Antimicrobial resistance (AMR) is a global public health disaster driven largely by antibiotic use in human health care. Doctors considering whether to prescribe antibiotics face an ethical conflict between upholding individual patient health and advancing public health aims. Existing literature mainly examines whether patients awaiting consultations desire or expect to receive antibiotic prescriptions, but does not report views of the wider public regarding conditions under which doctors should prescribe antibiotics. It also does not explore the ethical significance of public views (...) or their sensitivity to awareness of AMR risks or the standpoint (self-interested or impartial) taken by participants. Methods: An online survey was conducted with a sample of the U.S. public (n = 158). Participants were asked to indicate what relative priority should be given to individual patients and society-at-large from various standpoints and in various contexts, including antibiotic prescription. Results: Of the participants, 50.3% thought that doctors should generally prioritize individual patients over society, whereas 32.0% prioritized society over individual patients. When asked in the context of AMR, 39.2% prioritized individuals whereas 45.5% prioritized society. Participants were significantly less willing to prioritize society over individuals when they themselves were the patient, both in general (p = .001) and in relation to AMR specifically (p = .006). Conclusions: Participants’ attitudes were more oriented to society and sensitive to collective responsibility when informed about the social costs of antibiotic use and when considered from a third-person rather than first-person perspective. That is, as participants came closer to taking the perspective of an informed and impartial “ideal observer,” their support for prioritizing society increased. Our findings suggest that, insofar as antibiotic policies and practices should be informed by attitudes that are impartial and well-informed, there is significant support for prioritizing society. (shrink)
In Chinese history the periods known as Spring and Autumn (770-476 BC) and the Warring States (475-221 BC) were times of conflict and political instability caused by the increasing power of centralized and competing states. During this time of crisis many schools of thought appeared to offer different philosophical doctrines. This paper describes and studies ideas about the limitation of power defended by these different schools of ancient Chinese thought, and suggests some reasons why they failed to prevent the emergence (...) of an authoritarian imperial government in early China. (shrink)
In this article, I discuss parthood status in mereologi- cally interpreted Daoist metaphysics, based on the Daodejing. I depart from the dao and you interrela- tion, which mereologically overlap by sharing parts. I consider the case of a complete overlap, which (a) challenges proper parthood, according to which a part cannot be identical with the whole that it com- poses, and (b) entails the question of identity that, while complying with classical mereology, cannot be consis- tent with Daoist metaphysics. The (...) discussion leads to abandoning proper parthood and antisymmetry axiom from classical axiomatics. It also shows a plausible fur- ther direction for mereological reconstruction. (shrink)
In the Pre-Qin time, pursuing “Dao” was the main task in the scholarship of most of the ancient Chinese philosophers, while the Ancient Greek philosophers considered pursuing “Truth” as their ultimate goal. While the “Dao” in ancient Chinese texts and the “Truth” in ancient Greek philosophic literature do share or cross-cover certain connotations, there are subtle and important differences between the two comparable philosophic concepts. These differences have deep and profound impact on the later development of Chinese and Western philosophy (...) and culture respectively. Interestingly, while the modern Chinese philosophy has gradually accepted and established the Western conception of “Truth” on its way towards modernization, the “post-modern” Western philosophy is just undergoing a process of deconstructing its traditional concept of “Truth”, thus, in a certain sense, going closer to the traditional Chinese “Dao”. From a comparative, relative and dynamic perspective, there could possibly be a fusion of horizon between the Chinese “Dao” and the Western “Truth”. (shrink)
A closer look at the theories and questions in philosophy of technology and ethics of technology shows the absence and marginality of non-Western philosophical traditions in the discussions. Although, increasingly, some philosophers have sought to introduce non-Western philosophical traditions into the debates, there are few systematic attempts to construct and articulate general accounts of ethics and technology based on other philosophical traditions. This situation is understandable, for the questions of modern sciences and technologies appear to be originated from the West; (...) at the same time, the situation is undesirable. The overall aim of this paper, therefore, is to introduce an alternative account of ethics of technology based on the Confucian tradition. In doing so, it is hoped that the current paper can initiate a relatively uncharted field in philosophy of technology and ethics of technology. (shrink)
Early Daoism, as articulated in the Daodejing and the Zhuangzi, indirectly addresses environmental issues by intimating a non-reductive naturalistic ethics calling on humans to be open and responsive to the specificities and interconnections of the world and environment to which they belong. "Dao" is not a substantial immanent or transcendent entity but the lived enactment of the intrinsic worth of the "myriad things" and the natural world occurring through how humans address and are addressed by them. Early Daoism potentially corrects (...) both anthropocentrism and biocentrism in environmental ethics by disclosing the things themselves in the context of the selfcultivation of life. Given increasing environmental devastation and the dominance of views, practices, and institutions reducing nature to a background and/or raw material for human activity, this "ethics of encounter" discloses the life of things as inexhaustibly more than human projects and constructs, extending ethical recognition and responsibility beyond social relations and the social self. (shrink)
This paper introduces the Analects of Kongzi (better known to English-speakers as 'Confucius') to non-specialist readers, and discusses two major lines of interpretation. According to one group of interpretations, the key to understanding the Analects is passage 4.15, in which a disciple says that 'loyalty' and 'reciprocity' together make up the 'one thread' of the Master's teachings. More recently, some interpreters have emphasised passage 13.3, which discusses 'correcting names': bringing words and things into proper alignment. This paper argues that both (...) approaches are mistaken, based on interpolated and unrepresentative passages. The paper closes with a brief suggestion that the Analects reveals a thinker who emphasises cultivating virtues that allow for the appreciation of complex individual contexts, rather than one who seeks systematic generalisations. An afterword to the paper suggests that we should avoid both 'methodological dualism' (which posits a radical incommensurability between Western and Eastern philosophies) and 'the perennial philosophy' (which ignores differences in favour of similarities). (shrink)
What are the nature and status of moral norms? And what makes individuals abide by them? These are central questions in metaethics. The first concerns the nature of the moral domain—for example, whether it exists independently of what individuals or groups think of it. The second concerns the bindingness or practical clout of moral norms—how individuals feel impelled to abide by them. In this article, I bring two distinct approaches to these questions into dialogue with one another.
This volume includes nineteen articles by scholars from Asia, North America, and Europe on Chinese thinkers from the eleventh to the eighteenth centuries. Included here are intellectual biographies of literati such as Zhou Dunyi, the Cheng brothers, Zhu Xi, Zhang Shi, Hu Hong, Wang Yangming, and Dai Zhen. Essays are arranged chronologically, and most begin with a biographical sketch of their subject. They provide variety rather than uniformity of approach, but all in all these essays are remarkably rich and offer (...) much new material on both familiar and lesser-known thinkers. (shrink)
Chengguan (738–839), the fourth patriarch of the Huayan school of Chinese Buddhism, declared the primacy of Buddhism over Confucianism and Daoism and criticised these philosophies from a Buddhist stance. In his subcommentary to the Avata?saka Sutra, he defines ten differences between Buddhism and indigenous philosophies, which are discussed in this paper. However, he also often quoted from Chinese Classics to clarify the meaning of a Buddhist tenet. On these occasions he sometimes adds that he only borrows the words but not (...) their meaning. We investigate how he places these words into a new, Buddhist context. (shrink)
Intertextuality (mutual illustration) is a common rhetorical device in ancient Chinese and has been used many times in Laozi (Dao Dejing). Intertextuality (mutual illustration) is of unique significance for understanding the linguistic structure and philosophical thoughts of Lao-zi. According to the current research on mutual illustration rhetoric on ancient Chinese, the forms of this rhetoric in Laozi can be divided into mutual illustration of single sentence, of multiple sentences and of ellipsis and antisense. There are only two references to mutual (...) illustration in the annotations of Laozi in the past dynasties, and most of the commentators ignore the importance of mutual illustration in understanding Laozi. By interpreting Laozi through mutual illustration rhetoric, we can make innovations in understanding methods, understanding contents and philosophical thoughts. (shrink)
The depletion of fossil fuels, coupled with the growing awareness of the impact of fossil fuel consumption on the global environment, has spurred research activities focused on alternative (or recycled energy). Besides, the demand for energy and related services to meet people's economic and social development, welfare and health is also increasing daily. Therefore, renewable energy is an excellent approach to mitigate climate change and meet the sustainable energy needs of present and future generations future.
The important feature of Dao as a philosophic category in early Confucian philosophy is its prominent practical and historical properties, which make it different from those western metaphysic categories. Confucianism emphasizes that the Dao can not be separated with the practice and the history of human being, thus the Tao should be explored in peoples’ social activities and history. They believe that the Tao only lives in the historical tradition and can only be demonstrated by the narrative of history. The (...) historical and practical properties of Dao incarnated the unity of epistemology and axiology, and integrated the value of both “Dao” and “De”. It also spots the conjunction between Confucianism and the historical materialism that persists on the standpoint of dialectic and practice. (shrink)
Although significant differences undoubtedly exist between Daoism and Kant’s philosophy, the two systems also have some noteworthy similarities. After calling attention to a few such parallels and sketching the outlines of Kant’s philosophy of religion, this article focuses on an often-neglected feature of the latter: the four guiding principles of what Kant calls an “invisible church”. Numerous passages from Lao Zi’s classic text, Dao-De-Jing, seem to uphold these same principles, thus suggesting that they can also be interpreted as core features (...) of a Daoist philosophy of life. A crucial difference, however, is that members of a Daoist church would focus on contentment, whereas Kantian churches modeled on Christianity would strive for perfection. The article therefore concludes by considering what a synthesis might look like, if a Kantian church were to be based on a Daoist interpretation of these four fundamental principles. (shrink)
For Jizang (549−623), a prominent philosophical exponent of Chinese Madhyamaka, all things are empty of determinate form or nature. Given anything X, no linguistic item can truly and conclusively be applied to X in the sense of positing a determinate form or nature therein. This philosophy of ontic indeterminacy is connected closely with his notion of the Way (dao), which seems to indicate a kind of ineffable principle of reality. However, Jizang also equates the Way with nonacquisition as a conscious (...) state of freedom from any attachment and definite understanding whatsoever. The issue then becomes pressing as to how we are to understand Jizang's notion of the Way. Does it indicate some metaphysical principle or reality? Is it actually a skilful expedient to lead one to the consummate state of complete spiritual freedom? How is this issue related to Jizang's conception of ontic indeterminacy? In this book chapter, I examine Jizang's key writings in an attempt to clarify his ontological position. (shrink)
The classical Chinese philosophical tradition (ca. 6th to 3rd centuries BCE) contains rich discussion of skill and expertise. Various texts exalt skilled exemplars (whether historical persons or fictional figures) who guide and inspire those seeking virtuosity within a particular dao (guiding teaching or way of life). These texts share a preoccupation with flourishing, or uncovering and articulating the constituents of an exemplary life. Some core features thought requisite to leading such a life included spontaneity, naturalness, and effortless ease. However, there (...) was also significant disagreement during this ‘Warring States’ or ‘Hundred Schools’ period on which skills were valuable, how one should cultivate them, and who exactly ought to serve as exemplars. In this chapter, I discuss two prominent types of expertise and their attendant skills. The first is expertise at a particular craft, occupation, or dao, which finds its most poignant celebration in the early Daoist anthology Zhuangzi. Interest in crafts or skilled occupations was likely motivated by a perceived (or implied) analogy with living a good life more generally. The second concerns ethical expertise, a prominent and widely held ideal within the Ruist (Confucian) and Mohist schools. Both maintain that ethical expertise consists of an ability to apply past models or precedents to current cases, though they diverge on what those models are and how to properly apply them. The aim is to provide non-specialists an overview of this literature in Daoism, Confucianism, and Mohism, while also providing suggestions about further research. (shrink)
The question of ontological foundation has undergone a noteworthy revival in recent years: metaphysicians today quarrel about how exactly to understand the asymmetrical and hyperintensional relationship of grounding. One of the reasons for this revival is that the old quantificationalist meta-ontology inherited from Quine has been effectively criticised by leading philosophers favourable to a meta-ontology, the aim of which is to come to know “which facts/items ground (constitute the base of) which other facts/items”, thus to examine the relation of ontological (...) dependence between beings (e.g. chemical properties depend on physical properties, the economic situation on the behaviour of individuals etc.), i.e. to explore the hierarchical structure of reality. I shall not discuss here the relationship of grounding in itself, but make some historical-formal remarks on the properties of the ultimate ontological foundational item itself and its aporetic nature. To do so I explore various more or less exotic philosophical ecosystems in the following order: Heidegger (Seyn), Plato (ἕν), Wáng Bi (道, dào). On the way I shall propose a new interpretation both of certain hypotheses in the Parmenides and of the nature of the opposition between Wáng Bì and Guō Xiàng in regard to the logical grammar of the expression “nothing (無, wú)” (transl. J. Dudley). (shrink)
Apesar de ter florescido no século XII, a tradição do Graal, remonta ao século VI, com a história da “Destruição e Conquista da Bretanha”, escrita pelo clérigo Gildas, que não parece querer retratar mais do que fatos da época envolvendo líderes locais com status de Rei, lutas pelo poder, batalhas e assassinatos em família, todavia, se alguma tradição subterrânea (prática comum entre os judeus) havia, envolvendo esses personagens, sobre isso, Gildas, nada falou. -/- A memória desses homens guerreiros volta à (...) tona em meados do ano 828, em “A História dos Britânicos”, de Nennius, e mais tarde na “História dos Reis da Grã-Bretanha”, de Geoffrey of Monmouth, entre os anos de 1138 -1139. A tradição ressurge entre os anos de 1181 e 1190, com Chrétien de Troyes, que escreve “Perceval, a História do Graal”, que fica inacabada com sua morte. Poucos anos depois, entre 1191 e 1202, Robert de Boron escreve a “História do Graal ou José de Arimatéia”, onde introduz elementos cristãos, como o cálice da Última Ceia que recolheu o sangue do Cristo. No mito, José é preso, Cristo o visita e explica os mistérios do cálice. Após deixar a prisão, José viaja com seus sogros e outros seguidores para oeste, fundando uma dinastia de guardiões do Graal, de quem o rei Artur é descendente. Quase em seguida, surge “Parzival”, de Wolfram Schenbach, escrito entre os anos de 1195 – 1215, que, sem dúvida, é a obra mais robusta em simbolismos e que maior interesse desperta; o autor, por exemplo, não se refere ao Graal como “cálice sagrado”, mas o designa como “pedra”, expurgando, por assim dizer, o simbolismo cristão posto no romance por Robert de Boron e introduzindo o simbolismo judaico. -/- Agora, a questão da literatura arturiana parece estar ligada a algum tipo de tradição marginal que remonta aos primórdios do cristianismo, similarmente à queda da Judeia, já que absorve ambos os elementos. Chrétien de Troyes, que iniciou este novo ciclo da tradição, deixa a entender que escreveu sua história a pedido de Philip I, Conde de Flandres, da Casa de Alsace, isso por que o prólogo da obra (316) é dedicada a seu patrono com altos elogios, apresentando-o como o mais bravo dos homens do Império de Roma, dedicatória similar feita a uma obra anterior, encomendada por Maria de Champagne. Outro dado que chama a atenção, é a possibilidade de Chrétien ter sido um judeu convertido, hipótese fundamentada no fato de a cidade de Troyes ter sido um grande centro de comércio e ensino judaicos, mas também pela assinatura em um de seus poemas, “Philomena”, onde se refere como “Crestien li Gois” e o termo “Goy” implicaria um judeu convertido (317). -/- Logo a seguir à obra de Chrétien, Robert de Boron retoma a tradição acrescentando motivos cristãos e, tal como seu antecessor, a serviço de um nobre, Gautier de Montbéliard (318), da Casa de Montfaucon. Apesar de a obra de Robert ter se popularizado pelos elementos novos que introduziu, não é aquela que mais desperta interesse entre os estudiosos, no entanto, a adição de símbolos cristãos em uma tradição a princípio não cristã, pode referir-se a desvio de foco, mais que a qualquer outro objetivo, ideia que é reforçada quando entendemos que os autores escrevem a pedido de determinadas famílias nobres. Quase ao mesmo tempo, surge a obra capital do romance do Graal, escrita pelo alemão Wolfram Schenbach, que, não fugindo à regra, liga sua história à Casa de Anjou, na época, a família mais poderosa na Europa Ocidental e na Terra Santa, onde seus membros se revezavam como reis de Jerusalém. Um dado curioso é que Philip I, Conde de Flandres da Casa de Alsace, patrono da Chrétien de troyes era primo em primeiro grau do Rei Balduíno, de Jerusalém, da Casa de Anjou. -/- Wolfram Schenbach cita Kyot de Provence, identificado como Guiot de Provins, como sendo sua fonte (319). Historicamente, Guiot foi um autor renomado e popular em sua época, monge e porta voz dos Templários, que escreveu, desde canções de amor, a críticas à Igreja e também canções de adoração ao Templo, o que parece indicar uma origem judaica. Segundo Wolfram, kyot encontrou na cidade de Toledo (320) um antigo manuscrito escrito por Flegetanis, um judeu forçado ao batismo cristão, contendo a história “daquilo que era chamado Graal”, esse é um ponto importante quando entendemos que estamos lidando com uma tradição judaica e não cristã. Depois de ler o manuscrito, Kyot passa a investigar alguns dados nele contido, em vários centros da Europa, buscando principalmente as obras de escrita latina, encontrando finalmente, na França, nos anais da Casa de Anjou (321) ; a história de Mazadan e o registro de sua família (322). -/- O que essa informação quer nos dizer, nas entrelinhas, é que os registros familiares de Mazadan, foram reconhecidos como sendo os mesmos dos manuscritos de Flegetanis, no entanto, alguns estudiosos de “Parzival” dão como não confiável a referência ao personagem Kyot de Provence, não o identificando a Guiot de Provins (323), talvez porque Wolfram não faz qualquer referência ao poeta até o livro oito, para, abruptamente, citá-lo no livro nove, onde explica toda a história. Quero dizer que a referência feita no livro nove e não antes, como seria habitual, denota um antigo simbolismo judaico de utilizar o algarismo “nove” como expressão da verdade (324), veja, por exemplo, a fundação da Ordem do Templo por simbólicos “nove” cavaleiros, não