENT BASED COMPUTATIONAL MODEL FOR DETECTING CHRONIC-KIDNEY DISEASE.K. Jothimani & S. Thangamani - 2022 - Journal of Science Technology and Research (JSTAR) 3 (1):15-27.
    Chronic kidney disease (CKD) is a global health problem with high morbidity and mortality rate, and it induces other diseases. There are no obvious incidental effects during the starting periods of CKD, patients routinely disregard to see the sickness. Early disclosure of CKD enables patients to seek helpful treatment to improve the development of this disease. AI models can effectively assist clinical with achieving this objective on account of their fast and exact affirmation execution. In this appraisal, proposed a Logistic (...)
    Download  
     
    Export citation  
     
    Bookmark  
  42. Enhanced Artificial Intelligence System for Diagnosing and Predicting Breast Cancer Using Deep Learning.Mona Alfifi, Mohamad Shady Alrahhal, Samir Bataineh & Mohammad Mezher - 2020 - International Journal of Advanced Computer Science and Applications 11 (7):1-17.
    Breast cancer is the leading cause of death among women with cancer. Computer-aided diagnosis is an efficient method for assisting medical experts in early diagnosis, improving the chance of recovery. Employing artificial intelligence (AI) in the medical area is very crucial due to the sensitivity of this field. This means that the low accuracy of the classification methods used for cancer detection is a critical issue. This problem is accentuated when it comes to blurry mammogram images. In this paper, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  43. Interpretability and Unification.Adrian Erasmus & Tyler D. P. Brunet - 2022 - Philosophy and Technology 35 (2):1-6.
    In a recent reply to our article, “What is Interpretability?,” Prasetya argues against our position that artificial neural networks are explainable. It is claimed that our indefeasibility thesis—that adding complexity to an explanation of a phenomenon does not make the phenomenon any less explainable—is false. More precisely, Prasetya argues that unificationist explanations are defeasible to increasing complexity, and thus, we may not be able to provide such explanations of highly complex AI models. The reply highlights an important (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  44. Environmental Variability and the Emergence of Meaning: Simulational Studies across Imitation, Genetic Algorithms, and Neural Nets.Patrick Grim - 2006 - In Angelo Loula & Ricardo Gudwin (eds.), Artificial Cognition Systems. Idea Group. pp. 284-326.
    A crucial question for artificial cognition systems is what meaning is and how it arises. In pursuit of that question, this paper extends earlier work in which we show that emergence of simple signaling in biologically inspired models using arrays of locally interactive agents. Communities of "communicators" develop in an environment of wandering food sources and predators using any of a variety of mechanisms: imitation of successful neighbors, localized genetic algorithms and partial neural net training on successful neighbors. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  45. ANN for Parkinson’s Disease Prediction.Salah Sadek, Abdul Mohammed, Abdul Karim Abunbehan, Majed Abdul Ghattas & Mohamed Badawi - 2020 - International Journal of Academic Health and Medical Research (IJAHMR) 3 (1):1-7.
    Parkinson's Disease (PD) is a long-term degenerative disorder of the central nervous system that mainly affects the motor system. The symptoms generally come on slowly over time. Early in the disease, the most obvious are shaking, rigidity, slowness of movement, and difficulty with walking. Doctors do not know what causes it and finds difficulty in early diagnosing the presence of Parkinson’s disease. An artificial neural network system with back propagation algorithm is presented in this paper for helping doctors (...)
    Download  
     
    Export citation  
     
    Bookmark  
  46. Metaphysics , Meaning, and Morality: A Theological Reflection on A.I.Jordan Joseph Wales - 2022 - Journal of Moral Theology 11 (Special Issue 1):157-181.
    Theologians often reflect on the ethical uses and impacts of artificial intelligence, but when it comes to artificial intelligence techniques themselves, some have questioned whether much exists to discuss in the first place. If the significance of computational operations is attributed rather than intrinsic, what are we to say about them? Ancient thinkers—namely Augustine of Hippo (lived 354–430)—break the impasse, enabling us to draw forth the moral and metaphysical significance of current developments like the “deep neural (...)” that are responsible for some of the most remarkable achievements of the past few years. First, Augustine’s theology of the natural world’s rationes seminales makes sense of neural networks’ success by explaining the world as a kaleidoscopic refraction of divine Wisdom rather than as a collection of discrete objects standing in crisp relations. Second, his account of interpretive judgment as a moral act bound up with love reveals how our training and use of AI relates to the Christian’s assimilation to Wisdom. The contingent meaning of the neural network reveals AI’s potential either for standing between us and the world or in some sense facilitating a Christian’s regathering of the created echoes of divine Wisdom throughout his or her journey into the Trinity. (shrink)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  47. ANN for Tic-Tac-Toe Learning.Dalffa Abu-Mohaned - 2020 - International Journal of Engineering and Information Systems (IJEAIS) 3 (2):9-17.
    Throughout this research, imposing the training of an Artificial Neural Network (ANN) to play tic-tac-toe bored game, by training the ANN to play the tic-tac-toe logic using the set of mathematical combination of the sequences that could be played by the system and using both the Gradient Descent Algorithm explicitly and the Elimination theory rules implicitly. And so on the system should be able to produce imunate amalgamations to solve every state within the game course to make better (...)
    Download  
     
    Export citation  
     
    Bookmark  
  48.  79
    Contrafactives and Learnability.Simon Wimmer & David Strohmaier - 2022 - In Marco Degano, Tom Roberts, Giorgio Sbardolini & Marieke Schouwstra (eds.), Proceedings of the 23rd Amsterdam Colloquium. pp. 298-305.
    Richard Holton has drawn attention to a new semantic universal, according to which (almost) no natural language has contrafactive attitude verbs. This semantic universal is part of an asymmetry between factive and contrafactive attitude verbs. Whilst factives are abundant, contrafactives are scarce. We propose that this asymmetry is partly due to a difference in learnability. The meaning of contrafactives is significantly harder to learn than that of factives. We tested our hypothesis by conducting a computational experiment using an artificial (...)
    Download  
     
    Export citation  
     
    Bookmark  
  49. Recurrent Neural Network Based Speech emotion detection using Deep Learning.P. Pavithra - 2022 - Journal of Science Technology and Research (JSTAR) 3 (1):65-77.
    In modern days, person-computer communication systems have gradually penetrated our lives. One of the crucial technologies in person-computer communication systems, Speech Emotion Recognition (SER) technology, permits machines to correctly recognize emotions and greater understand users' intent and human-computer interlinkage. The main objective of the SER is to improve the human-machine interface. It is also used to observe a person's psychological condition by lie detectors. Automatic Speech Emotion Recognition(SER) is vital in the person-computer interface, but SER has challenges for accurate recognition. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  50. Evolving Self-taught Neural Networks: The Baldwin Effect and the Emergence of Intelligence.Nam Le - 2019 - In AISB Annual Convention 2019 -- 10th Symposium on AI & Games.
    The so-called Baldwin Effect generally says how learning, as a form of ontogenetic adaptation, can influence the process of phylogenetic adaptation, or evolution. This idea has also been taken into computation in which evolution and learning are used as computational metaphors, including evolving neural networks. This paper presents a technique called evolving self-taught neural networksneural networks that can teach themselves without external supervision or reward. The self-taught neural network is intrinsically motivated. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
1 — 50 / 998