mais, não menos. Das obras, portanto, sobre o romance do Graal, aquela que merece estudo e investigação é Parzival, se quisermos um motivo dentre tantos, a “coisa” que os outros autores chamam Graal, Wolfram não denomina “cálice”, mas “pedra”. -/- William: Lancio; pensei ter entendido quando você falou sobre o simbolismo do cálice associado ao romance do Graal. Mas agora estou confuso, quando diz que o cálice foi um motivo cristão adaptado a essa tradição e a que merece estudo e investigação é aquela em que o Graal não é simbolizado pelo cálice e sim por uma pedra. -/- Lancio: William, quando falamos ou escrevemos sobre simbolismo, o discurso ganha muitas e diferentes interpretações e todas estarão sempre em conformidade com a capacidade daqueles ou daquelas que nos ouvem ou nos leem, mas, todos aqueles que forem além da leitura ou do simples ouvir, questionarão e esses saberão mais. Quando me referi ao cálice como símbolo, associando-o à tradição do Graal, o fiz como ilustração simbólica a uma ritualística, nesse caso; o cálice é aquele que toma variadas formas, que é maleável a diversas leituras e interpretações, que é histórico e é judeu, não é fábula e por isso é também pedra. -/- William: desculpe, Lancio, eu continuo sem entender. A que cálice que também é pedra você se refere? -/- Lancio: o mesmo símbolo que sempre representou a tradição do Graal, não em Robert de Boron, mas em Wolfram Schenbach. Novamente, William, o cálice, antes de ser um símbolo cristão pela fábula de José de Arimatéia, é um símbolo judaico e quando discorri sobre esse simbolismo, era o cálice judaico ou o que se designou chamar de cálice, que Wolfram chamou de “pedra”, o símbolo em questão. -/- William: por maior esforço de memória, eu não consigo compreender a substituição de cálice por pedra dentro do mesmo simbolismo. Quando você deu o exemplo do coração como cálice, sim, é passível de entendimento, mas substituir o coração por pedra e manter o mesmo significado simbólico? -/- Lancio: a dúvida corajosa é a boa dúvida e isso em qualquer disciplina, por ser ela capaz de provocar perguntas capitais. Em poucas palavras, com o que já ouviu; você será capaz de entender o simbolismo do cálice. Primeiro devemos buscar, nas tradições judaicas, um ato ritualístico em que o cálice participe e não é difícil encontrá-lo, pois há no seio do judaísmo uma tradição em que o cálice ou vaso de ouro, como também é chamado, participa, refere-se ao sacrifício das frutas frescas, (omer), contudo, esse simbolismo em que está inscrito o cálice, nada diz à nossa investigação, é uma tradição judaica e nela se encerra, mas não podemos dizer o mesmo da sua representação nas moedas cunhadas pelos seguidores de Judas, o Galileu, quando estes tomaram Jerusalém e o Templo em 66 DC, dando início à primeira revolta contra Roma, proporcionando ao reino judeu, um breve período independência (326). Assim, torna-se ele, o cálice, símbolo daquela revolta e mais do que isso, torna-se o cálice um símbolo em si mesmo, capaz de servir à lembrança e à memória. Quando fiz referência ao simbolismo do cálice, era a esse simbolismo que me reportava e quanto à sua metamorfose em pedra, falarei agora. -/- Wolfram chama aquilo que representa o Graal, não de “cálice”, mas de “lapsit exiliis”, cuja tradução, apesar dos esforços de pesquisa e imaginação, definitivamente não está resolvida. -/- O nome “lapsit exillis” reúne assim como o nome “Lazalies”, “Mazadan” ou “Terdelaschoye”, um sentido propositadamente ambíguo, por isso há sempre dificuldade quanto a seu estudo (337), se é possível encontrar um tímido consenso sobre o significado da palavra lapsit, como sendo “pedra”, no que se refere à palavra composta, entretanto, não há consenso algum quanto ao significado, sendo muitas e corajosas, as interpretações que se tem buscado dar, inclusive com o sentido de “pedra do exílio” ou “pedra exilada”(338), que embora esteja no cesto das interpretações fantasiosas, devo dizer que não deveria, porque “pedra” é uma palavra largamente utilizada nos escritos judaicos com sentido além do literal, significando família, isso é possível devido a composição das palavras na língua hebraica, constituídas em sua maioria por duas ou mais palavras menores, assim pedra, “even”, soletrado, alef, beit, nun, é um acrônimo para av - ben, que significa “pai e filho”, representando a palavra pedra, esse conceito. -/- Esse simbolismo permeia toda a literatura judaica cristã (339). Quando, por exemplo, se diz em determinado versículo que Jacob pegou “pedras” e colocou sob sua cabeça como travesseiro e em outro versículo que Jacob ao acordar tirou a “pedra”, no singular, que tinha posto anteriormente sob sua cabeça; isso revela uma aparente discrepância, no entanto, isso significa, à luz dos intérpretes da Lei, que as “pedras”,no plural, significam os 12 filhos de Jacob, as 12 tribos de Israel que se fundiram em um só povo, uma só nação, uma só “pedra.”(340) Portanto, chamar o Graal por “lapsit exiliis” ou “pedra exilada” ou “pedra do exílio” ou ainda “pedra no exílio”, pelo simbolismo hebreu, significa o mesmo que dizer; família exilada, família do exílio ou família no exílio, termo aplicável ao povo judeu em geral e às famílias judias em particular, mas por ser o romance do Graal uma tradição relacionada a uma família específica, é a essa família que devemos buscar. (shrink)
In this paper, I argue that the performance stories in the Zhuangzi, and the Butcher Ding story, emphasize an activity meditation practice that places the performer in a mindfulness flow zone, leading to graceful, efficacious, selfless, spontaneous, and free action. These stories are metaphors showing the reader how to attain a meditative state of focused awareness while acting freely in a flow experience. From my perspective, these metaphors are not about developing practical or technical skills per se. My argument challenges (...) a strict instrumental reading. Although instrumental reasoning can easily lead one to focus on the pragmatic outcomes depicted in these stories (See Eno, “Cook Ding’s Dao;” Callahan, “Cook Ding’s Life;” and Robins, “Beyond Skill”), the proposed pragmatic outcomes are merely a kind of collateral result of effortless, free actions, in the flow experience. The metaphors of Butcher Ding, the Lüliang rapids swimmer, the Wheelwright Bian, the Woodcarver Qing, the cicada catcher, the naked artist and so on are used to show the reader a way to engage in free and graceful action in the flow experience. Zhuangzi is not concerned about developing labour skills. He criticizes such skills; seen below when the Butcher claims to have “… left skill behind …” (進乎技矣) (Graham, Chuang-tzu, 63), and chapter five notes that “… skill is a peddler” (工為商) (Watson, Complete, 75). (shrink)
Much is said about what Kongzi liked or cherished. Kongzi revered the rituals of the Zhou. He cherished tradition and classical music. He loved the Odes. Far less is said, however, about what he despised or held in contempt (wu 惡). Yet contempt appears in the oldest stratum of the Analects as a disposition or virtue of moral exemplars. In this chapter, I argue that understanding the role of despising or contempt in the Analects is important in appreciating Kongzi’s dao (...) in two related though distinct ways: 1) exemplary individuals (such as the nobleman) regularly despise people and and hold them in contempt, and 2) reflecting on the targets of contempt might help uncover some tacit worries that Kongzi had concerning his own teachings on self-cultivation. In the concluding section, I state more general reasons why we might consider certain negatively valenced emotions such as contempt to be morally laudable. (shrink)
Early Chinese texts make us witnesses to debates about the power, or lack thereof, that humans had over the course of events, the outcomes of their actions, and their own lives. In the midst of these discourses on the limits of the efficacy of human agency, the notion of ming 命 took a central position. In this article, I present a common pattern of thinking about the relationship between the person and the world in early China. I call it the (...) reifying pattern because it consisted in thinking about ming as a hypostasized entity with object-like features. Although external and independent, ming was not endowed with human qualities such as the capacities for empathy, responsivity, and intersubjectivity. The reification of fate implied an understanding of ming as an external, amoral, and determining force that limited humans without accepting intercommunication with them, thereby causing feelings of alienation, powerlessness, and existential incompetence. I first show that the different meanings of ming hold a sense of prevailing external reality, and hence can be connected to the overarching meaning of fate. Then, I offer an account of the process of reification of fate in early China and its consequences, theoretical and practical, through cases study of received (Mengzi 孟子) and found (Tang Yu zhi dao 唐虞之道) texts. I end with some reflections on the implications of ming as a nonpersonal and nonsubjective type of actor for both early Chinese and twenty-first-century accounts of agency. (shrink)
Entendemos a Educação Infantil em amplo sentido, isto é, há um leque de conceitos em que pode-se gozar dentro da Pedagogia e as Ciências da Educação, é nessa modalidade de ensino que podem-se englobar todas as esferas educativas vivenciadas pelas crianças de, conforme Lei, 0 à 5 anos de idade, pela família e, também, pelo próprio corpo social, antes mesmo de atingir a idade educativa obrigatória que é, vide Lei, aproximadamente a partir dos 7 anos de idade. A EI também (...) pode ser considerada como uma das mais complexas fazes do desenvolvimento humano, em diversas esferas, seja ela a intelectual, emocional, social, motora, psicomotora, etc. uma vez que tratam-se de crianças que, muitas vezes, têm o primeiro contato com um novo ambiente, que é o ambiente escolar. Diante disso, torna-se primordial a inserção das crianças em berçários, creches e Educação Maternal, também denominado de pré-escola, para que as mesmas interajam entre seus semelhantes e comecem a aproximar-se da vida social e educacional, estando preparadas para uma nova etapa educacional. Mediante essa perspectiva da vida psicopedagógica das crianças, Kuhlmann Júnior ressalta que: Pode-se falar de “Educação Infantil” em um sentido bastante amplo, envolvendo toda e qualquer forma de educação da criança na família, na comunidade, na sociedade e na cultura em que viva (2003. p. 469). -/- Mediante a análise de Kuhlmann, logo, a EI designa a periodicidade regular a uma entidade educativa exterior ao domicílio, isto é, trata-se do lapso da vida escolar em que se volta-se, pedagogicamente, ao público entre 0 e 5 anos de idade no Brasil; vale salientar que nessa idade entre 0 e 5 anos, as crianças não estão submetidas a obrigatoriedade do ingresso na vida escolar. A Constituição brasileira de 1988 define no Título VIII (Da Ordem Social), Capítulo III (Da Educação, da Cultura e do Desporto), Seção I (Da Educação), Artigo 208 que: O dever do Estado com a educação será efetivado mediante a garantia de: Inciso IV – educação infantil, em creche e pré-escola, às crianças até 5 (cinco) anos de idade. (Constituição Federal, 2016. p. 63). -/- A Lei de Diretrizes e Bases da Educação Nacional, especificamente a Lei 9394/96, denomina a Creche como sendo a entidade responsável por promover o primeiro contato das crianças com o ambiente escolar, a idade é determinada como sendo de 0 a 3 anos de idade (Artigo 30. Inciso I). Também denomina de pré-escola a instituição responsável pelo ensino de crianças entre 4 e 6 anos de idade (Artigo 30. Inciso II). Não obstante, mediante Lei 11274/06 que reedita o Artigo 32 da Lei 9394/96, o ensino fundamental passou a ser de 9 (nove) anos de idade e não mais de 8 (oito), logo, as crianças que com 6 (seis) anos de idade não eram submetidas a obrigatoriedade do estudo, passaram a fazer parte da conformação obrigatória, isto é, elas já não fazem mais parte do ensino eletivo ou optativo da pré-escola e sim do ensino fundamental obrigatório. -/- Dito isto, a LDB diz na Seção II (Da Educação Infantil) e no Artigo 29 que a Educação Infantil é tida como a primeira etapa da Educação Básica, e tem por objetivo, a promoção e o favorecimento do desenvolvimento integral da criança de 0 à 5 anos de idade, nos mais variados aspectos possíveis, sendo eles o físico, psicológico, intelectual e social, sendo mais que uma complementação da instrução familiar e da sociedade (BRASIL, 2005. p. 17). Seguindo a linha teórica acerca das crianças, o Artigo 30, da mesma, ressalta que a EI será promovida por meio de creches para crianças de 0 a 3 anos e em pré-escolas para o público entre 4 e 5 anos de idade, como enaltecido supracitadamente. No que se refere a avaliação, no Artigo 31 esse processo será feito porventura do acompanhamento e registro do desenvolvimento das crianças, sem que haja quaisquer tipos de promoção, mesmo que vise o acesso ao Ensino Fundamental. -/- Vale enfatizar que essa modalidade de ensino tem uma finalidade pedagógica, um trabalho que se apropria da realidade e dos conhecimentos infantis como estopim e os amplia mediante atividades que tem uma certa significação concreta para a vida dos infantes e, isocronicamente asseguram a aquisição de novos conhecimentos. Doravante e por meio dessa perspectiva, é imprescindível que o educador da EI preocupe-se com o arranjo e aplicação dos trabalhos fazendo, assim, uma contribuição para a ascensão do infante de 0 a 5 anos. -/- O Referencial Curricular Nacional para a Educação Infantil de 1998 ressalta que deve-se levam em conta que os infantes são distintos entre si, isto é, que cada um possui um ritmo peculiar de aprendizagem. Dito isto, o educador deverá preparar-se para promover aos educandos uma educação alicerçada na condição de aprendizagem peculiar de cada um deles, considerando-se bastante singulares e com particularidades. Para isso, o governo deverá fornecer um alicerce na formação dos educadores, preparando-os para enfrentar esse mundo repleto de dificuldades mas, no fim, de uma extensa realização pessoal e profissional. Ante as características peculiares dos ritmos das crianças, o grande desafio que ora implica na EI é com que os profissionais consigam compreender, conhecer e reconhecer o jeito peculiar dos infantes serem e estarem inseridos no mundo. O RCN da modalidade EI ainda explicita que a entidade promovente da EI deve tornar acessível a todos os infantes que ora frequentam-no, indiscriminadamente, elementos culturais que enriquecem a ascensão e a inserção social dos mesmos. -/- A EI é caracterizada, historicamente, pelo assistencialismo reduzido e a um recinto que vise, primordialmente, os cuidados com os infantes. Ao passo dos anos, e diversas metamorfoses ocorridas nas tendências educacionais, passou a ser teorizada como um simples processo educativo. -/- Paulo Freire (1921-1997) já alertava que: Quando se tira da criança a possibilidade este ou aquele espaço da realidade, na verdade se está alienando-a da sua capacidade de construir seus conhecimentos. Porque o ato de conhecer é tão vital quanto comer ou dormir; e eu não posso comer por alguém (FREIRE, 1983. p. 36). Logo, nesse contexto é sumamente impossível desassociar os termos cuidar e o educar, eixos cêntricos que dão características peculiares na constituição do espaço e do ambiente escolar nesse lapso da educação. Doravante, contradizendo ao que muitos ainda pensam o cuidar e o educar não remetem à perspectiva assistencialista e ao processo de ensino e aprendizagem dos mesmos, uma vez que ambos complementam-se, além de integrarem-se para uma melhor promoção do desenvolvimento do infante, no que se refere à edificação de sua autonomia e totalidade. -/- O infante carece de cuidados básicos no que se refere à saúde, os quais pode ser obtido mediante uma alimentação saudável e balanceada, assepsia, educação física, momentos de ópio, entre outras inúmeras situações peculiares à crianças e que exigem do educador uma atenção especial em relação aos cuidados com a criança. Todavia, é primordial que o profissional da EI desenvolva um trabalho educacional voltado ao favorecimento e a condução para a descoberta e edificação de sua identidade, apropriando-se de saberes necessários à constituição da autonomia tanto do infante, que ora se torna imprescindível quanto do próprio educador. -/- No que tange a afetividade na EI, falamos de uma constituição do cenário contemporâneo dos ambientes escolares e que, no futuro, tornara-se sumamente imprescindível algum marco ou lapsos que persistem e poderão persistir na educação futura do fundamental e até mesmo do médio ou ensino universitário, principalmente questões de vivência com os outros. Compreensão do outro, desenvolvimento de projetos, percepção da interdependência, de não à quaisquer tipos de violência, administração de possíveis conflitos, descoberta do outro, participação em projetos comuns, prazer no esforço alheio, cooperativada são essenciais nesses primeiros anos escolares e, para que isso torne-se realidade, é necessário que se abra um leque de possibilidades para o futuro mediante a formação atual dos educadores, logo com um alicerce maior em suas formações, o educador(a) estará preparado para atuar frente ao infante, unindo esse lapso fundamental de sua vida dos primeiros anos escolares. -/- REFERÊNCIAS BIBLIOGRÁFICAS -/- BRASIL. [Constituição (1988)]. Constituição da República Federativa do Brasil de 1988. Brasília, DF: Presidência da República, 2016. -/- _______. Leis de Diretrizes e Bases da Educação Nacional. Lei 9394/1996. Brasília, 2005. -/- _______. Ministério da Educação e do Desporto. Secretaria de Educação Fundamental. Referencial Curricular Nacional para a Educação Infantil. Brasília: MEC/SEF, 1998. -/- FREIRE, P. Pedagogia do oprimido. 17ª ed. São Paulo: Paz e Terra, 1983. -/- KUHLMANN JR., M.. Educando a infância brasileira. In: LOPES, E. M. T.; FILHO, L. M. F.; VEIGA, C. G. (Org.). 500 anos de educação no Brasil. 4ªed. Belo Horizonte: Autêntica, 2008. -/- LEÃO, J. L. de S. Educação Infantil no Brasil: Algumas Considerações. In: LEÃO, J. L. de S. O processo de inclusão escolar na educação infantil sob a ótica de assessoras pedagógicas da Secretaria Municipal de Educação do Natal/RN. 2008. Trabalho de conclusão de curso (Licenciatura em Pedagogia) – Centro de Educação, Universidade Federal do Rio Grande do Norte, 2018. p. 18. (shrink)
Desacordo.Teresa Marques - 2015 - Compêndio Em Linha de Problemas de Filosofia Analítica.details
Discordamos sobre todo o tipo de coisas: o que existe, como as coisas funcionam, o que fazer, de que gostamos, etc. Entre os vários tipos de desacordo discutidos em debates filosóficos contemporâneos encontram-se os desacordos irrepreensíveis, os desacordos meramente verbais, e os desacordos entre pares. Os diferentes tipos de desacordo dão lugar a diversos problemas filosóficos. Há filósofos defendem que se o desacordo sobre uma questão é irrepreensível, então talvez não haja verdades objectivas sobre essa questão, e que se um (...) desacordo é meramente verbal, então não existe nenhum problema real em discussão. Algumas consequências destes tipos de desacordo concernem a objectividade dos problemas em causa. Outras consequèncias concernem a racionalidade das nossas crenças, como quando aprendemos que um par epistémico não concorda connosco. Este artigo resume a discussão filosófica contemporânea sobre o desacordo meramente verbal, o desacordo irrepreensível, e o desacordo entre pares. (shrink)
It is hardly a novel claim that the work of Ursula K. Le Guin (1929–2018) contains influences from philosophical Daoism, but I argue that this influence has yet to be fully understood. Several scholars criticize Le Guin for misrepresenting Daoist ideas as they appear in ancient Chinese philosophical texts, particularly the Dao De Jing and the Zhuangzi. While I have sympathy for this charge, especially as it relates to Le Guin’s translation of the Dao De Jing, I argue that it (...) fails to understand the extent to which her fiction contains her own philosophical development of Daoist ideas. Looking at some of her most influential works (e.g., The Left Hand of Darkness, The Dispossessed, The Lathe of Heaven, A Wizard of Earthsea, etc.), I suggest that Le Guin’s fiction is better seen as a refocusing of Daoist concepts such as complementary contrasts and non-action (wu wei) in the contexts of modern feminism, modern anarchism, science fiction, and fantasy. Le Guin was not trying to represent ancient Daoism as a scholar. Rather, she was trying to reimagine Daoism as a creative artist and philosopher in her own right. This way of viewing Le Guin’s work does not fully exorcise the specter of the possibility of Orientalist cultural appropriation, but it does make the issue more complex in a way that can deepen further conversations. To what extent can an artist be guilty of misrepresentation if representation was not, strictly speaking, her goal? I end with a brief reflection on what is perhaps the deepest philosophical lesson of Le Guin’s work: everything is more complicated than it first appears. On that note, the present article is an attempt not just to do philosophy about Le Guin, but to do philosophy in a Le Guinian fashion, which requires rethinking the metaphor of combat that guides much academic philosophy today. (shrink)
In this essay I revise, based on the notion of the ‘enlightened ruler’ or mingzhu and his critique of the literati of his time, the common belief that Han Fei was an amoralist and an advocate of tyranny. Instead, I will argue that his writings are dedicated to advising those who ought to rule in order to achieve the goal of a peaceful and stable society framed by laws in accordance with the dao.
As múltiplas psicologias que pretendem descrever o homem dão a impressão de ser tentativas desordenadas. Elas pretendem se construir a partir das estruturas biológicas e reduzem seu objeto de estudo ao corpo ou o deduzem das funções orgânicas; a pesquisa psicológica não é mais que um ramo da fisiologia (ou de um domínio dela): a reflexologia. Ou então elas são reflexivas, introspectivas, fenomenológicas e o homem é puro espírito. Elas estudam as diversidades humanas e descrevem a evolução da criança, as (...) degradações do louco, a estranheza dos primitivos. Ora elas descrevem o elemento, ora pretendem compreender o todo. Às vezes se ocupam exclusivamente com a forma objetiva do comportamento, outras vezes vinculam as ações à vida interior para explicar as condutas, ou ainda pretendem apreender a existência vivida. Algumas deduzem, outras são puramente experimentais e utilizam estruturas matemáticas como forma descritiva. As psicologias diurnas querem explicar a razão da vida do espírito pelos clarões decisivos da inteligência, enquanto as outras visam as inquietantes profundezas da obscuridade interior. Naturalistas, elas traçam os contornos definitivos do homem; humanistas, reconhecem nele algo de inexplicável. Esta complexidade é, talvez, justamente a nossa. Pobre alma (as psicologias que hesitam sobre seus conceitos não sabem sequer nomeá-la), cercada de técnicas, remexida de questões, posta em formulários, traduzida em curvas. Auguste Comte acreditava, com algumas reservas, que a psicologia era uma ciência ilusória, impossível e a menosprezou. Não somos tão ousados. Apesar de tudo, há psicólogos, e que pesquisam. (shrink)
O discurso a respeito dos Mundos Possíveis pode ser uma ferramenta bastante útil para a filosofia. Pode ser útil, por exemplo, para a compreensão das modalidades, da necessidade e da possibilidade. No entanto, para utilizar o discurso dos Mundos Possíveis devemos ter uma explicação satisfatória do caráter ontológico da Semântica dos Mundos Possíveis. Para isso, precisamos responder a questões do tipo: O que é um Mundo Possível? De que forma eles existem? Em quantos Mundos Possíveis podemos falar? Há diversas formas (...) de responder a estas perguntas. Neste trabalho pretendemos apresentar duas teorias que possuem uma abordagem realista para a noção de Mundo Possível. Cada uma dessas teorias atribuiu um caráter ontológico diferente para a noção de Mundo Possível e, portanto, uma metafísica diferente. A primeira delas é o Realismo Modal Extremo, teoria atribuída a David Lewis que defende a existência genuína de uma pluralidade de Mundos Possíveis. A segunda teoria é a teoria combinatória da possibilidade de David Armstrong. Essa teoria é uma versão das teorias do atualismo modal que também são teorias realista em relação à existência de mundos possíveis, mas que dão prioridade ao mundo atual. Por fim, pretendemos comparar as duas teorias e avaliar qual é mais vantajosa levando em consideração o custo ontológico de cada uma delas, (i.e., em relação ao número de entidades postuladas) para termos uma metafísica mais econômica. (shrink)
Este trabalho tem por objetivo examinar as relações entre conhecimento e verdade (no sentido de descobrimento e abertura), no contexto da Ontologia Fundamental, de Martin Heidegger. Num primeiro momento, busca-se caracterizar o conhecimento como um modo derivado do ser-no-mundo enquanto ocupação, patenteando a estrutura intencional que lhe é própria, bem como explicitando a interpretação fenomenológicoexistencial do “resultado” do comportamento cognoscitivo (conceitos de substância/eidos), que é posta em questão quanto à sua correção, em se considerando os conceitos da Física Moderna. A (...) abordagem do fenômeno do conhecimento, aqui empreendida, culmina com a apresentação das relações “implícitas” entre o modo de ser do conhecimento e o “problema da verdade”, presentes na análise do fenômeno da enunciação predicativa (parágrafo 33, de Ser e Tempo), com base na qual se intenta indicar o lugar da Lógica na Ontologia Fundamental. Em seguida, no contexto da tematização do significado existencial de verdade, foca-se o conceito de Evidenciação (Ausweisung), no qual se entrelaçam plenamente as concepções heideggerianas de conhecimento e de verdade, porquanto se trata da descrição da verdade do conhecimento como um modo de descobrimento enunciativo dos entes tais como são em si mesmos. Busca-se, em primeiro lugar, mostrar a apropriação de Husserl e de Aristóteles, bem como a manutenção da idéia de verdade como adequação, embutidas naquele conceito. Propõe-se a idéia de que a não-verdade (falsidade) dos enunciados predicativos (não explicitamente tematizada por Heidegger, em Ser e Tempo) pode ser pensada a partir do conceito husserliano de “síntese de diferenciação”. Procura-se, ainda, esclarecer o que significa o “em si mesmo” dos entes que se dão na evidenciação e se ocultam na diferenciação, e salientar o aspecto problemático da idéia de uma dadidade dos entes em “si mesmos”, no âmbito da investigação científica. Por fim, apresenta-se a discussão acerca da concepção heideggeriana de verdade, iniciada por Tugendhat, em 1964, e constantemente retomada por vários filósofos, inclusive por Gethmann, cuja interpretação é aqui avaliada. (shrink)
I argue that the main theme of the Zhuangzi is that of spiritual transformation. If there is no such theme in the Zhuangzi, it becomes an obscure text with relativistic viewpoints contradicting statements and stories designed to lead the reader to a state of spiritual transformation. I propose to reveal the coherence of the deep structure of the text by clearly dividing relativistic statements designed to break down fixed viewpoints from statements, anecdotes, paradoxes and metaphors designed to lead the reader (...) to a state of spiritual transformation. Without such an analysis, its profound stories such as the butterfly dream and the Great Sage dream will blatantly contradict each other and leave us bereft of the wisdom they presage. Unlike the great works of poetic and philosophic wisdom such as the Dao de Jing and the Symposium, the Zhuangzi will be reduced to a virtually unintelligible, lengthy, disjointed literary ditty, a potpourri of paradoxical puzzles, puns and parables, obscure philosophical conundrums, monstrous interlocutors and historical personages used as mouthpieces authoritatively arguing on behalf of viewpoints humorously opposite to what they historically held. (shrink)
Concentrados e Rações Para Cabras em Lactação -/- ___________________________________________________________________________ De um modo geral, há grande dificuldade nas criações zootécnicas nacionais para a formulação e uso racional de concentrados nas rações dos animais, neste caso, de caprinos, em especial, para cabras em lactação. O problema torna-se real e complexo em função das particularidades apresentadas pelos animais relativas ao seu trato digestivo, além de seus hábitos alimentares. Uma séria dificuldade relacionada com a tomada de decisão no momento da formulação da ração concentrada (...) reside na qualidade do volumoso utilizado. Esse volumoso possui uma qualidade bromatológica variável, na maioria das vezes, seja pelo manejo inadequado da forrageira ou do próprio ciclo vegetativo da planta utilizada. O solo também possui grande impacto nas características químicas da forrageira disponibilizada para os animais. Dada a variabilidade da qualidade da ração volumosa, o concentrado torna-se mal balanceado, sendo fornecido em quantidades inadequadas, favorecendo uma sub ou super alimentação, o que acarreta níveis de produção insatisfatórios e grande prejuízo para a indústria caprina, uma vez que afetará diretamente as características químicas e físicas do leite da cabra, mudando seus teores de sólidos totais etc. -/- OS NUTRIENTES E SUA IMPORT NCIA Muitos nutrientes são necessários na dieta da cabra para a realização do metabolismo normal, para a manutenção das funções corporais e para a produção que inclui acréscimo de tecido (animal em crescimento), para a reprodução e sua manutenção e, por fim, para a produção dos produtos como carne, leite e fibra. As classes específicas de nutrientes incluem carboidratos e lipídeos que fornecem energia; nitrogênio proteico ou não proteico que fornecem aminoácidos e energia; vitaminas; minerais e água. Embora seja ignorada por muitos autores, a água é um nutriente necessário para a digestão, metabolismo e produção. -/- Energia -/- A eficiência da utilização dos alimentos depende de um suprimento adequado de energia, uma vez que o processo de utilização dos alimentos requer gasto energético, sendo, portanto, de grande importância o suprimento energético para a produtividade dos caprinos. A deficiência energética retarda o crescimento e desenvolvimento de cabritos, aumenta a idade à puberdade, reduz a fertilidade e diminui a produção leiteira. Uma deficiência persistente acarreta redução na resistência a doenças infecciosas e parasitárias. A baixa resistência imunológica associada a deficiência energética ainda pode ser agravada mediante o déficit de outros princípios nutritivos como proteínas, vitaminas e minerais. O consumo inapropriado de energia resulta na inadequada ingestão de alimentos ou na baixa qualidade da dieta fornecida para o caprino. A baixa ingestão de energia também pode ser causada pelas altas quantidades de água presentes em algumas forrageiras in natura, por isso o ideal é o fornecimento de volumosos na sua matéria seca, onde será disponibilizado somente os nutrientes, segundo suas características bromatológicas. Segundo DA SILVA & FONTAIN, 2021 a base de qualquer ração é a energia, e se houver uma deficiência existente, os demais nutrientes e os aditivos serão subutilizados pelos animais. Os ruminantes possuem a capacidade de utilização energética através dos carboidratos complexos como celulose, hemicelulose, pectina etc., que estão presentes nas forragens, essa utilização acontece graças ao processo de fermentação que ocorre no rúmen. Entretanto, assim como ocorre em monogástricos, também possuem a capacidade de utilização de demais carboidratos como amido e açúcares. Os ruminantes exigem determinada quantidade de fibra, mas dependendo do animal, do nível de produção e dos ingredientes da ração, há necessidade de incluir na ração os denominados concentrados energéticos. Por exemplo as rações ricas em volumosos (alimentos fibrosos) não podem atender os requisitos energéticos em razão das limitações físicas do animal para ingerir uma quantidade suficiente de alimento, isto é, para atender suas exigências seria necessário grandes quantidades de ração volumosa ingerida, o que é impossível devido a capacidade do rúmen. Neste caso, para se reduzir o volume de ração ingerida, há necessidade de substituir parte dos alimentos fibrosos por concentrados energéticos de boa qualidade. Tais considerações são suficientes para aclarar a importância do aporte de energia no balanceamento de rações para cabras em lactação. -/- Proteínas -/- As proteínas exercem várias funções no organismo do animal e, desse modo, tornam- -se essenciais à alimentação. Elas são necessárias, por exemplo, para a manutenção do organismo, para reparos e formação dos tecidos que são continuamente desgastados, na manutenção dos processos fisiológicos, no crescimento de fetos e dos animais jovens e na síntese do leite. Os ruminantes, assim como outros animais, necessitam de vários componentes na dieta para desempenharem suas funções produtivas e reprodutivas. Esses componentes são chamados essenciais, do qual sem a sua presença os animais não poderiam sobreviver. Entre eles estão as fontes de nitrogênio proteico e não proteico que, após transformações fisiológicas e metabólicas, dão origem a proteínas que são digeridas, absorvidas e utilizadas pelos ruminantes (FERREIRA, 1983). As proteínas destacam-se, dentro das substâncias essenciais, pela amplitude de funções que desempenham no organismo. Estas participam desde a estruturação do corpo (músculos, cartilagens, unhas, pele e pelos), até mecanismos complexos de transporte e metabolismo. Portanto, dentre o supracitado, é essencial conhecer os principais concentrados proteicos e seus limites de utilização, visando o melhor aproveitamento destes, desde a esfera econômica até o impacto positivo sobre a produção de produtos caprinos. -/- Minerais -/- Existem pelo menos 15 minerais essenciais para a nutrição dos ruminantes, dentre os macronutrientes, isto é, os exigidos em maior quantidade na dieta, estão o cálcio, fósforo, sódio, cloro, magnésio, potássio e enxofre, e dentre os micronutrientes, ou seja, exigidos em menor quantidade, porém essenciais a sua presença, estão o ferro, iodo, zinco, cobre, manganês, cobalto, molibdênio e selênio. Em qualquer região, concentrações tóxicas de minerais como cobre, flúor, manganês, molibdênio ou selênio causam redução na produção e produtividade animal. As deficiências minerais ou desequilíbrio destes no solo e nas forrageiras cultivadas neste, têm sido responsáveis pelos baixos índices reprodutivos, ou seja, tais déficits ocasionam perdas nos processos reprodutivos normais, além de causar inadequada produtividade em diversas regiões do Brasil. Segundo dados apresentados por SOUSA, 1983 os caprinos sob pastagens, com elevados déficits de fósforo, cobalto ou cobre, podem apresentar perdas superiores relativas a produção cárnea e láctea em relação aos animais criados sob pastagens com déficits de energia e/ou proteína. Os macrominerais presentes na ração (volumosa ou concentrada) chegam ao rúmen e são dissolvidos, desempenhando uma série de funções importantes, além das específicas nas células e nos tecidos. Dentre elas incluem-se a mantença de um pH constante através da formação da solução tamponante, mantença de um potencial de redução e da pressão osmótica no rúmen. Os micronutrientes, por sua vez, possuem mais funções específicas na célula e no tecido, atuando como constituintes de coenzimas, catalizadores etc. (COELHO DA SILVA & LEÃO, 1979). Assim, torna-se indispensável conhecer as fontes dos minerais e a melhor maneira de utilizá-los durante o preparo de concentrados para cabras em lactação. -/- Vitaminas -/- Os caprinos necessitam fontes alimentares de vitaminas lipossolúveis (A, D, E e K), entretanto os microrganismos do rúmen, através do metabolismo e fermentação, produzem quantidades suficientes de vitaminas hidrossolúveis. Os animais em pastejo somente obtém suficientes quantidades de vitaminas ou precursores de vitaminas para satisfazer as necessidades, porém pode ser necessário a adição complementar de suplementos vitamínicos aos animais alimentados em confinamento ou com altas produções leiteiras. Os ruminantes exigem todas as vitaminas que são metabolicamente essenciais para os monogástricos. Essa indicação tem sido obtida através de estudos sobre as exigências vitamínicas em animais jovens, antes do desenvolvimento completo e funcionamento adequado do rúmen, ou com o emprego de inibidores da vitamina em estudo e observando-se a consequente manifestação do sintoma de deficiência. O suprimento de vitaminas do complexo B e da vitamina K para o ruminante é feito em decorrência das fermentações que ocorrem no aparelho digestivo. Entretanto, existem algumas dúvidas se a síntese de algumas vitaminas do complexo B é adequada para manter altos níveis de produção e uma alta taxa de crescimento. Como supracitado, existem inúmeras informações de que a maioria das vitaminas possam ser sintetizadas ou no trato gastrointestinal ou nos tecidos. Entretanto, as vitaminas A, D e E devem ser fornecidas ao animal (ARAÚJO & ZANETTI, 2019). As principais funções das vitaminas do complexo B estão relacionadas com o eficiente aproveitamento dos açúcares, gorduras e proteínas dos alimentos. A vitamina C possui papel imprescindível no metabolismo geral dos nutrientes. Quanto à vitamina K, sua função mais relatada é como fator anti-hemorrágico, agindo na coagulação do sangue (VELLOSO, 1983). Quanto à vitamina A, sabemos que não existe nos vegetais, entretanto o caroteno presente é um precursor desta, onde este sofre metabolismo e se transforma em vitamina A no organismo do animal, por isso, muitas vezes é relatado como pró-vitamina A. Os ruminantes são excelentes animais quando se fala na transformação de ß-carotenos em vitamina A. A coloração verde das plantas forrageiras é uma garantia da presença de pigmentos carotenoides nelas. Assim, durante a época das águas (chuvas), quando as forrageiras consumidas estão verdes, não há qualquer problema quanto ao suprimento de pró-vitamina A. Por sua vez, quando as pastagens estão amareladas e secas, pode aumentar a possibilidade do aparecimento de sintomas de deficiência de vitamina A, e esse problema pode ser agravado conforme aumenta-se o período de estiagem (VELLOSO, 1983). Deve-se dar especial atenção às cabras em lactação que, na maioria dos casos, recebem ração à base de fenos, que muitas vezes são mal conservados e apresentam pequeno conteúdo de ß-caroteno. As dietas típicas para caprinos contêm quantidades de caroteno suficientes para prevenir possíveis deficiências de vitamina A. O hábito alimentar dos caprinos sob pastejo, isto é, sua tendência de selecionar as partes mais verdes da planta coloca-os em vantagem em relação a outros ruminantes, entretanto, na ausência de partes verdes essa vantagem não possui importância. A deficiência de vitamina A em caprinos criados nos trópicos é rara, exceto nas condições supracitadas (DA SILVA et. al., 2021). A vitamina E apresenta uma deficiência ocasional em caprinos, embora essa vitamina, que é transferida através do leite, seja considerada essencial em função de suas propriedades antioxidantes (DA SILVA et. al., 2021). A vitamina D é relatada como fator anti-raquítico, dada sua propriedade em prevenir o raquitismo através de duas vias conhecidas, seja pelo aumento da absorção de cálcio dietético pelo intestino delgado ou pela mobilização deste, presente nos ossos. Além de evitar o raquitismo em animais jovens, a vitamina D também atua na integridade corporal dos adultos. Os caprinos expostos à luz solar por alguns minutos diariamente conseguem receber vitamina D em quantidades suficientes para suas necessidades fisiológicas, esse recebimento de vitamina D acontece através da conversão do 7-dehidrocolesterol da pele em vitamina D3, portanto a vitamina D3 é uma pró-vitamina. Assim, em animais mantidos em regime de pastejo, nas condições brasileiras, não há maior preocupação quanto ao suprimento de vitamina D3 (VELLOSO, 1983). Entretanto, os animais em regime de confinamento total, onde não possuem acesso à luz solar, devem receber atenção especial, uma vez que podem ocorrer deficiência desta vitamina, esta que pode ser evitada mediante o fornecimento da vitamina na mistura concentrada. -/- Água -/- Muitos autores da área de nutrição animal, seja em artigos ou livros, desconsideram a água como nutriente essencial para os animais, entretanto ela é imprescindível para inúmeras funções metabólicas. Além da água de bebida, os caprinos obtêm água através dos alimentos consumidos na matéria natural, da neve derretida e através do orvalho. A necessidade de água se deve a três motivos, primeiro pela excreção de água nas fezes e na urina ligada à utilização digestiva e metabólica dos alimentos; segundo pela fixação e exportação de água nas produções (carne, leite, pele e fibra); e, por fim, pelas perdas de vapor de água pelos pulmões e através da pele. O total de água requerida varia segundo o tamanho e condição fisiológica do animal, a temperatura ambiental e o nível de ingestão de matéria seca do animal. A ingestão de água é expressa em kg de água necessária por kg de matéria seca ingerida. Nas condições brasileiras, onde a temperatura fica acima dos 30 ºC, normalmente, o ideal de fornecimento é de 6-10 kg de água/kg de IMS. O consumo total é estimado em 3,5 kg de água/kg de leite produzido. Segundo DA SILVA & AIRES, 2018 as recomendações são de 145,6 g de água/kg de peso metabólico (kg0,75) para mantença e 1,43 kg/kg de leite produzido. Para aclarar os dados, suponhamos uma cabra em lactação com 40 kg de PV e produção de 5 kg de leite/dia, seu consumo será de 145,6 g x 400,75 = 2,32 kg de água para mantença + 1,43 x 5 = 7,15 kg de água, seu consumo total será 9,47 kg de água/dia. É necessário enfatizar que, à medida que a temperatura ambiental aumenta, os requisitos de água também aumentam. Em condições semidesérticas os caprinos adaptam-se, bebendo água apenas duas vezes por semana. A equação de necessidade de água, segundo DA SILVA & AIRES, 2018, é: ingestão total de água (L/dia) = 3,86 x IMS - 0,99. REQUISITOS NUTRICIONAIS -/- Para que possamos formular uma dieta balanceada e que os concentrados possam ser utilizados eficazmente e racionalmente, primeiramente é necessário conhecer as exigências nutricionais das cabras em lactação. Esses requerimentos são, na verdade, aproximações dos valores reais das exigências dos animais. Normalmente, os requisitos são tabulados, visando a facilidade no manejo de informações, entendimento e utilização dos dados na prática. Infelizmente, no Brasil não existem tabelas das exigências nutricionais dos caprinos e, com isso, é imperativo a utilização de dados obtidos em outros países e que possuem condições climáticas e animais diferentes, o que nem sempre corresponde à realidade brasileira. Os dados mais utilizados para estabelecimento das exigências são os do NRC nos Estados Unidos, AFRC na Inglaterra, CSIRO na Austrália, INRA na França e FEDNA na Espanha. A tabela 1 apresenta os requisitos nutricionais de ingestão de matéria seca de cabras leiteiras segundo a equação proposta pelo AFRC. É importante levar em consideração todos os fatores que afetam as exigências das cabras, tais como exigências de mantença, gestação, crescimento, atividade física, lactação, clima, raça etc. Os valores apresentados na tabela 2 devem ser incluídos aos valores de mantença. Os requerimentos completos dos caprinos podem ser tomados nas tabelas 3 a 19 do livro Formulação de Ração Para Caprinos. Como supracitado, os valores das exigências para produção de leite devem ser adicionados aos de mantença, por sua vez a tabela 3 apresenta os valores de produção que devem ser múltiplos dos requisitos de mantença. Existem formulações que levam em consideração a porcentagem de nutrientes no conteúdo total do concentrado. Diversos autores publicam quantidades de proteína, nutrientes digestíveis totais, cálcio e fósforo com base na matéria seca da ração. DA SILVA, 2021 sugere que para cabras em lactação com uma ou duas crias é ideal um concentrado com 14 a 16% de proteína bruta. Uma formulação para cabras em lactação, segundo DA SILVA, 2021, pode obedecer a ordem de 3 a 5% de IMS, 16 a 24% de proteína bruta, 65% de nutrientes digestíveis totais e minerais na ordem de 0,75% Ca e 0,3% P. O teor de nutrientes na mistura concentrada é importante para saber se a ração irá atender às exigências das cabras em lactação (tabela 8). O conhecimento dos níveis de nutrientes na mistura é essencial para elaborar uma ração balanceada que atenda aos requisitos de mantença e de produção. É importante, também, saber as observações quanto a relação entre energia/proteína e entre os minerais para que não haja um mau aproveitamento dos nutrientes e possíveis distúrbios metabólicos. ALIMENTOS CONCENTRADOS -/- Por definição, são aqueles que possuem conteúdo de fibra bruta inferior a 18%. Eles são divididos em concentrados proteicos e energéticos, quando possuem mais ou menos de 20% de proteína bruta, respectivamente. Um grande número de alimentos pode ser usado no balanceamento das misturas de concentrados na propriedade e deve permitir uma formulação equilibrada nutricionalmente, economicamente e de boa qualidade. As tabelas 9 e 10 apresentam a composição de alguns alimentos concentrados considerados mais comuns na formulação de dietas e de maior disponibilidade no Brasil. As recomendações para utilização de concentrados nas rações de cabras leiteiras podem variar em função dos demais ingredientes da ração total. De modo geral, quanto aos concentrados energéticos, não existem restrições às quantidades usadas na ração, desde que as exigências nutricionais sejam atendidas. A tabela 11 apresenta as restrições de utilização dos ingredientes na ração de caprinos. De tal forma pode ser pensado para os concentrados proteicos, entretanto, nesse caso, exige-se mais cuidado por parte do formulador, uma vez que deve-se levar em consideração a carga energética presente no ingrediente proteico. Deve-se enfatizar sempre que a utilização de ingredientes de origem animal é expressamente proibida na alimentação de ruminantes. Deve-se, ainda, referenciar quanto ao uso de fontes de nitrogênio não proteico (NNP) (ureia, biureto etc.) que podem ser usadas com vantagens nas dietas com alta carga energética. O critério de uso de NNP, em até ⅓ da proteína total da dieta, ainda pode ser utilizado de forma generalizada. RECOMENDAÇÕES PARA USO DAS MISTURAS DE CONCENTRADOS -/- Qualquer tipo de alimento concentrado pode ser usado no preparo de uma mistura de boa qualidade, entretanto os requerimentos das cabras devem ser atendidos. Sendo assim, o preço e a disponibilidade dos alimentos básicos são fatores importantes na escolha dos ingredientes. Conforme supracitado, a composição da mistura concentrada depende da qualidade do volumoso. Para que o produtor tenha garantia e controle de que as exigências estão sendo supridas, é recomendável o ajuste periódico das quantidades de concentrados que serão fornecidas. Esse ajuste é necessário em função da mudança da composição química das forrageiras com o avanço da maturidade fisiológica da planta. Essa composição normalmente existe em tabelas, entretanto as melhores aproximações são obtidas quando se faz a análise destas forrageiras em laboratórios especializados. É difícil fazer uma recomendação única para fornecimento de concentrado para cabras em lactação. Cada propriedade dispõe de recursos forrageiros peculiares, com variações na qualidade nutricional. Não obstante, os valores apresentados na tabela 12 podem servir de guia quando há impossibilidade de realização de um balanceamento específico para cada propriedade. É essencial a verificação dos níveis de outros nutrientes, tais como energia e minerais. Em geral, a preocupação é dada somente à proteína e, muitas vezes, a energia é negligenciada. O conteúdo de energia da ração (EM, EL ou NDT) muitas vezes se apresenta deficiente, o que possui relação direta com os índices de produção e produtividade insatisfatórios. Este é um dos pontos de limitação da produção leiteira, principalmente porque escapa à capacidade de observação do criador. Quando alimentadas com forrageiras de média ou baixa qualidade, é necessário completar os requerimentos de mantença das cabras e, dependendo da qualidade da forrageira disponível, recomenda-se de 200 a 500 g de concentrado/cabeça/dia. As fontes de NNP também podem ser utilizadas para cabras em lactação, desde que não ultrapasse ⅓ do nitrogênio total da dieta. Em termos práticos, a ureia deve constituir até 1% da matéria seca total da dieta ou, aproximadamente, 3% da mistura de concentrados. Uma adaptação gradativa é necessária para que os caprinos possam aproveitar eficazmente a ureia sem distúrbios. Essa adaptação é feita com níveis crescentes de ureia adicionados ao concentrado na base de 0,5% por semana até a limitação. Desta forma, na sexta semana, as cabras estarão recebendo concentrado contendo 3% do elemento. No caso de cabras de alta produção leiteira, é essencial dar atenção aos minerais, uma vez que elas não conseguem ingerir as quantidades exigidas para sua mantença e produção. Para mitigar o problema, recomenda-se adicionar ao concentrado ou à mistura concentrada um premix, isto é, uma mistura vitamínico-mineral completa ao nível de 3%. As rações comerciais também podem ser utilizadas, desde que se verifiquem os níveis de garantia, tanto de qualidade como de composição. É importante que se evite rações com altos níveis de proteína, onde, normalmente, não possuem boa relação energia/proteína. Essas rações, em geral, não são bem aproveitadas pelas cabras, onerando o custo de produção de leite. É importante sempre frisar que um máximo cuidado deve ser dado ao estado de conservação dos ingredientes. As condições de armazenamento devem ser as melhores possíveis, procurando-se locais secos e com boa ventilação. Alimentos rancificados, de uma forma geral, são rejeitados pelas cabras. No caso de utilização de alimentos com alto conteúdo de matéria graxa, que se rancificam facilmente, deve-se ter cuidados especiais, evitando-se preparar grandes quantidades de uma só vez. Outro ponto que merece destaque é a presença de bolores. Os alimentos mofados devem ser sistematicamente eliminados, pois além de causar danos à saúde do animal, podem também ocasionar problemas para a saúde humana. Intoxicações por aflatoxina são frequentemente relatadas em caprinos. Assim, o uso de ingredientes suscetíveis ao fungo (Aspergillus flavus) que produz aflatoxina, deve ser feito com ressalvas. É imprescindível salientar que essas toxinas também podem ser produzidas por outros fungos e podem estar presentes em uma série de alimentos em más condições de armazenamento. O local de armazenamento dos ingredientes ou da mistura concentrada deve possuir boa vedação para não permitir a entrada de insetos e/ou roedores. A proliferação de insetos, além de causar danos físicos aos alimentos, uma vez que se alimentam de alguns princípios nutritivos, produz um aquecimento em função dos processos metabólicos dos insetos, o que reduz as características do alimento e seu valor nutritivo. É essencial que o local seja à prova de roedores, pois além do grande desperdício de ração, causado pelo consumo e danos às embalagens, os roedores também são vetores de doenças que causam sérios prejuízos e perdas ao criatório. Na maioria dos casos, essas doenças escapam à capacidade de observação do criador. As cabras devem ser alimentadas segundo sua produção. Neste caso, é importante que a alimentação seja individual. Pode-se fornecer a ração durante a ordenha ou no intervalo do fornecimento da ração volumosa, porém sempre em horário previamente estabelecido. A mistura concentrada pode ser fornecida em cochos coletivos, mas é necessário a instalação de canzis para a contenção dos animais. É essencial que, antes do fornecimento, os cochos estejam limpos para permitir um melhor aproveitamento. Os concentrados muito farelados devem ser evitados durante a ordenha, uma vez que podem afetar a qualidade do leite pelo aumento da possibilidade de contaminação com poeira. As cabras de alta produção devem receber a ração concentrada dividida em duas ou três refeições no dia para permitir melhor aproveitamento. O fornecimento da mistura concentrada juntamente com a ração volumosa não é recomendável, mesmo que esta seja de baixa qualidade, porque de forma geral causam desperdício. No caso de cabras semi-confinadas, a prática da mistura de concentrados com os volumosos pode facilitar e agilizar o arraçoamento. Neste caso, também se faz recomendável a disposição de canzis nos comedouros para evitar a competição entre os animais. -/- RAÇÕES PARA CABRAS EM LACTAÇÃO -/- As rações de cabras em produção de leite devem ser de boa qualidade, produzidas em ambiente higienizado e com normas de segurança, além de, no caso de armazenamento, serem armazenadas em ambiente limpo, arejado e fora do alcance de insetos e roedores. Além das condições de fabricação e armazenagem, a ração, quando formulada, deverá obedecer os requisitos nutricionais das cabras para sua mantença e para a produção de leite. Sabemos que quanto maior a produção mais nutritiva deverá ser a ração. O fornecimento de ração volumosa também é essencial para o funcionamento normal do rúmen, além de fornecer uma carga nutricional. A relação entre volumoso e concentrado é importante, um não pode se sobressair em excesso sobre o outro, caso aconteça, haverá um desbalanceamento e consequente baixa na produção e produtividade. O limite de utilização dos ingredientes concentrados também é importante, caso haja uma incorporação maior de um dado ingrediente, poderá haver perdas significativas; por exemplo, se houver maior incorporação de ureia poderá haver intoxicação do animal. Na sequência, são apresentadas rações para cabras em lactação formuladas e disponíveis no livro sobre formulação de ração para caprinos do mesmo autor, exemplos 2 e seção rações prontas para caprinos números 2, 3, 4 e 21. A primeira ração formulada é para uma cabra da raça Saanen com 50 kg de PV e produção leiteira de 5 kg/dia com teor de gordura de 3,5%. A ração é composta por volumoso e concentrado, conforme tabela 13. Tomando os requerimentos da cabra em questão e a composição química da dieta, observamos que a dieta volumosa e concentrada supre todas as exigências nutricionais do animal (tabela 13.1). A seguir, são apresentadas misturas de volumosos e concentrados para cabras em lactação, conforme as recomendações dadas por DA SILVA, 2021 sobre os níveis nutricionais de rações para a categoria. Segundo o autor, a composição industrial de um concentrado deve ser de 16 a 24% de proteína bruta, 65% de nutrientes digestíveis totais, 0,75% de Ca e 0,3% de P, seguindo um CMS de 3 a 5% do peso vivo. Tais valores são genéricos, o ideal é consultar as tabelas de exigências das cabras. Os valores das misturas supracitadas, tanto de quantidade como de composição, são genéricos e podem variar em função de alguns fatores, os mais importantes são composição bromatológica dos ingredientes e das exigências nutricionais das cabras. REFERÊNCIAS BIBLIOGRÁFICAS -/- ARAÚJO, L. F.; ZANETTI, M. A. (Eds.). Nutrição Animal, 1ª ed. Barueri: Manole, 2019. COELHO DA SILVA, J. F. Concentrados energéticos para ruminantes. Informe Agropecuário, v. 9, n. 108, p. 37-42, 1983. COELHO DA SILVA, J. F.; LEÃO, M. I. Fundamentos de nutrição dos ruminantes. Piracicaba: Livroceres, 1979. 380 p. CRAMPTON, Earle W.; HARRIS, Lorin E. Nutrición animal aplicada: el uso de los alimentos en la formulación de raciones para el ganado. Zaragoza: Acribia, 1979. AIRES, P. R. R. Água na nutrição de caprinos e ovinos. In: Seminário da disciplina de Caprino-ovinocultura da professora Drª. Alcilene Maria Andrade Tavares Samay. Curso Técnico em Agropecuária. Belo Jardim: IFPE, 2018. DA SILVA, A. T. M. Rações para cabritos, caprinos a pasto, em mantença, reprodutores e cabras gestantes e em lactação. In: Curso de formulação e fabricação de dietas para ruminantes. São Bento do Una: Instituto Agronômico de Pernambuco, 2021. DA SILVA, C. L.; ALVES, A. A. A.; DA SILVA, S. R. P. Minerais e vitaminas na formulação de dietas para ruminantes. In: Curso de formulação e fabricação de dietas para ruminantes. São Bento do Una: Instituto Agronômico de Pernambuco, 2021. FONTAIN, E. C. da S. Energia e proteína na formulação de dietas para ruminantes. In: Curso de formulação e fabricação de dietas para ruminantes. São Bento do Una: Instituto Agronômico de Pernambuco, 2021. Formulação de Ração Para Caprinos. Belo Jardim, 2021. 97p. FERREIRA, J. J. Proteína e concentrados proteicos na alimentação de ruminantes. Informe Agropecuário, v. 9, n. 108, p. 43-48, 1983. NATIONAL RESEARCH COUNCIL et al. Nutrient requirements of small ruminants: sheep, goats, cervids, and new world camelids. 中国法制出版社, 2007. SAMPAIO, J. M. C. et al. Criação de cabras leiteiras. Brasília: EMBRATER, 1984. 243p. Nutrição e Suplementação Mineral de Bovinos de Corte. Curso de Técnico em Agropecuária, Instituto Federal de Educação, Ciência e Tecnologia de Pernambuco, Belo Jardim, PE. SOLAIMAN, Sandra G. (Ed.). Goat science and production. John Wiley & Sons, 2010. SOUSA, J. C. Os minerais na alimentação dos ruminantes. Informe Agropecuário, v. 9, n. 108, p. 49-57, 1983. VELLOSO, L. Importância das vitaminas para os bovinos. Informe Agropecuário, v. 9, n. 108, p. 63-66, 1983. (shrink)
This seventh volume of Collected Papers includes 70 papers comprising 974 pages on (theoretic and applied) neutrosophics, written between 2013-2021 by the author alone or in collaboration with the following 122 co-authors from 22 countries: Mohamed Abdel-Basset, Abdel-Nasser Hussian, C. Alexander, Mumtaz Ali, Yaman Akbulut, Amir Abdullah, Amira S. Ashour, Assia Bakali, Kousik Bhattacharya, Kainat Bibi, R. N. Boyd, Ümit Budak, Lulu Cai, Cenap Özel, Chang Su Kim, Victor Christianto, Chunlai Du, Chunxin Bo, Rituparna Chutia, Cu Nguyen Giap, Dao The (...) Son, Vinayak Devvrat, Arindam Dey, Partha Pratim Dey, Fahad Alsharari, Feng Yongfei, S. Ganesan, Shivam Ghildiyal, Bibhas C. Giri, Masooma Raza Hashmi, Ahmed Refaat Hawas, Hoang Viet Long, Le Hoang Son, Hongbo Wang, Hongnian Yu, Mihaiela Iliescu, Saeid Jafari, Temitope Gbolahan Jaiyeola, Naeem Jan, R. Jeevitha, Jun Ye, Anup Khan, Madad Khan, Salma Khan, Ilanthenral Kandasamy, W.B. Vasantha Kandasamy, Darjan Karabašević, Kifayat Ullah, Kishore Kumar P.K., Sujit Kumar De, Prasun Kumar Nayak, Malayalan Lathamaheswari, Luong Thi Hong Lan, Anam Luqman, Luu Quoc Dat, Tahir Mahmood, Hafsa M. Malik, Nivetha Martin, Mai Mohamed, Parimala Mani, Mingcong Deng, Mohammed A. Al Shumrani, Mohammad Hamidi, Mohamed Talea, Kalyan Mondal, Muhammad Akram, Muhammad Gulistan, Farshid Mofidnakhaei, Muhammad Shoaib, Muhammad Riaz, Karthika Muthusamy, Nabeela Ishfaq, Deivanayagampillai Nagarajan, Sumera Naz, Nguyen Dinh Hoa, Nguyen Tho Thong, Nguyen Xuan Thao, Noor ul Amin, Dragan Pamučar, Gabrijela Popović, S. Krishna Prabha, Surapati Pramanik, Priya R, Qiaoyan Li, Yaser Saber, Said Broumi, Saima Anis, Saleem Abdullah, Ganeshsree Selvachandran, Abdulkadir Sengür, Seyed Ahmad Edalatpanah, Shahbaz Ali, Shahzaib Ashraf, Shouzhen Zeng, Shio Gai Quek, Shuangwu Zhu, Shumaiza, Sidra Sayed, Sohail Iqbal, Songtao Shao, Sundas Shahzadi, Dragiša Stanujkić, Željko Stević, Udhayakumar Ramalingam, Zunaira Rashid, Hossein Rashmanlou, Rajkumar Verma, Luige Vlădăreanu, Victor Vlădăreanu, Desmond Jun Yi Tey, Selçuk Topal, Naveed Yaqoob, Yanhui Guo, Yee Fei Gan, Yingcang Ma, Young Bae Jun, Yuping Lai, Hafiz Abdul Wahab, Wei Yang, Xiaohong Zhang, Edmundas Kazimieras Zavadskas, Lemnaouar Zedam. (shrink)
This eleventh volume of Collected Papers includes 90 papers comprising 988 pages on Physics, Artificial Intelligence, Health Issues, Decision Making, Economics, Statistics, written between 2001-2022 by the author alone or in collaboration with the following 84 co-authors (alphabetically ordered) from 19 countries: Abhijit Saha, Abu Sufian, Jack Allen, Shahbaz Ali, Ali Safaa Sadiq, Aliya Fahmi, Atiqa Fakhar, Atiqa Firdous, Sukanto Bhattacharya, Robert N. Boyd, Victor Chang, Victor Christianto, V. Christy, Dao The Son, Debjit Dutta, Azeddine Elhassouny, Fazal Ghani, Fazli Amin, (...) Anirudha Ghosha, Nasruddin Hassan, Hoang Viet Long, Jhulaneswar Baidya, Jin Kim, Jun Ye, Darjan Karabašević, Vasilios N. Katsikis, Ieva Meidutė-Kavaliauskienė, F. Kaymarm, Nour Eldeen M. Khalifa, Madad Khan, Qaisar Khan, M. Khoshnevisan, Kifayat Ullah,, Volodymyr Krasnoholovets, Mukesh Kumar, Le Hoang Son, Luong Thi Hong Lan, Tahir Mahmood, Mahmoud Ismail, Mohamed Abdel-Basset, Siti Nurul Fitriah Mohamad, Mohamed Loey, Mai Mohamed, K. Mohana, Kalyan Mondal, Muhammad Gulfam, Muhammad Khalid Mahmood, Muhammad Jamil, Muhammad Yaqub Khan, Muhammad Riaz, Nguyen Dinh Hoa, Cu Nguyen Giap, Nguyen Tho Thong, Peide Liu, Pham Huy Thong, Gabrijela Popović, Surapati Pramanik, Dmitri Rabounski, Roslan Hasni, Rumi Roy, Tapan Kumar Roy, Said Broumi, Saleem Abdullah, Muzafer Saračević, Ganeshsree Selvachandran, Shariful Alam, Shyamal Dalapati, Housila P. Singh, R. Singh, Rajesh Singh, Predrag S. Stanimirović, Kasan Susilo, Dragiša Stanujkić, Alexandra Şandru, Ovidiu Ilie Şandru, Zenonas Turskis, Yunita Umniyati, Alptekin Ulutaș, Maikel Yelandi Leyva Vázquez, Binyamin Yusoff, Edmundas Kazimieras Zavadskas, Zhao Loon Wang.. (shrink)
In this paper, I suggest that the notion of qiyun (spirit consonance) in the context of landscape painting involves a moral dimension. The Confucian doctrine of sincerity involved in bringing the landscapist’s or audience’s mind in accord with the Dao underpins the moral dimension of spiritual communion between artist, object, audience and work. By projecting Kant’s, and Schiller’s somewhat modified Kantian philosophy of aesthetic autonomy and the moral relevance of art into the qiyun-focused context, we shall see that reflection on (...) parallels and differences between the two cultural traditions helps to better understand the moral dimension of qiyun aesthetics. (shrink)
Harmonious regionalism from the perspective of Chinese philosophy is best expressed as an anti-hegemonic discourse that privileges wu-wei (actionless action) and yin-yang correlativity. These are framed within a larger Confucian-Socialist hybrid narrative, such as “win-win” policies that are advanced in various white papers, be they on China’s “peaceful development”, foreign aid or national defence. Through the use of social constructivism in Western International Relations theory, it is possible to ask whether China is a constructivist state in search of a correlative (...) region. If so, this would render the meaning of “harmonious regionalism” as a process (dao, the way) based model rather than a highly institutionalized one. The Confucian concept of harmony in which diverse interests prevail in a dynamic balance accords with this notion of process. China’s participation in regional organizations on its periphery is examined through this conceptual lens. 摘要 从中国哲学角度出发,和谐地区主义最佳解读是:推崇无为和阴阳相互关系的反霸权理论。这个理论包含在一种更高层次的儒家-社会主义混合理论框架中。中国推出的“和平发展”、对外援助或者国防等白皮书中,都极力宣扬 “双赢”政策。这个政策就是混合理论的一个例子。运用西方国际关系理论的社会建构主义,我们可以提出这个问题:中国是不是一个寻求地区联系的建构主义国家?如果答案肯定的话,那么“和谐地区主义”就是一个以过程( 道)为基础的模式,而不是一个高度制度化的模式。在儒家学说中,和谐指的是不同的利益能够维持动态平衡,并得以实现。这与“道”的含义是一致的。我们就从这个概念的角度,来审视中国参与周边地区组织的情况。. (shrink)
In this article, we present an account of ming 明 in the Zhuangzi's Neipian in light of the disagreements among the thinkers of the time. We suggest that ming is associated with the Daoist sage's vision: he sees through the debaters' attempts to win the debates. We propose that ming is primarily a meta-epistemological stance, that is, the sage understands the nature of the debates and does not enter the fray; therefore he does not share the thinkers' anxieties. The sage (...) takes his stance at the pivot of dao and, from there, responds to the different views limitlessly. (shrink)
It has long been theorized that Heidegger’s idea for Dasein was highly influenced by the Chinese notion of the Dao. This is due to a misinterpretation on behalf of Heideggerian scholars and others of what the Dao represents. In fact, Heidegger, in explicating what he thought to be “the most extreme inversion of φύσης-ουσία [phusis-ousia],” made this equal to “Chinese-like ‘constancy,’” which is the basis of the Dao. Taking what Heidegger interpreted phusis to be (derived from Aristotelian metaphysics and an (...) assumption of pre-Socratic thought) as a process of unconcealment from continuing re-concealment which signals a kind of “truth” of being [phusis], that which calls for constant presence is inauthentic Dasein, rather than authentic Dasein. In other words, Heidegger’s idea of what inauthentic Dasein calls for could be explained within Aristotle’s system as equal to aiming to replace phusis with the know-how of τέχνη [techne]. The Dao, as rightfully understood and utilized by the master craftsman and the Sage, is accessible, constant, and knowable. This could not be in more opposition to Heidegger’s notion of phusis. (shrink)
REPRODUÇÃO ANIMAL: O CICLO ESTRAL DE BOVINOS LEITEIROS – Desenvolvimento Folicular, Corpo Lúteo e Etapas do Estro ANIMAL REPRODUCTION: THE OESTROUS CYCLE OF DAIRY BOVINES -Follicular Development, Corpus Luteum and Stages of Estrus Apoio: Emanuel Isaque Cordeiro da Silva Departamento de Zootecnia da UFRPE E-mail: [email protected] WhatsApp: (82)98143-8399 FISIOLOGIA CLÍNICA DO CICLO ESTRAL DE BOVINOS LEITEIROS 1. RESUMO A fêmea bovina apresenta ciclos estrais em intervalos de 19 a 23 dias e estes só são interrompidos durante a gestação ou devido (...) a alguma patologia. O estro é o período de aceitação da cópula e tem uma duração de 8 a 18 horas. Durante o metaestro ocorre a ovulação e se desenvolve o corpo lúteo. O diestro é o estágio mais longo do ciclo e é caracterizado pela presença de um corpo lúteo. Se a gestação não for estabelecida, o endométrio segrega prostaglandina F2α(PGF2α) o que induz a luteólise, reiniciando assim um novo ciclo. 2. EIXO HIPOTÁLAMO-HIPÓFISE-OVÁRIO As hormonas são substâncias produzidas por diferentes células do organismo que exercem funções específicas em outras células (células brancas). Algumas hormonas atuam na mesma célula que a secreta (atividade autocrina), outras nas células vizinhas (atividade parácrina) e outras são transportadas pelo sangue e exercem a sua função em células de outros órgãos (atividade endócrina). Existem outros tipos de hormônios que comunicam a diferentes indivíduos e são conhecidos como feromônios. Os feromônios regulam diferentes funções, entre as quais se destacam as reprodutivas. O hipotálamo encontra-se na base do cérebro, é formado por núcleos pares de neurônios e comunica-se com a hipófise através de um sistema circulatório especializado conhecido como sistema porta-hipotálamo-hipofisário. Os neurônios da área ventromedial e da área pré-óptica do hipotálamo secretam a hormona libertadora das gonadotropinas (GnRH), que por sua vez chega à hipófise através do sistema porta-hipotálamo-hipofisário e estimula a secreção da hormona luteinizante (LH) e da hormona folículo estimulante (FSH). A LH mantém um padrão de secreção paralelo à secreção da GnRH; ou seja, uma parcela de GnRH corresponde a uma parcela de LH, ao contrário da FSH que tem uma produção basal elevada inibida pelo estradiol e inibina, por este motivo, a sua secreção não apresenta um padrão pulsante semelhante à LH. A GnRH tem duas formas de secreção: a primeira é pulsante ou tônica, regulada por estímulos externos (fotoperíodo, bioestimulação, amamentação) e por estímulos internos (metabolitos, hormonas metabólicas, hormonas sexuais); a segunda forma é pré-ovulatória ou cíclica e é estimulada pelos estrogênios durante o estro e inibida pela progesterona. A secreção de alguns hormônios, bem como diversos processos fisiológicos, são sincronizados com a duração do dia e da noite (ritmos endógenos). A luz é percebida pelos fotorreceptores da retina e o sinal luminoso chega à glândula pineal através de conexões neuronais (trato retino-hipotalâmico). Na glândula pineal, o estímulo produzido pela luz inibe a síntese da melatonina. Desta forma, a duração do dia e da noite (fotoperíodo) é registada pelas variações nas concentrações da melatonina. Na vaca, sabe-se que o fotoperíodo influencia alguns processos reprodutivos, embora não seja, em sentido estrito, uma espécie com um padrão reprodutivo sazonal. Os feromônios sexuais são excretados através da urina, fezes e fluidos corporais; eles são percebidos pelo epitélio olfatório e órgão vomeronasal. Posteriormente, algumas vias nervosas, estimulam no hipotálamo a frequência dos pulsos de secreção da GnRH. A exposição a feromonas femininas provoca no macho um aumento na frequência de secreção do LH e isto por sua vez aumenta as concentrações de testosterona. Os feromônios masculinos induzem na fêmea um aumento da frequência de secreção do LH, estimulando o crescimento folicular e a secreção de estradiol. A estimulação sexual provocada pelo macho ou pela fêmea é denominada bioestimulação. As alterações na condição corporal estão positivamente correlacionadas com as concentrações séricas de insulina, fator de crescimento semelhante à insulina tipo I (IGF- I) e leptina. Assim, quanto maior a classificação da condição corporal, maior é a concentração sérica destas hormonas, que atuam como sinais que chegam ao hipotálamo e modificam a frequência de secreção da GnRH. Por exemplo, a transição do anestro para a ciclicidade coincide com um aumento da condição corporal e das concentrações de insulina, IGF- I e leptina (figura 1). Figura 1. A transição do anestro para a ciclicidade coincide com um aumento da condição corporal e das concentrações de insulina, IGF- I e leptina. Estas hormonas atuam como sinais que chegam ao hipotálamo e aumentam a frequência de secreção da GnRH. Fonte: GALINA, et al. 2008. Os estrogênios podem ter um feedback positivo ou negativo sobre a secreção da GnRH, o que depende da fase do ciclo reprodutivo. Em animais pré-púberes e em anestro pós-parto, os estrogênios inibem a secreção de GnRH, mas durante o período de proestro e estro há uma estimulação para a secreção de GnRH. A progesterona reduz a secreção da GnRH, bem como a resposta da hipófise à GnRH, inibindo assim a maturação folicular e a ovulação. Por esta razão, a progesterona foi utilizada com sucesso como contraceptivo em humanos e para o controle artificial da reprodução em animais domésticos (figura 2). Figura 2. Retroalimentação entre o hipotálamo, hipófise e o ovário. A GnRH estimula na hipófise a síntese e secreção de LH e FSH. Na fase pré-púbere e no anestro pós-parto, os estrogênios inibem a secreção de GnRH, enquanto no proestro e estro, estimulam-na. A progesterona inibe a secreção da GnRH e diminui a resposta da hipófise à GnRH. Os estrogênios e a inibina suprimem a secreção de FSH diretamente na hipófise. Fonte: GALINA, et al. 2008. Os neurônios secretores da GnRH não têm receptores para estrogênios nem progesterona, pelo que estas hormonas não têm forma de regular diretamente a secreção da GnRH. Existe um grupo de neurônios hipotalâmicos que exprimem o gene Kiss-1 que codifica o peptídeo kisspeptina. Os neurônios secretores da GnRH têm receptores para este peptídeo, de modo que a kisspeptina fornece a informação aos neurônios secretores da GnRH em relação às concentrações de hormônios sexuais. A kisspeptina é um potente estimulador (secretagogo) da secreção da GnRH e é muito provável que nos próximos anos venha a fazer parte dos recursos hormonais para o controle artificial da reprodução, não só nos bovinos, mas em todas as espécies domésticas. 3. DESENVOLVIMENTO FOLICULAR O ovário é responsável pela produção de ovócitos e pela síntese de hormônios sexuais, estrogênios e progesterona, que promovem e regulam a fertilização do ovócito e a manutenção da gestação. O ovócito encontra-se no interior do folículo ovárico rodeado por células granulosas que participam de forma ativa no seu crescimento e maturação. As experiências in vitro demonstram a dependência dos ovócitos das células da granulosa, assim, quando os ovócitos são induzidos a amadurecer devem estar rodeados por várias camadas de células da granulosa para que este processo seja bem sucedido, caso contrário, não adquirem o potencial para desenvolver um embrião. Embora as células da teca interna não estejam em contato direto com o ovócito, seu papel na maturação deste o exercem mediante a produção de andrógenos, mesmos que são convertidos em estrogênios pelas células da granulosa. Além disso, as células da teca favorecem o estabelecimento da rede capilar que apoia o desenvolvimento folicular. Por outro lado, os novos conhecimentos indicam que o ovócito não é um elemento passivo no desenvolvimento folicular, mas regula a função das células foliculares; o que significa que ele próprio participa na criação de um microambiente ideal para a sua maturação. Além disso, é possível que o ovócito tenha um papel na ativação do desenvolvimento dos folículos primordiais. A fêmea bovina nasce com aproximadamente 200 mil folículos, dos quais muito poucos se ativam e iniciam seu crescimento, e a maior parte deles sofre atresia em diferentes etapas de desenvolvimento. Ao nascimento, os folículos estão na fase mais elementar e são conhecidos como folículos primordiais. Posteriormente estes folículos se ativam e se transformam em folículos primários e secundários; até este momento os folículos não têm antro (etapa pré-antral) e seu desenvolvimento é independente das gonadotropinas. Quando os folículos formam o antro são conhecidos como folículos terciários e seu desenvolvimento é dependente das gonadotropinas (etapa antral). O crescimento folicular no estágio antral ocorre em forma de ondas e cada onda começa com um aumento nos níveis de FSH, o qual promove o crescimento de um grupo de cinco a seis folículos (~4 mm de diâmetro); este processo é conhecido como recrutamento. Subsequentemente, um único folículo continua a crescer (folículo dominante), o que provoca um aumento das concentrações de estrogênios e inibina, uma diminuição das concentrações de FSH e atresia dos folículos subordinados, pois eles dependem totalmente desta hormona, enquanto o folículo dominante continua o seu desenvolvimento estimulado pela LH. O folículo dominante perdura de quatro a seis dias e se não chega a ovular, sofre atresia. Após a atresia do folículo dominante, diminuem-se os níveis de estrogênio e inibina, observa-se um aumento das concentrações de FSH e inicia-se uma nova onda folicular. O folículo dominante que está presente quando o corpo lúteo sofre regressão, continua seu desenvolvimento e ovula, em resposta ao pico pré-ovulatório de LH. Além de promover a liberação do ovócito, a secreção pré-ovulatória de LH regula a formação do corpo lúteo a partir das células foliculares, processo conhecido como luteinização. Durante o ciclo estral são apresentadas de duas a três ondas foliculares. As vacas com três ondas foliculares têm uma fase lútea mais longa e, consequentemente, um ciclo estral mais longo, de 22 a 23 dias; enquanto as vacas com duas ondas apresentam um ciclo estral de 18 a 21 dias. Nas vacas leiteiras, cerca de 70% apresentam duas ondas foliculares, enquanto 30% exibem três ondas (figura 3 e 4). Nas vacas com duas ondas foliculares, o período de dominação folicular é maior do que nas de três ondas. O tempo de dominação influencia o potencial dos ovócitos para desenvolver um embrião viável; assim, a porcentagem de concepção é menor quando ovulam folículos que tiveram mais dias de dominação dos que quando ovulam folículos com menor tempo de dominação (figura 5). Figura 5. O crescimento folicular no estágio antral ocorre na forma de ondas. Cada onda começa com um aumento nas concentrações de FSH, o que promove o recrutamento de cinco a seis folículos (~4 mm de diâmetro). Posteriormente um único folículo continua crescendo (folículo dominante), enquanto seus companheiros (subordinados) sofrem atresia. O folículo dominante perdura de quatro a seis dias e se não chega a ovular, sofre atresia. Após a atresia do folículo dominante observa-se um aumento das concentrações de FSH, iniciando-se uma nova onda folicular. 3.1 Ovulação múltipla Nos últimos anos tem-se observado um aumento na proporção de vacas com ovulação múltipla (20% x 1% em novilhas), o que tem provocado um aumento da proporção de partos gêmeos (8% x 1% em novilhas). A frequência de vacas com ovulação múltipla está associada com a alta produção de leite; de modo que, as vacas que produzem menos de 40 kg mostram 6% de ovulações múltiplas e aquelas que produzem mais de 50 kg alcançam até 50%. A causa deste fenômeno ainda é obscura, contudo, observaram-se diferenças nas concentrações de FSH, de tal forma que as vacas que desenvolvem de dois a três folículos dominantes numa onda folicular, apresentam níveis de FSH mais elevados que as vacas que têm apenas um folículo dominante. Em vacas em lactação, a concentração de progesterona é baixa devido ao aumento do metabolismo hepático, o que aumenta a sua taxa de eliminação. Foi observado que as vacas que tiveram uma fase lútea com níveis de progesterona mais elevados, no ciclo anterior à inseminação, apresentam menos ovulações múltiplas em comparação com as vacas que tiveram níveis de progesterona mais baixos. Propõe-se que as baixas concentrações de progesterona permitam um aumento da frequência de secreção da GnRH e, consequentemente, da LH e da FSH, favorecendo a predominância múltipla e, eventualmente, a ovulação de mais de um folículo. Nos rebanhos leiteiros, as gestações gêmeas não são desejáveis porque aumenta o risco de perda da gestação e, se esta chegar ao término, haverá o risco de perda da gestação e, se esta for concluída, o risco de distorcia é consideravelmente mais elevado (figuras 6, 7, 8 e 9). Figura 6. As baixas concentrações de progesterona sérica nas vacas em lactação permitem um aumento da frequência de secreção da GnRH, bem como o aumento da LH e da FSH. Isto favorece a dominação múltipla e eventualmente a ovulação de mais de um folículo. Esta figura mostra a dominância de dois folículos em cada onda folicular (codominância). Figura 7. Ovários de uma vaca leiteira em diestro com três folículos dominantes. Figura 8. Ovários de uma vaca leiteira com três corpos lúteos. Figura 9. Ovários de uma vaca leiteira com dois corpos hemorrágicos. Fonte: Acervo pessoal do autor. IFPE, 2017-18. 4. DESENVOLVIMENTO E CONTROLE DA FUNÇÃO DO CORPO LÚTEO Quando o folículo dominante completa sua maturação, ele produz níveis de estrogênio suficientes para provocar a liberação máxima da GnRH, o que desencadeia o pico pré-ovulatório da LH. Esta secreção de LH provoca a ovulação e inicia as mudanças para que o folículo se transforme em um corpo lúteo, processo conhecido como luteinização. A luteinização compreende todas as mudanças morfológicas, endócrinas e enzimáticas que ocorrem no folículo ovulatório até que este se transforme num corpo lúteo. O processo de luteinização começa a partir da elevação pré-ovulatória de LH; mesmo antes da ovulação. A luteinização do folículo dominante (≥8 mm de diâmetro) pode ser induzida hormonalmente pela injeção de GnRH ou gonadotropina coriónica humana (hCG). A ovulação ocorre em média 30 horas após o pico pré-ovulatório de LH. A secreção pré-ovulatória de LH desencadeia a liberação de enzimas proteolíticas e de mediadores da inflamação na parede folicular, as quais degradam o tecido conjuntivo e ocasionam morte celular. Posteriormente, a PGF2α induz contrações da teca externa, levando à ruptura folicular e à expulsão do ovócito. Após a ovulação, as células da teca interna e da granulosa migram e distribuem-se nas paredes do folículo. As células da teca interna se diferenciam e se multiplicam em células lúteas pequenas, enquanto que as células da granulosa se hipertrofiam e dão origem às células lúteas grandes. Estas alterações são facilitadas pela ruptura da membrana basal que separa a camada celular da granulosa da teca interna. Em forma paralela começa a formação de uma ampla rede de capilares que se distribuem em todo o corpo lúteo em formação, e chegam a constituir até 20% do volume desta estrutura (figuras 10 e 11). A progesterona é o principal produto de secreção do corpo lúteo. No quinto dia do ciclo estral, as concentrações séricas desta hormona são superiores a 1 ng/ ml, indicando que o corpo lúteo adquiriu a sua plena funcionalidade. A progesterona atua basicamente sobre os órgãos genitais da fêmea, sendo responsável pela preparação do útero para o estabelecimento e manutenção da gestação. Na mucosa do oviduto e do útero, estimula a secreção de substâncias que promovem o desenvolvimento do embrião, até que este comece a nutrir-se através da placenta. A progesterona suprime a resposta imunitária do útero, o que é necessário para tolerar o embrião, já que este é um tecido estranho para a vaca. Além disso, a progesterona evita as contrações do útero, fecha o colo do útero e modifica as características do muco cervical, tornando-o mais viscoso, impedindo a passagem de agentes estranhos para o interior do útero. Na glândula mamária estimula o desenvolvimento do sistema alveolar, preparando-a para a síntese e a secreção de leite. 5. REGRESSÃO DO CORPO LÚTEO A regressão lútea é um processo ativo ocasionado pela secreção uterina da PGF2α. O mecanismo pelo qual se inicia a síntese e secreção da PGF2α depende de uma interação entre o corpo lúteo, os folículos e o útero. Os estrogênios produzidos no folículo dominante desempenham um papel importante no início da secreção de PGF2α, uma vez que promovem a síntese de receptores para oxitocina. Além disso, os estrogénios estimulam no endométrio a produção da fosfolipase A e da ciclooxigenase; enzimas indispensáveis para a síntese da PGF2α. Durante o ciclo estral, a progesterona inibe a síntese da PGF2α através da supressão da formação de receptores para o estradiol. Após um período de 12 a 14 dias de exposição à progesterona, as células endometriais tornam-se insensíveis à progesterona. Quando isso ocorre, as células endometriais sintetizam receptores para estradiol, permitindo que o estradiol produzido no folículo dominante estimule a síntese de receptores para oxitocina. Neste momento, o endométrio está pronto para sintetizar e secretar PGF2α, em resposta ao estímulo da oxitocina. A primeira secreção de oxitocina é de origem hipotalâmica, o que desencadeia o primeiro pulso de PGF2α. Os seguintes episódios de PGF2α são induzidos pela oxitocina produzida no corpo lúteo. A PGF2α é secretada em episódios (pulsos) com intervalos de seis a oito horas, sendo necessários cinco a seis episódios para a luteólise ocorrer. Se a PGF2α não seguir este padrão de secreção, a regressão do corpo lúteo falhará. Além da PGF2α de origem uterina, o corpo lúteo também produz PGF2α, que aumenta o efeito luteolítico. A falta de sensibilidade à PGF2α observada nos corpos lúteos imaturos (primeiros cinco dias após a ovulação) deve-se ao fato de, neste período, o corpo lúteo ainda não produzir PGF2α (figura 12, 13 e 14). 6. ETAPAS DO CICLO ESTRAL O ciclo estral é dividido em quatro etapas bem definidas. 6.1 Estro Neste estágio a fêmea aceita a cópula ou a monta de outra vaca. O estro é provocado pelo aumento significativo das concentrações de estradiol produzido pelo folículo pré-ovulatório e pela ausência de um corpo lúteo. A duração desta etapa é de 8 a 18 horas. 6.2 Metaestro O metaestro é a etapa posterior ao estro, tem uma duração de quatro a cinco dias. Durante esta etapa ocorre a ovulação e se desenvolve o corpo de lúteo. Após a ovulação, observa-se uma depressão no lugar ocupado pelo folículo ovulatório (depressão ovulatória) e, posteriormente, se desenvolve o corpo hemorrágico (corpo lúteo em processo de formação). Durante o metaestro, as concentrações de progesterona começam a aumentar até atingirem níveis superiores a 1 ng/ml, momento a partir da qual considera-se que o corpo lúteo atingiu a maturidade. O momento em que as concentrações de progesterona são superiores a 1 ng/ml toma-se como critério fisiológico a determinação do fim do metaestro e o início do diestro. Um evento hormonal que se destaca neste período consiste na apresentação do pico pós-ovulatório de FSH, o qual desencadeia a primeira onda de desenvolvimento folicular. Algumas vacas apresentam sangramento conhecido como sangramento metaestral (figura 15). 6.3 Diestro O diestro é o estágio de maior duração do ciclo estral, de 12 a 14 dias. Durante este estágio o corpo lúteo mantém sua plena funcionalidade, o que se reflete em concentrações sanguíneas de progesterona, maiores que 1 ng/ml. Além disso, nesta fase, pode-se encontrar folículos de tamanho diferente devido às ondas foliculares. Após 12-14 dias de exposição à progesterona, o endométrio começa a secretar PGF2α em um padrão pulsátil, ao qual termina com a vida do corpo lúteo e com o diestro. Em termos endócrinos, quando o corpo lúteo perde a sua funcionalidade, ou seja, quando as concentrações de progesterona diminuem abaixo de 1 ng/ml, finaliza-se o diestro e começa o proestro. Convém mencionar que durante esta fase, a LH é secretada com uma frequência muito baixa e a FSH tem incrementos responsáveis pelas ondas foliculares. 6.4 Proestro O proestro caracteriza-se pela ausência de um corpo lúteo funcional e pelo desenvolvimento e maturação do folículo ovulatório. O proestro na vaca dura de dois a três dias. Um evento hormonal característico desta etapa é o aumento da frequência dos pulsos de secreção de LH que levam à maturação final do folículo ovulatório e ao aumento do estradiol sérico, que desencadeia o estro. Para além da classificação do ciclo estral acima descrita, existe outra que divide o ciclo em duas fases: progestacional (lútea) e estrogênica (folicular). A fase progestacional inclui o metaestro e o diestro, e a fase estrogênica ao proestro e estro (figura 16). Figura 16. Etapas do ciclo estral. Adaptado e elaborado a partir de FERREIRA, 2010. 7. CONCLUSÕES PRÉVIAS O ciclo estral dura de 19 a 23 dias. A vaca é receptiva durante 8 a 18 horas (estro). Ao nascimento uma bezerra tem cerca de 200 mil folículos primordiais. Durante o ciclo estral se apresentam de duas a três ondas foliculares. De cinco a seis folículos são recrutados em cada onda folicular. Cerca de 70% das vacas têm duas ondas foliculares e 30% apresentam três ondas. Entre 10 e 20% das vacas têm ovulações múltiplas (dois a três folículos) e 8% têm partos gêmeos. A ovulação ocorre 30 horas após o pico pré-ovulatório de LH. A secreção pré-ovulatória de LH é de 15 a 30 ng/ml. 12 a 14 dias são necessários para que o endométrio se torne insensível à progesterona e comece a secretar PGF2α. - São necessários cinco a seis pulsos de PGF2α com um intervalo de oito horas para ocasionar a luteólise. O corpo lúteo não é sensível à PGF2α nos primeiros cinco dias do ciclo estral. Emanuel Isaque Cordeiro da Silva – Departamento de Zootecnia da UFRPE Recife, 2020. REFERÊNCIAS BIBLIOGRÁFICAS ALVES, Nadja Gomes; PEREIRA, Marcos Neves; COELHO, Rodrigo Michelini. Nutrição e reprodução em vacas leiteiras. Revista Brasileira de Reprodução Animal, p. l1248-l1248, 2009. ARBOLEDA, José Leonardo Ruiz; URIBE-VELÁSQUEZ, Luis Fernando; OSORIO, José Henry. Factor de crecimiento semejante a insulina tipo 1 (IGF-1) en la reproducción de la hembra bovina. Vet. zootec, v. 5, n. 2, p. 68-81, 2011. BARUSELLI, Pietro Sampaio; GIMENES, Lindsay Unno; SALES, José Nélio de Sousa. Fisiologia reprodutiva de fêmeas taurinas e zebuínas. Revista Brasileira de Reprodução Animal, v. 31, n. 2, p. 205-211, 2007. COLE, H. H.; CUPPS, P. T. Reproduction in domestic animals. 1ª ed. Londres: Academic Press, 1977. DA SILVA, Emanuel Isaque Cordeiro. Características Gerais dos Bovinos/General Characteristics of Cattle Bovine. Disponível em: ———. Acesso em: Fevereiro de 2020. DA SILVA, Emanuel Isaque Cordeiro. Definição de Conceitos Básicos na Reprodução Animal: Fertilidade, Fecundidade e Prolificidade-Suínos. Philarchive. Disponível em: ———. Acesso em: Fevereiro de 2020. DA SILVA, Emanuel Isaque Cordeiro. REPRODUÇÃO ANIMAL: OVULAÇÃO, CONTROLE E SINCRONIZAÇÃO DO CIO. Disponível em: ———. Acesso em: Fevereiro de 2020. DO VALLE, Ezequlel Rodrigues. O ciclo estral de bovinos e métodos de controle. Campo Grande: EMBRAPA-CNPGC, 1991. FERREIRA, A. M. Reprodução da fêmea bovina: fisiologia aplicada e problemas mais comuns. Juiz de Fora: Editar, 2010. GALINA HIDALGO, Carlos et al. Reproducción de animales domésticos. México: Limusa, 1988. HAFEZ, E. S. E.; HAFEZ, B. Reprodução animal. São Paulo: Manole, 2004. McDONALD, L.E. Veterinary endocrinology and reproduction. 3.ed. Philadelphia: Lea & Febiger, 1980. MELLO, R. R. C. et al. Desenvolvimento folicular inicial em bovinos. Revista Brasileira de Reprodução Animal, v. 37, n. 4, p. 328-333, 2013. MELLO, Raquel Rodrigues Costa et al. Aspectos da dinâmica folicular em bovinos. Agropecuária Científica no Semiárido, v. 10, n. 4, p. 01-06, 2015. NEBEL, Ray; DEJARNETTE, M. Anatomía y fisiología de la reproducción bovina. SELECT SIRES INC, v. 6, 2011. PALMA, Gustavo A. Biotecnología de la reproducción. Balcarce: Instituto Nacional de Tecnología Agropecuaria, 2008. PEREIRA, Elias de Oliveira. Fisiologia da reprodução em vacas leiteiras: REVISÃO DE LITERATURA. TCC Medicina Veterinária. Ituverava: FAFRAM, 2019. PETERS, A. R.; BALL, P. J. H. Reprodução em bovinos. São Paulo: Editora Roca, 2006. PRIETO-GÓMEZ, Bertha; VELÁZQUEZ-PANIAGUA, Mireya. Fisiología de la reproducción: hormona liberadora de gonadotrofinas. Rev Fac Med UNAM, v. 45, n. 6, p. 252-57, 2002. SALISBURY, Glenn Wade; LODGE, J. R.; VANDEMARK, N. L. Fisiología de la reproducción e inseminación artificial de los bóvidos. Zaragoza: Acribia, 1978. VIVEIROS, Ana Tereza de Mendonça. Fisiologia da reprodução de bovinos. Lavras: UFLA, 1997. (shrink)
GAMETOGÊNESE -/- Emanuel Isaque Cordeiro da Silva Instituto Agronômico de Pernambuco Departamento de Zootecnia – UFRPE Embrapa Semiárido -/- • _____OBJETIVO -/- Os estudantes bem informados, estão a buscando conhecimento a todo momento. O estudante de Veterinária e Zootecnia, sabe que a Reprodução é uma área de primordial importância para sua carreira. Logo, o conhecimento da mesma torna-se indispensável. No primeiro trabalho da série fisiologia reprodutiva dos animais domésticos, foi abordado de forma clara, didática e objetiva os mecanismos de diferenciação (...) sexual dos embriões em desenvolvimento, quais os genes envolvidos nesse processo e tudo mais. Nesse segundo trabalho, a abordagem será teórica, mas também clara, sobre a formação primordial dos gametas femininos e masculinos, através da ovogênese nas fêmeas e a espermatogênese nos machos. Esse trabalho visa levar a importância do processo de formação dos gametas e a produção hormonal das gônadas, bem como o entendimento sobre as interações com o eixo hipotálamo-hipofisário. -/- •____INTRODUÇÃO -/- A reprodução sexual é um processo mediante a qual dois organismos da mesma espécie unem seu material genético para dar lugar a um organismo fixo com combinação única de genes; para isso, cada organismo produz células que contém a metade do material genético característico da espécie. Essas células haploides (1n) são denominadas gametas; ao combinar-se um gameta masculino com um feminino produz-se uma célula diploide (2n) (zigoto ou ovo) a partir da qual se forma o embrião. A grande maioria das espécies com reprodução sexual são anisogâmicas, o que significa que produzem dois tipos de gametas diferentes: os gametas masculinos são microscópios, móveis e produzem-se em grande quantidade, enquanto que os femininos são grandes, imóveis e produzem-se em menor quantidade. O tipo de gameta que um indivíduo produz é o que define seu sexo; sobre os animais o macho é o indivíduo que produz grandes quantidades de espermatozoides e a fêmea produz uma menor quantidade de óvulos, enquanto que nas plantas as gônadas masculinas são as produtoras pólen e as femininas produzem oosferas. Os gametas são diferentes do resto das células do organismo, as quais se chamam células somáticas; essas últimas são diploides porque contém dois pares de cromossomos, um par herdado do pai do indivíduo e o outro da mãe. As células somáticas, ademais, se dividem por mitose, ao qual os cromossomos se duplicam antes de cada divisão celular e cada uma das células filhas recebe um complemento diploide idêntico dos cromossomos, logo todas as células somáticas de um indivíduo possuem o mesmo material genético, embora cada tipo celular expresse diferentes combinações de genes. Em contraponto, os gametas são células haploides porque possuem somente um par de cromossomos e a metade do material genético característico da espécie. Cada um dos cromossomos em um gameta é resultado da recombinação dos genes contidos nos cromossomos paterno e materno do indivíduo que originam o gameta, e cada um destes possuem uma combinação única de genes. Os gametas se formam a partir das células germinais, que são células que em sua origem são diploides e elas de “comprometem” a manter-se como uma linha celular especial que em determinado momento sofrerá o processo de meiose para dar origem aos gametas haploides, sejam óvulos ou espermatozoides segundo o sexo do animal. Como descrito no trabalho sobre a diferenciação sexual, as células germinativas primordiais originam-se no epiblasto do embrião, e migram desde o saco vitelino até colonizar as cristas gonodais, onde, por sua vez, proliferam-se e se organizam junto com as células somáticas da gônada primitiva para formar o testículo ou o ovário. As células germinais masculinas e femininas tem a mesma origem embrionária. As gônadas indiferenciadas em um embrião possuem três tipos celulares: as células que dão origem aos gametas (ovogonia ou espermatogonia), as precursoras de células que nutrem os gametas em desenvolvimento (células da granulosa no ovário; células de Sertoli no testículo) e as precursoras de células que secretam hormônios sexuais (células da teca no ovário; células de Leydig no testículo). As células germinais são as únicas estruturas do organismo que têm a capacidade de dividir-se por meiose sofrendo uma redução no número de seus cromossomos, sendo responsável pela transmissão da carga genética aos descendentes. Em contraste, as células somáticas somente se dividem por mitose. A formação dos gametas compreende fases sequenciais de mitose, meiose e pós-meiose. Esses processos são altamente organizados e necessitam de um preciso e bem coordenado programa de expressão genética. Uma das características importantes da gametogênese é a redução cromossômica, que através da meiose, reduz pela metade o número de cromossomos e produz células distintas entre si, devido a trocas de material genético entre os pares de cromossomos provenientes do pai e da mãe, o que ocorre no processo de “crossing over” durante a primeira fase da meiose. A gametogênese é o processo mediante o qual as células germinais de cada sexo se multiplicam, dividem e diferenciam até formar os gametas. No caso da formação dos gametas masculinos o processo recebe o nome específico de espermatogênese, e para os gametas femininos é denominado como ovogênese. Embora os dois processos alcancem o objetivo comum de produção das células haploides, por onde compartilham algumas características, existem diferenças marcadas entre eles devido a necessidade de produzir um número muito distinto de gametas, de tamanho diferente, e com características de motilidade também distintas. -/- •___ESPERMATOGÊNESE -/- A espermatogênese é o processo mediante o qual se produz os gametas masculinos denominados espermatozoides. Durante a vida fetal as células germinais e as células somáticas do testículo em formação organizam-se em túbulos seminíferos que se derivam dos cordões sexuais primários e conformam a maior parte da medula do testículo. Na etapa fetal cada tubo seminífero é delimitado por uma membrana basal, recoberta na parte interior pelas células precursoras das células de Sertoli (um tipo de células somáticas). No exterior do túbulo localizam-se as células precursoras das células de Leydig ou intersticiais (figura 1), que também são células somáticas. Entre a membrana basal e as células de Sertoli encontram-se algumas células germinais denominadas espermatogonias de reserva A0 (denominadas gonócitos) que serão o único tipo de células germinais presentes no testículo enquanto o animal não alcançar a puberdade. As células de Sertoli estabelecem na região basal uniões oclusoras entre si, formando parte da barreira hemato-testicular. As espermatogonias A0 localizam-se por dentro da membrana basal do túbulo seminífero, embora fora da barreira hemato-testicular. Figura 1: fase neonatal. Nota-se a grande infiltração de tecido intersticial em quase 50% da seção originando que os túbulos sejam pequenos e redondos em sua maioria. O citoplasma e núcleo das células pré-Leydig são notadas claramente por essa ser uma espécie suína onde o tecido intersticial está claramente diferenciado. Hematoxilina-eosina (X 220.5). Fonte: Embrapa. -/- O número de células de Sertoli no testículo depende da influência do hormônio folículo estimulante (FSH) presente durante a vida fetal e as primeiras etapas de vida pós-natal. A população de células de Sertoli ao chegar a puberdade se manterá fixa durante o resto da vida do animal; existe uma relação positiva entre o tamanho e a população de células de Sertoli e a capacidade de produção de espermatozoides do testículo. As células de Sertoli são as únicas células somáticas que estão no epitélio seminífero, e sua função é a nutrição, sustentação e controle endócrino das células germinais. As células de Sertoli participam ativamente no processo de liberação dos espermatozoides para a luz do túbulo. Nesse momento, as células de Sertoli realizam a fagocitose de parte do citoplasma do espermatozoide dos chamados corpos residuais. As células de Sertoli também fagocitam as células germinais que se degeneram no curso normal da espermatogênese. Essas células ainda sintetizam grande quantidade de proteínas, como por exemplo as proteínas ABP (androgen hinding protein), que transportam andrógenos para todo o aparelho reprodutivo, transferrinas, que transportam ferro para a respiração celular das células germinais e também às inibinas, que regulam a liberação de FSH pela hipófise, através de um sistema de retroalimentação (feedback) negativa (figura 2). Figura 2: epitélio seminífero, células de Sertoli (flecha) (400 X). Fonte: Embrapa. -/- Antes da puberdade dos túbulos seminíferos observam-se ao corte como estruturas de diâmetro pequeno, sem luz, e conformados unicamente pelas células de Sertoli e espermatogonias de reserva e rodeados por abundante tecido intersticial, ao que estão presentes as células precursoras das células de Leydig. Ainda antes da puberdade, a diferenciação celular manifesta-se primeiro pela presença de espermatócitos primários, os quais se degeneram em geral na fase de paquíteno, por falta de estimulação hormonal. A partir de que o animal chega a puberdade inicia-se o processo de espermatogênese, que se manterá durante toda a vida do animal, exceto em espécies de animais silvestres muito estacionais, ao qual pode se suspender durante a época não reprodutiva para voltar e ser retomada na época ou estação reprodutiva. Depois da puberdade, os túbulos seminíferos possuem um diâmetro muito maior; em seu interior observa-se um grande número de células germinais de todos os tipos, diferentes estádios de divisão, e em seu lúmen contém líquido e espermatozoides. Ainda sobre o alcancei da puberdade, as espermatogonias começam a dividir-se aceleradamente por mitose, enquanto que no espaço intersticial as células mesenquimais também começam a se diferenciar e a dar origem as células de Leydig (figura 3). A partir dessa etapa as células de Leydig (totalmente diferenciadas) são também evidentes no exterior do túbulo, junto com as células mioides ou peritubulares que o rodeiam o que ao contrair-se são responsáveis por controlar o avanço dos fluidos e as células presentes no lúmen do túbulo. As células mioides estão situadas ao redor do túbulo, e é creditado a elas a promoção da contração e da integridade estrutural do túbulo. Esse tipo celular apenas se diferencia na puberdade pela ação dos andrógenos (figura 4). As interações entre as células de Sertoli e as mioides parecem ter um papel importante na manutenção das funções do testículo. Durante o processo de espermatogênese, as espermatogonias de reserva dividem-se periodicamente e enquanto algumas células fixas permanecem como espermatogonias de reserva, outras proliferam e sofrem uma seção de divisões mitóticas durante as quais se vão diferenciando até formarem espermatócitos primários (espermatocitogênese ou fase de mitose), logo sofrem divisões especiais mediante as quais reduzem seu número de cromossomos (fase de meiose), e ao final trocam de forma para converter-se em espermatozoides (espermatocitogênese) (figura 5). Cada uma dessas etapas da espermato- gênese será descrito detalhadamente adiante, antes é necessário a explicação de algumas características das células de Sertoli e de Leydig que ajudarão a entender seu papel durante a espermatogênese. Figura 3: células de Leydig no espaço intersticial do testículo bovino adulto PAS (400 X). Fonte: Embrapa. -/- Figura 4: o estabelecimento da puberdade pela presença de espermatozoides no túbulo. Hematoxilina-eosina (400 X). Fonte: Embrapa. Figura 5: fases mitóticas das espermatogonias (A0 e B) para formação de um espermatócito primário e as duas fases de meiose que se sucedem antes da espermatogênese. Fonte: ZARCO, 2018. -/- Ao início da espermatocitogênese as uniões oclusoras entre as células de Sertoli se abrem por etapas (como as comportas de um submarino) para permitir a passagem das espermatogonias em direção ao centro do túbulo seminífero sem que se estabeleça uma continuidade entre o exterior e o interior da barreira hemato-testicular. Uma vez ultrapassada essa barreira, as sucessivas gerações de espermatogonias, espermatócitos, espermátides e espermatozoides irão se localizar em direção ao interior do túbulo seminífero, em estreita associação com as células de Sertoli. Em consequência, as células de Sertoli dividem o túbulo seminífero em dois compartimentos; o compartimento basal (debaixo das uniões oclusoras das células de Sertoli), ao qual residem as espermatogonias de reserva, e o compartimento adluminal (em direção ao centro do túbulo), cujos espaços entre as células de Sertoli desenvolvem o resto do processo de espermatogênese (meiose e espermatocitogênese). Esse feito é importante porque durante a vida fetal as únicas células germinais existentes eram as espermatogonias de reserva, pelo que os antígenos expressados por gerações mais avançadas (espermatogonias intermediárias, secundárias, espermátides e espermatozoides) não são reconhecidos como próprios do corpo pelo sistema imunológico. Logo, o anterior implica que deve existir uma barreira entre eles e o sangue para evitar um ataque imunológico. Em todas as etapas da espermatogênese, as células de Sertoli atuam como células de suporte para as células germinais, que sempre permanecem recoberta pela membrana das células de Sertoli. Também atuam como células nutricionais já que proporcionam o meio em que as células germinais se desenvolvem e maturam, assim como as substâncias que regulam e sincronizam as sucessivas divisões e transformações das células germinais. As células de Sertoli produzem hormônios, como estrógenos e inibina que atuam sobre a hipófise para regular a secreção das gonadotropinas que controlam a espermatogênese. As células de Leydig que residem no exterior do túbulo seminífero também são importantes para a espermatogênese: produzem a testosterona que estimula e mantém a espermatogênese, bem como serve como substrato sobre o qual atua como aromatizador das células de Sertoli para transformá-las em estrógenos. Como supracitado, para seu estudo podemos dividir a espermatogênese em três fase: espermatocitogênese, meiose e espermiogênese (figura 6). Agora, serão descritas cada uma dessas etapas. Em algumas espécies, incluindo no homem, os macrófagos representam o segundo tipo celular intersticial mais numeroso no testículo, depois das células de Leydig. Os macrófagos e vários subtipos de linfócitos são identificados nós testículos de ovinos e ratos. Eles estão intimamente associados com as células de Leydig e atuam juntamente na regulação da esteroidogênese. Figura 6: fluxograma da espermatogênese. -/- Espermatocitogênese -/- A espermatocitogênese, também chamada de etapa proliferativa ou de mitose, consiste numa série de divisões mitóticas sofridas pelas células descendentes de uma espermatogonia de reserva. Uma vez que a célula se divide, abandona o estado de reserva e começa um processo de diferenciação. As espermatogonias de reserva (denominadas espermatogonias A0 na rata ou As nos humanos) são células que existem desde a vida fetal e que permanecem mitoticamente inativas durante a infância. Uma vez que alcançam a puberdade começam a dividir-se em intervalos regulares, e as células filhas podem permanecer como espermatogonias de reserva ou abandonar a reserva e ingressar na dita espermatocitogênese. Uma vez abandonada a reserva, as células filhas que vão se formando em cada divisão permanecem unidas por pontes citoplasmáticas, constituindo um clone que se divide sincronicamente. As células que se formam depois de cada divisão continuam sendo espermatogonias, porém cada geração é ligeiramente diferente da anterior. Na rata, por exemplo, as espermatogonias tipo A0 ao dividir-se originam espermatogonias do tipo A1, que em sucessivas divisões formam espermatogonias dos tipos A2, A3 e A4, as quais, por sua vez, sofrem outra mitose para formar espermatogonias intermediárias e uma mais para formar espermatogonias do tipo B. Essas últimas se diferenciam (sem se dividir) em espermatócitos primários, processo em que termina a fase de espermatocitogênese, que literalmente significa processo de geração de espermatócitos. As espermatogonias tipo A0 são a fonte para a contínua produção de gametas. A metade delas se dividem e formam células iguais (as chamadas células tronco) e a outra metade forma as espermatogonias A1, que sofre novas divisões mitóticas e formam os tipos 2, 3 e 4. O tipo A4 sofre mitose para formar a intermediária (A In), que por mitose, forma a tipo B (figura 6). Esses tipos de espermatogonias podem ser identificadas em evoluções histológicas de acordo com sua organização topográfica na membrana basal dos túbulos seminíferos ou mediante seu conteúdo de heterocromatina. Outra maneira de diferenciação se baseia em marcadores moleculares específicos que distinguem as espermatogonias tronco (A0) das demais, com os fins de isolamento, desenvolvimento in vitro e transplante. As tipo B passam por mitose para formarem os espermatócitos primários; estes iniciam a primeira etapa da meiose formando os espermatócitos secundários; na segunda etapa da divisão meiótica, cada espermatócito secundário se divide e formam as chamadas espermátides. Quando o testículo alcança seu desenvolvimento total, a meiose completa-se e as espermátides originadas se convertem em espermatozoides. Um dos maiores sinais característicos desse fenômeno é o alargamento das espermátides e sua migração em direção ao lúmen do túbulo seminífero (figuras 4, 7 e 8). Figura 7: espermatogonias marcadas por imuno-histoquímica, anticorpo monoclonal TGFa (400 x). Figura 8: fases de divisões meióticas (M), espermatócitos em paquíteno (PA) e espermatócitos secundários (ES). -/- Figura 9: estádio posterior a liberação dos espermatozoides na luz do túbulo. Hematoxilina-eosina (400 x). Mediante as seis divisões mitóticas que ocorrem durante a espermatocitogênese se forma potencialmente um clone de 64 espermatócitos primários a partir de cada espermatogonia A que ingressa sobre o processo. Não obstante, algumas células sofrem apoptose em cada uma das etapas do processo, ao qual o número real formado é menor. Em outras espécies produzem-se um transcurso similar de divisões mitóticas sucessivas durante a espermatocitogênese, embora a nomenclatura utilizada possa ser distinta, por exemplo nos bovinos as duas últimas divisões mitóticas dão origem as espermatogonias de tipo B1 e B2. -/- Meiose -/- Uma vez que as espermatogonias B se diferenciam em espermatócitos primários, esses iniciam a etapa de meiose, com uma nova divisão; desta vez a divisão é do tipo meiótica. Ao completar-se a primeira divisão meiótica (meiose I) se obtém os espermató-citos secundários, que ao sofrer a segunda divisão meiótica (meiose II) dão origem as espermátides. Vale salientar que a meiose é o processo mediante o qual reduz-se a metade do número de cromossomos, pelo que as espermátides que se obtém são células haploides (1n). Os espermatócitos secundários que se formam depois da primeira divisão meiótica contém a metade do número normal de cromossomos, porém a mesma quantidade de DNA já que cada cromossomo é duplo. As espermátides formadas na conclusão da segunda divisão meiótica (figura 7), por sua vez, contém a metade dos cromossomos, e esse já não são duplos, já que se trata de células 1n. Também deve-se enfatizar que durante a meiose é relevante o entrecruzamento dos cromossomos homólogos, pelo que cada espermátide possui uma combinação única e diferente de genes paternos e maternos. Outro ponto que deve ser levado em consideração é que cada espermátide somente possui um cromossomo sexual; a metade das espermátides contém o cromossomo X herdado da mãe do macho que está levando a cabo a espermatogênese e a outra metade contém o cromossomo Y herdado de seu pai. Para cada espermatócito primário que entra no processo de meiose obtém-se cerca de quatro espermátides, pelo qual ao ser completada a meiose potencialmente se poderiam formar até 256 espermátides por cada espermatogonia que abandona a reserva e ingressa na espermatocitogênese. -/- Espermiogênese -/- Durante a espermiogênese, também chamada de fase de diferenciação, as esper-mátides sofrem, sem se dividir, uma metamorfose que as transforma em espermatozoides, os quais finalmente são liberados das células de Sertoli em direção ao lúmen do túbulo seminífero. A espermiogênese é um processo complicado e longo já que a espermátide deve sofrer complexas trocas nucleares, citoplasmáticas e morfológicas que resultam na forma-ção dos espermatozoides. Algumas dessas mudanças incluem a condensação do material nuclear para formação de um núcleo plano e denso, a eliminação do citoplasma para a constituição de uma célula pequena, a formação de uma estrutura especializada denomi-nada acrossomo ou tampa cefálica, e a formação do pescoço e da cauda (flagelo) do esper-matozoide, do que depende a sua motilidade. Durante a maior parte da espermiogênese, as espermátides se mantém com uma estreita associação com as células de Sertoli; logo, chega-se a observar, então, flagelos que se projetam em direção a luz do túbulo que pare-cem sair das células de Sertoli, sendo na realidade os flagelos dos espermatozoides que ainda não tinham sido liberados pelo lúmen. Ao liberar os espermatozoides em direção a luz do túbulo, as células de Sertoli realizam a fagocitose de parte do citoplasma dos espermatozoides (corpos residuais). Também fagocitam os restos de todas as células germinais que sofrem apoptose ou degeneram-se durante a espermatogênese. Credita-se que ao realizar essas funções as células de Sertoli podem fazer uma monitoração eficiente da espermatogênese, o que lhes permitiria emitir sinais para colaborar na regulação desse processo em nível gonodal e a nível sistêmico através da secreção de hormônios como a inibina e o estradiol. Além da inibina e activina, as células de Sertoli sintetizam outras proteínas, como a ABP (proteína ligadora de andrógenos) que serve como uma molécula de transporte de andrógenos dentro dos túbulos seminíferos, ductos deferentes e epidídimo, ou a transfer-rina, que transporta o ferro necessário para a respiração celular. -/- Resultados da espermatogênese -/- O resultado da espermatogênese não significa apenas uma simples multiplicação das células germinais (até 256 espermatozoides a partir de cada espermatogonia A1), senão que através dela são produzidos gametas haploides pequenos, móveis e com grande diversidade genética entre eles, ao mesmo tempo que se mantêm uma reversa de células mãe (espermatogonias A0) a partir das quais se poderiam originar novos ciclos de esper-matogênese durante o resto da vida do animal. -/- Controle hormonal da espermatogênese -/- Como mencionado, o FSH reproduz um importante papel para o estabelecimento das células de Sertoli durante a vida fetal e início da vida pós-natal. O começo da esper-matogênese também é estimulado pelo FSH, que atua sobre as células de Sertoli para estimular sua função e a ativação de sinais dessas células em direção as células germinais, incluindo-as a abandonar a reserva e ingressar na espermatogênese. O FSH, assim mesmo, estimula a mitose durante o resto da espermatogênese e aumenta a eficiência do processo, já que reduz a apoptose e a degeneração de espermatogonias intermediárias e do tipo B. O FSH também estimula as células de Sertoli para produzirem inibina e ABP. Uma vez iniciada a espermatogênese somente requerem níveis baixos de FSH para se mantê-la. As células de Sertoli também devem ser estimuladas pela testosterona para funcio-nar de maneira adequada; se requer também do LH hipofisário: hormônio que estimula as células de Leydig para produzir testosterona. Por sua vez, a secreção de LH e FSH é regulada pelo GnRH hipotalâmico: esse neurohormônio também faz parte do mecanismo de regulação da espermatogênese. A espermatogênese também é modulada em nível local mediante a produção de determinados fatores e interações entre as células. Dentro dos fatores locais podemos mencionar o fator de crescimento parecido com a insulina 1 (IGF-1), o fator de crescimen-to transformante beta (TGF- β), activina, ocitocina e diversas citocinas. Entre as intera-ções celulares existem tanto uniões de comunicação entre as células de Sertoli e as células germinais, como pontes citoplasmáticas entre todas as células germinais que formam o clone de células descendentes de uma espermatogonia A1. Uma vez que as células de Sertoli iniciam sua função na puberdade é possível manter experimentalmente a espermatogênese somente com testosterona, sem ser requeri-dos nenhum outro hormônio. A quantidade de espermatozoides produzidos, no entanto, é maior quando há presença do FSH. Abaixo do estímulo do FSH as células de Sertoli produzem estradiol e inibina, hormônios que geram uma retroalimentação sobre o eixo hipotálamo-hipofisário para a regulação da secreção de gonadotropinas. Em particular, a inibina reduz a secreção de FSH, pelo qual é factível que sirva como um sinal que evite uma excessiva estimulação as células de Sertoli. -/- Ciclo do epitélio seminífero -/- Em cada espécie as espermatogonias de reserva iniciam um novo processo de divi-sões celulares em intervalos fixos: a casa 14 dias no touro; 12 dias no garanhão e a cada 9 dias no cachaço (reprodutor suíno). A nova geração de células que começam a proliferar sobre a base do tubo deslocam-se em direção ao centro do túbulo a geração anterior, que por sua vez deslocam-se as gerações anteriores. Devido as mudanças que vão sofrendo cada geração celular se ajustam a tempos característicos de cada etapa, já que rodas as células em uma determinada seção do túbulo estão sincronizadas entre si pelas células de Sertoli; em cada espécie somente é possível encontrar um certo número de combinações celulares: 14 diferentes combinações no caso da rata, 8 no touro e 6 no ser humano. A sucessão de possíveis combinações até regressar a primeira combinação se conhece como o ciclo do epitélio seminífero. Na maioria das espécies os espermatozoides que são libera-dos em direção a luz do túbulo provém das células que entraram no processo de esperma-togênese quatro gerações antes que a geração que está ingressando nesse momento, pelo que a espermatogênese no touro dura ao redor de 60 dias e um pouco menos em outras espécies domésticas. Significa que os efeitos negativos das alterações na espermatogêne-se podem estar presentes até dois meses depois de que se produziram essas alterações. Como supracitado, geralmente se observa a mesma combinação celular em toda a área de uma determinada secção transversal do túbulo seminífero. No entanto, se fizermos uma série de secções, observa-se que ao longo do túbulo há uma sucessão ordenada de combinações (a primeira em uma determinada secção; a segunda combinação na seguinte secção, e assim sucessivamente em secções subsequentes até regressar a primeira combi-nação. Teremos, então, que ao início da divisão das espermatogonias A1 se produz de forma sincronizada em uma secção do túbulo, e vai-se transmitindo como uma onda peristáltica as secções adjacentes. Esse processo é denominado como onda do epitélio seminífero e graças à esse túbulo seminífero sempre tem secções em todas as etapas da espermatogênese, com o que se alcança uma produção constante de espermatozoides. -/- Alterações da espermatogênese -/- Nas espécies estacionais a espermatogênese, como já mencionado, pode reduzir-se ou inclusive suspender sua atividade fisiológica durante a época não reprodutiva dessas espécimes, porém esse processo fisiológico não pode ser considerado como uma altera-ção. No entanto, a espermatogênese só pode ser alterada pelas enfermidades ou por fatores externos. A principal causa de alterações na espermatogênese é o aumento da temperatura testicular. Por isso, os testículos são localizados na saco escrotal e são “caídos” para fora do corpo como pode-se observar nos bovinos, caprinos, ovinos, caninos e no próprio homem. A temperatura testicular deve estar cerca de 2 a 6 °C abaixo da temperatura corporal normal. As células germinais masculinas são sensíveis ao calor, pelo qual na maioria dos mamíferos os testículos se encontram fora da cavidade abdominal e existe um sofisticado sistema de termorregulação para mantê-los a uma temperatura menor que a corporal. Se a temperatura corporal for elevada ou se os testículos permanecerem na cavidade abdominal, ou ainda se os sistemas termorreguladores do testículo sejam afetados por fatores inflamatórios como edema ou falta de mobilidade testicular dentro do escroto, a temperatura do tecido testicular aumentará e a espermatogênese sofrerá alterações proporcionais ao excesso de temperatura e a duração da elevação. A espermatogênese também pode ser afetada pela exposição a hormônios ou a outras substâncias. É possível que a causa mais comum (sobretudo no homem) seja o uso de esteroides anabólicos, que elevam a concentração de andrógenos na circulação, provo-cando um feedback negativo sobre a secreção de gonadotropinas. Ao deixar de estimular-se o testículo pelas gonadotropinas, este deixará de produzir testosterona, e as concentra-ções de andrógeno exógeno nunca alcançará as altíssimas concentrações de testosterona que normalmente estão presentes a nível do tecido testicular por ser o local onde se produz o hormônio. Também se supõe que diversas substâncias com propriedades estrogênicas derivadas de processos industriais (indústria dos plásticos, hidrocarbonetos etc.) e presentes no ambiente (fatores xenobióticos) podem ser responsáveis pelas alterações na espermatogênese em diversas espécies, entre as quais se inclui o ser humano. -/- • OVOGÊNESE E FOLICULOGÊNESE -/- A ovogênese é o processo seguido pelas células germinais da fêmea para a forma-ção dos óvulos, que são células haploides. Durante a vida fetal as células germinais proliferam-se no ovário por mitose, formando um grande número de ovogonias, algumas das quais se diferenciam em ovócitos primários que iniciam sua primeira divisão meiótica para deter-se na prófase da divisão. Somente alguns desses ovócitos primários retornarão e concluirão a primeira divisão meiótica em algum momento da vida adulta do animal, dando origem a um ovócito secundário e a um corpo polar. O ovócito secundário inicia a sua segunda divisão meiótica, a qual volta a ficar suspensa até receber um estímulo apropriado, já que somente os ovócitos secundários que são ovulados e penetrados por um espermatozoide retornam e concluem a segunda divisão meiótica, dando origem a um óvulo (figura 10). O processo de ovogênese é realizado dentro dos folículos ovarianos, que também tem que sofrer um longo transcurso de desenvolvimento e diferenciação denominado foliculogênese pelo que a ovogênese como tal realiza-se dentro do marco desse último processo. Por essa razão, na seguinte seção descreverei tanto a ovogênese como a folicu-logênese, e a relação que existe entre ambos. Figura 10: representação da ovogênese. Na etapa de proliferação, as células germinais se diferen-ciam por mitose. A meiose I se caracteriza por uma prófase prolongada, ocorrendo a duplicação do DNA. Nas duas divisões, que ocorrem antes da ovulação e depois da fertilização, a quantidade de DNA é reduzida a 1n, com o fim de que a fusão dos pronúcles (singamia) pós-fertilização, seja gerado um zigoto com um número de cromossomos de 2n (diploide). -/- Geração de ovócitos primários e folículos primordiais Tanto a ovogênese como a foliculogênese iniciam-se durante a vida fetal, quando as células germinais primordiais provenientes do saco vitelino colonizam a gônada primitiva e, junto com as células somáticas z organizam-se para a formação dos cordões sexuais secundários, que se desenvolvem principalmente no córtex do ovário. Nesse período, as células germinais que colonizaram o ovário sofrem até 30 divisões mitóticas, proliferando-se até formar milhares ou milhões de ovogonias, que inicialmente formam “ninhos” constituídos cada um deles por um clone de várias ovogonias que descendem da mesma célula precursora e que se mantêm unidas por pontes citoplasmáticas, sincronizan-do suas divisões mitóticas. Nessa etapa alcança-se a máxima população de células germinais no ovário, que antes de nascer se reduzirá drasticamente por apoptose. No ovário do feto humano chegam a haver até sete milhões de células germinais que ao nascimento se reduzem a dois milhões. Os ovários fetais do bovino, de maneira análoga, chegam a ter até 2.100.000 células germinais, que ao nascimento reduzem para 130.000 aproximadamente. A redução no número de ovogonias produz-se ao mesmo tempo que essas células, que vêm dividindo-se por mitose e estão agrupadas em ninhos, iniciam sua primeira divisão meiótica para se transformarem em ovócitos primários: células germinais que se encontram em uma etapa de suspensão (diplóteno) da prófase da primeira divisão meiótica. Nesse período produz-se uma grande proporção de células germinais; as células somáticas dos cordões sexuais, por sua vez, emitem projeções citoplasmáticas que separam a isolam os ovócitos primários sobreviventes, ficando cada um deles rodeados por uma capa de células aplanadas da (pré) granulosa. Ao mesmo tempo em que se forma uma membrana basal entre as células da granulosa e o tecido intersticial do ovário. Ao ovócito primário rodeado de uma capa de células da (pré) granulosa aplanadas e delimita-das por uma membrana basal denomina-se de folículo primordial (figura 11). Nas vacas os folículos primordiais bem formados já estão presentes nos ovários a partir do dia 90 da gestação. A maioria dos folículos primordiais com os que nasce uma fêmea se manterão inativos durante um longo tempo; muitos deles durante toda a vida do animal. Nos folículos primordiais inativos tanto os ovócitos primários como as células da granulosa conservam sua forma original e mantém um metabolismo reduzido estritamente ao mínimo necessário para manter-se viáveis. Por essa razão, ao realizar um corte histológico de qualquer ovário as estruturas mais numerosas que se observam serão os folículos primordiais. No entanto, cada dia da vida de um animal, inclusive desde a vida fetal, um certo número de folículos primordiais reiniciam seu desenvolvimento, e a partir desse momento um folículo exclusivamente pode ter dois destinos: o primeiro, prosseguir seu desenvolvi-mento até chegar a ovular, e o segundo (que é muito mais frequente) encontrar em algum momento condições inadequadas que fazem fronteira com ele para parar seu desenvolvi-mento, levando-o a sofrer atresia e degenerar até desaparecer do ovário. Figura 11: sequência da foliculogênese apresentando as diferentes estruturas que podemos encontrar em cada fase. Fonte: ZARCO, 2018. Culminação da ovogênese A ovogênese somente se completará quando um ovócito primário reinicia a meio-se; completa sua primeira divisão meiótica para formar um ovócito secundário e um primeiro corpo polar e, quando, finalmente sofrer uma segunda divisão meiótica para formar um óvulo e um segundo corpo polar. Os óvulos são as células 1n que constituem os gametas femininos, pouco numerosos, grandes e imóveis. A grande maioria dos ovóci-tos primários, como veremos mais adiante, nunca retomam a meiose e, em consequência, não chegam a formar ovócitos secundários, e muitos dos ovócitos secundários tampouco sofrem uma segunda divisão meiótica, pelo que não chegam a formar os óvulos. Ao longo da vida de uma fêmea, na maioria das espécies, menos de 0,1% dos ovócitos primários (um a cada mil) chega a terminar a ovogênese, dando origem a um óvulo. O supracitado deve-se a que a ovogênese somente pode retomar-se e ser completa-da em ovócitos primários que se encontram dentro dos folículos primordiais que (uma vez ativados) vão alcançando diversas etapas de seu desenvolvimento em momentos precisos aos que encontram as condições ideais de oxigenação, nutrição, vascularização e exposição a fatores parácrinos e a exposição a concentrações de hormônios que se requerem para que o folículo continue em cada etapa de seu desenvolvimento com o processo de foliculogênese até chegar a ovular. Qualquer folículo que não esteja nessas condições ao longo do desenvolvimento sofrerá degeneração e atresia, pelo que o ovócito primário em seu interior nunca chegará ao ponto em que pode retomar a primeira divisão meiótica. No que resta da presente seção revisaremos o processo de foliculogênese em cujo marco se desenvolve a ovogênese; havemos que tomar de conta que essa última se limita ao que ocorre nas células germinais (ovogonia, ovócito primário, secundário e óvulo), pelo qual depende intimamente do desenvolvimento do folículo de que essas células formam parte. Em um princípio a ativação do folículo primordial e o desenvolvimento folicular são independentes das gonadotropinas: não se conhecem os mecanismos precisos median-te os quais um folículo primordial se ativa e reinicia seu desenvolvimento, nem como se decide quais folículos, dentre as dezenas de milhares de ou centenas de milhares presentes em um ovário se reativarão em um dia em particular. A reativação trata-se de uma liberação de influência de fatores inibidores, já que os folículos primordiais se reativam espontaneamente quando cultivados in vitro, isolados do resto do tecido ovariano. Uma vez que um folículo primordial se ativa, inicia-se um longo processo de desenvolvimento que somente depois de vários meses (ao redor de cinco meses no caso dos bovinos) o levará a um estádio em que seu desenvolvimento posterior requer a presença das gonado-tropinas; daí que se diz que as primeiras etapas do desenvolvimento são independentes das gonadotropinas. Durante a fase independente de gonadotropinas, um folículo primordial que tenha sido ativado e tenha começado a crescer; passará primeiro para a etapa de folículo primá-rio, caracterizada por conter um ovócito primário que está rodeado, por sua vez, por uma capa de células da granulosa, que não são planas, e sim cúbicas. Depois, se o folículo continuar crescendo se transformará em um folículo secundário, ao qual as células da granulosa começam a proliferar (aumentando em número) e se organizam em duas ou mais capas que rodeiam o ovócito primário. Entre o ovócito e as células da granulosa que o rodeiam se forma nesta uma zona pelúcida; ainda assim o ovócito mantém contato direto com essas células, mediante o estabelecimento de pontes citoplasmáticas que atravessam a zona pelúcida. Através dessas pontes citoplasmáticas as células da granulosa podem passar nutrientes e informação ao ovócito primário. O volume e o diâmetro do ovócito primário aumentam ao mesmo tempo que as células da granulosa proliferam-se, para incrementar as capas ao redor do ovócito. De maneira gradual o citoplasma do ovócito primário aumenta até 50 vezes seu volume e a proliferação das células continua. Esses folículos que possuem cada vez mais células e portanto mais capas de células da granulosa se denominam folículos secundários. Para evitar confusões, há a necessidade de nomen-clatura ao qual o folículo vá mudando de nome de primordial a primário e logo, de secun-dário, a terciário, por sua vez, o ovócito que encontra-se em seu interior, a todo momento, segue sendo um ovócito primário. Durante a etapa dependente de gonadotropinas, os folículos secundários começam a formar um espaço cheio de líquido, o antro folicular, desse modo se convertem em folí-culos terciários. Com a utilização de outra nomenclatura, a formação do antro marca a transição entre folículos pré-antrais (sem antro) e folículos antrais (com antro). Em algum momento dessa transição entre folículo secundário e terciário, também aparece a depen-dência de folículos em direção as gonadotropinas, pelo qual somente podem seguir crescendo na presença do hormônio luteinizante (LH) e do hormônio folículo estimulante (FSH). Nos bovinos e em outras espécies (para seu estudo), os folículos antrais são dividi-dos em pequenos, médios e grandes. Embora todos eles possuam um antro folicular, dependendo do seu grau de desenvolvimento requerem diferentes concentrações de gona-dotropinas para continuar o crescimento. Os folículos antrais mais pequenos somente re-querem concentrações baixas de LH e FSH, pelo qual podem continuar crescendo em qualquer momento do ciclo estral inclusive em animais que não estão ciclando (fêmeas em anestro pré-puberal, gestacional, lactacional, estacional). Nas etapas posteriores os folículos antrais requerem primeiro concentrações elevadas de FSH, e nas etapas finais somente podem continuar crescendo na presença de pulsos frequentes de LH, pelo qual somente os folículos que encontram-se sob concentrações apropriadas desses hormônios podem seguir crescendo. Por essa razão, nos animais que se encontram em anestro de qualquer tipo somente é possível encontrar folículos antrais pequenos ou médios, segundo a espécie, e nos animais que se encontram ciclando (estro) o maior tamanho folicular encontrado em um determinado dia do ciclo dependerá das concentrações de FSH e LH presentes nesse momento e nos dias anteriores. Um folículo que chega ao estado máximo de desenvolvimento, conhecido como folículo pré-ovulatório, ao final, somente chegará a ovular se for exposto a um pico pré-ovulatório de LH. Como supracitado, cada dia na vida de uma fêmea inicia seu desenvolvimento um certo número de folículos; a grande maioria sofrem atresia, mas depois da puberdade em cada dia do ciclo estral um ou vários folículos vão encontrando ao longo do seu desenvol-vimento concentrações hormonais que lhes permite chegar na etapa de folículo pré-ovula-tório. Somente nestes folículos, e como consequência de um pico pré-ovulatório de LH, se reinicia e completa-se a primeira divisão meiótica do ovócito primário, produzindo duas células distintas. Uma delas é o ovócito secundário, que retém praticamente todo o citoplasma. Contém, assim mesmo, em seu núcleo um par de cromossomos duplos, a outra é o primeiro corpo polar, que é exclusivamente um núcleo com uma quantidade mínima de citoplasma. Na maioria das espécies ovula-se um ovócito secundário que se encontra, então, suspendido na segunda divisão meiótica. Esta segunda divisão meiótica somente reinicia-rá e completarar-se uma vez que o espermatozoide começa a penetrar sob o ovócito secundário. Ao concluir-se a divisão se forma o segundo corpo polar e completa-se a ovogênese com o qual se obtém o óvulo, célula 1n que constitui o gameta feminino. No entanto, o óvulo existe pouco tempo como tal, já que em poucos minutos/horas (depen-dendo da espécie) se produzirá a fusão do núcleo do mesmo (pró-núcleo feminino) com o do espermatozoide (pró-núcleo masculino), com o qual se completa a fertilização e se forma um novo indivíduo (o ovo ou zigoto). -/- Ondas foliculares -/- Como mencionado supra, todos os dias um determinado número de folículos pri-mordiais se ativam e começam a crescer, os quais crescem em um ritmo característico em cada espécie. Isso provoca que em qualquer momento existam nos ovários folículos pri-mordiais (que começam a crescer em alguns dias ou semanas), assim como folículos secundários em diversas etapas do desenvolvimento, os quais iniciaram seu desenvolvi-mento em semanas ou inclusive meses (segundo o grau de desenvolvimento atual). Também em qualquer momento poderá haver folículos antrais nas etapas iniciais de seu desenvolvimento (com antros que já se podem detectar em cortes histológicos mas não são visíveis macroscopicamente). Todos esses folículos chegaram até seu estado de de-senvolvimento atual (primário, secundário ou antral pequeno), independente da etapa do ciclo estral em que sejam observados ou encontrados. Nos bovinos, os folículos que chegam ao início da etapa antral iniciaram seu desenvolvimento cinco meses antes, e todavia requerem ao redor de 42 dias para chegar ao estado pré-ovulatório. Para continuar seu desenvolvimento, os folículos antrais pequenos devem encon-trar concentrações altas de FSH, que os estimulam para prosseguir o crescimento. Cada vez que se produz uma elevação nas concentrações de FSH, esse hormônio estimula o desenvolvimento de um grupo de folículos antrais pequenos, que começaram a crescer muito tempo antes e que o dia da elevação de FSH tenha alcançado o grau de desenvolvi-mento preciso para responder com eficiência a este hormônio, o qual atuará através de seus receptores nas células da granulosa para estimular a produção de estradiol, a secreção de inibina, a produção de líquido folicular e a proliferação das células da granulosa. Um grupo de folículos antrais pequenos é assim recrutado pelo FSH para acelerar seu cresci-mento e aumentar sua produção de estradiol e inibina (figura 12). Mediante um seguimento ultrassonográfico dos ovários é possível identificar pou-cos dias depois um certo número de folículos, que por haver sido recrutados começam um período de crescimento acelerado. Durante alguns dias vários folículos crescem juntos, porém depois um deles é selecionado para continuar crescendo, enquanto que o restante do grupo deixam de fazê-lo e terminam sofrendo atresia. Através da ultrassom é possível identificar o folículo selecionado, agora chamado folículo domi-nante, já que sua trajetória de crescimento sofre um desvio com respeito a seguida pelo restante do grupo. Os folículos que não foram selecionados deixam de crescer e sofrem atresia já que deixam de possuir o suporte gonadotrópico de FSH, uma vez que as concentrações desse hormônio são suprimidos pela inibina e o estradiol produzidos pelo conjunto de folículos que conformam a onda folicular (figura 12), porém o folículo mais desenvolvido do grupo se converterá em dominante. A inibina atua diretamente a nível hipofisário para reduzir a secreção de FSH. Figura 12: onda folicular e relação dos níveis de FSH, estradiol e LH. Fonte: ZARCO, 2018. -/- Figura 13: Recrutamento, seleção e dominação folicular na espécie ovina e influência do FSH e LH nas fases. Fonte: SILVA, E. I. C. da, 2019. -/- A razão pela qual o folículo dominante é capaz de continuar seu desenvolvimento apesar da baixa nas concentrações de FSH é que o folículo é o único que alcançou o grau de progresso necessário para que apareçam os receptores para LH em suas células da granulosa. Esse processo permite ao folículo dominante ser estimulado pela LH, e que requeira baixas concentrações de FSH para manter seu desenvolvimento. A secreção de LH em forma de pulsos de baixa frequência (um pulso a cada quatro a seis horas), característica da fase lútea do ciclo estral; é suficiente para permitir que um folículo dominante continue crescendo por mais dias depois da sua seleção e que mais tarde mantenha-se viável durante alguns dias embora não aumentem de tamanho. Contu-do, se durante o período viável desse folículo não seja finalizada a fase lútea e não diminuam as concentrações de progesterona, o folículo terminará sofrendo atresia devido a exigência de um padrão de secreção acelerada de LH (aproximadamente um pulso por hora) durante o desenvolvimento pré-ovulatório, que somente pode ser produzido com a ausência da progesterona. Uma vez que um folículo dominante sofre atresia deixa de produzir inibina, pelo qual as concentrações de FSH podem elevar-se novamente para iniciar o recrutamento de outro grupo de folículos a partir da qual se origina uma nova onda folicular. Durante o ciclo estral de uma vaca podem gerar-se dois ou três ondas foliculares; somente em raros casos quatro. A etapa de dominância folicular da primeira onda na grande maioria dos casos não coincide com a regressão do corpo lúteo, pelo qual o primei-ro folículo dominante quase invariavelmente termina em atresia. Em algumas vacas o fo-lículo dominante da segunda onda ainda está viável quando se produz a regressão do corpo lúteo e acelera-se a secreção de LH, pelo qual esse segundo folículo dominante se converte em folículo pré-ovulatório e, ao final ovula. Em outros animais o segundo folícu-lo dominante também perde a sua viabilidade antes da regressão do corpo lúteo, por onde nesses animais se inicia uma terceira onda folicular, da qual surge o folículo que finalmen-te ovulará depois de produzir-se a regressão do corpo lúteo. Sem importar a onda em que se origine, uma vez que um folículo dominante é ex-posto a alta frequência de secreção de LH que se produz depois da regressão do corpo lúteo, aumenta ainda mais sua secreção de estradiol até que as altas concentrações desse hormônio comecem a exercer um feedback positivo para a secreção do LH. Isso provoca-rá a aceleração da frequência de secreção do LH até que os pulsos são tão frequentes que começam a ficar por cima e produzir-se o pico pré-ovulatório de LH, que é responsável pela realização da ovulação e a maturação final do ovócito. -/- •___DIFERENÇAS ENTRE ESPERMATOGÊNESE E OVOGÊNESE -/- Enquanto que na fêmea a ovogênese inicia-se durante a vida fetal, no macho a es-permatogênese começa na puberdade. Na fêmea, a partir de um ovócito primário se origi-na um óvulo; no macho, de um espermatócito primário se produzem, teoricamente, quatro espermatozoides. Outra característica interessante é que enquanto a fêmea já conta desde o nasci-mento com todos os ovócitos que necessitará na vida adulta, o macho necessitará chegar a puberdade para iniciar o desenvolvimento das células sexuais, já que ao nascer somente possui gonócitos precursores das células germinais, células de Sertoli e intersticiais. Na vida adulta de uma fêmea, o número de células germinais desaparece paulati-namente. Uma vez iniciada a espermatogênese no macho, a cada ciclo do epitélio seminí-fero as células germinais são renovadas mantendo a provisão para toda a vida reprodutiva. Na fêmea, a meiose sofre duas interrupções em seu transcurso, e no macho é ininterrupta. Figura 14: representação em diagramação comparativa do desenvolvimento da gametogênese. -/- Principais pontos abordados sobre as diferenças entre a gametogênese masculina e feminina: ❙ Na ovogênese a meiose contêm-se em duas ocasiões esperando acontecimentos externos para prosseguir. Já na espermatogênese não existe a suspensão da meiose. ❙ A espermatogênese é um processo contínuo, enquanto que a ovogênese pode completar exclusivamente um óvulo em cada ciclo estral; já que só pode ser completada por mais de um nas espécies que ovulam vários ovócitos no caso das porcas, cadelas, gatas etc. ❙ Na espermatogênese existem células de reserva que permitem a continuação du-rante toda a vida, enquanto que na ovogênese o número de ovócitos primários é limitado. A fêmea somente conta com os que nasceu, e eles não se dividem. ❙ Na espermatogênese obtém-se até 256 espermatozoides para cada espermatogo-nia que inicia o processo, enquanto que na ovogênese somente se obtém um óvulo a partir de cada ovócito primário. ❙ Durante a espermatogênese se produz uma metamorfose que transforma as es-permátides em espermatozoides. Na ovogênese não ocorre um processo análogo. ❙ Na espermatogênese, durante a meiose produzem-se quatro espermátides a partir de cada espermatócito primário. Na ovogênese se produz somente um óvulo a partir de cada ovócito primário; produz, ademais, dois corpos polares. ❙ Todos os óvulos que se produzem durante a ovogênese contém um cromossomo X, enquanto que a metade dos espermatozoides possuem um cromossomo Y e a outra metade um cromossomo X. ❙ Na espermatogênese produzem-se centenas ou dezenas de milhões de esperma-tozoides por dia, enquanto que na ovogênese se produz um ou alguns óvulos a cada ciclo estral. ❙ A espermatogênese produz gametas macroscópicos e com motilidade própria, enquanto que a ovogênese produz gametas grandes e imóveis. -/- REFERÊNCIAS BIBLIOGRÁFICAS -/- ABDEL-RAOUF, Mohammed et al. The postnatal development of the reproductive organs in bullswith special reference to puberty.(Including growth of the hypophysis and the adrenals). Acta endocrinologica, n. Suppl No. 49, 1960. ADONA, Paulo Roberto et al. Ovogênese e foliculogênese em mamíferos. Journal of Health Sciences, v. 15, n. 3, 2013. AERTS, J. M. J.; BOLS, P. E. J. Ovarian follicular dynamics: a review with emphasis on the bovine species. Part I: Folliculogenesis and pre‐antral follicle development. Reproduction in domestic animals, v. 45, n. 1, p. 171-179, 2010. AERTS, J. M. J.; BOLS, P. E. J. Ovarian follicular dynamics. A review with emphasis on the bovine species. Part II: Antral development, exogenous influence and future prospects. Reproduction in domestic animals, v. 45, n. 1, p. 180-187, 2010. ALBERTINI, David F.; CARABATSOS, Mary Jo. Comparative aspects of meiotic cell cycle control in mammals. Journal of molecular medicine, v. 76, n. 12, p. 795-799, 1998. AUSTIN, Colin Russell; SHORT, R. Reproduction in mammals. Cambridge, 1972. BAKER, T. G. Oogenesis and ovulation. In. Reproduction in Mammals I Germ Cells and Fertilization, p. 29-30, 1972. BEARDEN, Henry Joe et al. Reproducción animal aplicada. México: Manual Moderno, 1982. BIGGERS, John D.; SCHUETZ, Allen W. Oogenesis. University Park Press, 1972. BINELLI, Mario; MURPHY, Bruce D. Coordinated regulation of follicle development by germ and somatic cells. Reproduction, Fertility and Development, v. 22, n. 1, p. 1-12, 2009. CHIARINI-GARCIA, Helio; RUSSELL, Lonnie D. High-resolution light microscopic characterization of mouse spermatogonia. Biology of reproduction, v. 65, n. 4, p. 1170-1178, 2001. CHOUDARY, J. B.; GIER, H. T.; MARION, G. B. Cyclic changes in bovine vesicular follicles. Journal of animal science, v. 27, n. 2, p. 468-471, 1968. CLERMONT, Yves; PEREY, Bernard. Quantitative study of the cell population of the seminiferous tubules in immature rats. American Journal of Anatomy, v. 100, n. 2, p. 241-267, 1957. COSTA, DEILER SAMPAIO; PAULA, T. A. R. Espermatogênese em mamíferos. Scientia, v. 4, 2003. CUNNINGHAM, James. Tratado de fisiologia veterinária. Elsevier Health Sciences, 2011. CUPPS, Perry T. (Ed.). Reproduction in domestic animals. Elsevier, 1991. DA SILVA, Emanuel Isaque Cordeiro. Fisiologia Clínica do Ciclo Estral de Vacas Leiteiras: Desenvolvimento Folicular, Corpo Lúteo e Etapas do Estro. 2020. Acervo pessoal. DA SILVA, Emanuel Isaque Cordeiro. Fisiologia da Reprodução Animal: Ovulação, Controle e Sincronização do Cio. 2020. Acervo pessoal. DUKES, Henry Hugh; SWENSON, Melvin J.; REECE, William O. Dukes fisiologia dos animais domésticos. Editora Guanabara Koogan, 1996. EPIFANO, Olga; DEAN, Jurrien. Genetic control of early folliculogenesis in mice. Trends in Endocrinology & Metabolism, v. 13, n. 4, p. 169-173, 2002. ERICKSON, B. H. Development and senescence of the postnatal bovine ovary. Journal of animal science, v. 25, n. 3, p. 800-805, 1966. REFERÊNCIAS BIBLIOGRÁFICAS -/- FELDMAN, Edward C. et al. Canine and feline endocrinology-e-book. Elsevier health sciences, 2014. FUSCO, Giuseppe; MINELLI, Alessandro. The Biology of Reproduction. Cambridge University Press, 2019. GALINA-HIDALGO, Carlos Salvador. A study of the development of testicular function and an evaluation of testicular biopsy in farm animals. 1971. Tese de Doutorado. Royal Veterinary College (University of London). GALLICANO, G. Ian. Composition, regulation, and function of the cytoskeleton in mammalian eggs and embryos. Front Biosci, v. 6, p. D1089-1108, 2001. GILBERT, Scott F. Biología del desarrollo. Ed. Médica Panamericana, 2005. GNESSI, Lucio; FABBRI, Andrea; SPERA, Giovanni. Gonadal peptides as mediators of development and functional control of the testis: an integrated system with hormones and local environment. Endocrine reviews, v. 18, n. 4, p. 541-609, 1997. HAFEZ, Elsayed Saad Eldin; HAFEZ, Bahaa. Reprodução animal. São Paulo: Manole, 2004. HEDGER, Mark P. Testicular leukocytes: what are they doing?. Reviews of reproduction, v. 2, n. 1, p. 38-47, 1997. HUTSON, James C. Testicular macrophages. In: International review of cytology. Academic Press, 1994. p. 99-143. HYTTEL, P. Gametogênese. In. HYTTEL, Poul; SINOWATZ, Fred; VEJLSTED, Morten. Embriologia veterinária. São Paulo: Elsevier Brasil, 2012. JOHNSON, Martin H. Essential reproduction. Nova Jersey: John Wiley & Sons, 2018. JONES, Richard E.; LOPEZ, Kristin H. Human reproductive biology. Academic Press, 2013. KIERSZENBAUM, Abraham L.; TRES, Laura L. Primordial germ cell‐somatic cell partnership: A balancing cell signaling act. Molecular Reproduction and Development: Incorporating Gamete Research, v. 60, n. 3, p. 277-280, 2001. MATZUK, Martin M. et al. Intercellular communication in the mammalian ovary: oocytes carry the conversation. Science, v. 296, n. 5576, p. 2178-2180, 2002. MCLAREN, Anne. Germ and somatic cell lineages in the developing gonad. Molecular and cellular endocrinology, v. 163, n. 1-2, p. 3-9, 2000. MCKINNON, Angus O. et al. (Ed.). Equine reproduction. John Wiley & Sons, 2011. MERCHANT-LARIOS, Horacio; MORENO-MENDOZA, Norma. Onset of sex differentiation: dialog between genes and cells. Archives of medical research, v. 32, n. 6, p. 553-558, 2001. MINTZ, Beatrice et al. Embryological phases of mammalian gametogenesis. Embryological phases of mammalian gametogenesis., v. 56, n. Suppl. 1, p. 31-43, 1960. MORALES, M. E. et al. Gametogénesis. I. Revisión de la literatura, con enfoque en la ovogénesis. Medicina Universitaria, v. 8, n. 32, p. 183-9, 2006. NAKATSUJI, NORIO; CHUMA, SHINICHIRO. Differentiation of mouse primordial germ cells into female or male germ cells. International Journal of Developmental Biology, v. 45, n. 3, p. 541-548, 2002. NILSSON, Eric; PARROTT, Jeff A.; SKINNER, Michael K. Basic fibroblast growth factor induces primordial follicle development and initiates folliculogenesis. Molecular and cellular endocrinology, v. 175, n. 1-2, p. 123-130, 2001. REFERÊNCIAS BIBLIOGRÁFICAS -/- NORRIS, David O.; LOPEZ, Kristin H. The endocrinology of the mammalian ovary. In: Hormones and reproduction of vertebrates. Academic Press, 2011. p. 59-72. PEDERSEN, Torben. Follicle growth in the immature mouse ovary. European Journal of Endocrinology, v. 62, n. 1, p. 117-132, 1969. PINEDA, Mauricio H. et al. McDonald's veterinary endocrinology and reproduction. Iowa state press, 2003. ROSER, J. F. Endocrine and paracrine control of sperm production in stallions. Animal Reproduction Science, v. 68, n. 3-4, p. 139-151, 2001. RUSSELL, Lonnie D. et al. Histological and histopathological evaluation of the testis. International journal of andrology, v. 16, n. 1, p. 83-83, 1993. RÜSSE, I.; SINOWATZ, F. Gametogenese. Lehrbuch der Embryologie der Haustiere, p. 42-92, 1991. SAITOU, Mitinori; BARTON, Sheila C.; SURANI, M. Azim. A molecular programme for the specification of germ cell fate in mice. Nature, v. 418, n. 6895, p. 293-300, 2002. SALISBURY, Glenn Wade et al. Physiology of reproduction and artificial insemination of cattle. WH Freeman and Company., 1978. SAWYER, Heywood R. et al. Formation of ovarian follicles during fetal development in sheep. Biology of reproduction, v. 66, n. 4, p. 1134-1150, 2002. SCARAMUZZI, R. J.; MARTENSZ, N. D.; VAN LOOK, P. F. A. Ovarian morphology and the concentration of steroids, and of gonadotrophins during the breeding season in ewes actively immunized against oestradiol-17β or oestrone. Reproduction, v. 59, n. 2, p. 303-310, 1980. SEIDEL JR, G. E. et al. Control of folliculogenesis and ovulation in domestic animals: puberal and adult function. In: 9th International Congress on Animal Reproduction and Artificial Insemination, 16th-20th June 1980. II. Round tables. Editorial Garsi., 1980. p. 11-16. SKINNER, Michael K. Cell-cell interactions in the testis. Endocrine Reviews, v. 12, n. 1, p. 45-77, 1991. SMITZ, J. E.; CORTVRINDT, Rita G. The earliest stages of folliculogenesis in vitro. Reproduction, v. 123, n. 2, p. 185-202, 2002. SORENSEN, Anton Marinus. Reproducción animal: principios y prácticas. México, 1982. SUTOVSKY, Peter; MANANDHAR, Gaurishankar. Mammalian spermatogenesis and sperm structure: anatomical and compartmental analysis. In. The sperm cell: Production, maturation, fertilization, regeneration, p. 1-30, 2006. TAZUKE, Salli I. et al. A germline-specific gap junction protein required for survival of differentiating early germ cells. Development, v. 129, n. 10, p. 2529-2539, 2002. VAN STRAATEN, H. W. M.; WENSING, C. J. G. Leydig cell development in the testis of the pig. Biology of Reproduction, v. 18, n. 1, p. 86-93, 1978. TURNBULL, K. E.; BRADEN, A. W. H.; MATTNER, P. E. The pattern of follicular growth and atresia in the ovine ovary. Australian Journal of Biological Sciences, v. 30, n. 3, p. 229-242, 1977. WASSARMAN, Paul M. Gametogenesis. Londres: Academic Press, 2012. WROBEL, K.-H.; SÜß, Franz. Identification and temporospatial distribution of bovine primordial germ cells prior to gonadal sexual differentiation. Anatomy and embryology, v. 197, n. 6, p. 451-467, 1998. REFERÊNCIAS BIBLIOGRÁFICAS -/- ZARCO, L. Gametogénese. In. PORTA, L. R.; MEDRANO, J. H. H. Fisiología reproductiva de los animales domésticos. Cidade do México: FMVZ-UNAM, 2018. ZIRKIN, Barry R. et al. Endocrine and Paracrine Regulation of Mammalian Spermatogenesis. In: Hormones and Reproduction of Vertebrates. Academic Press, 2011. p. 45-57. -/- REALIZAÇÃO -/- . (shrink)
FISIOLOGIA DA REPRODUÇÃO BOVINA -/- 3 – GESTAÇÃO -/- -/- INTRODUÇÃO -/- -/- O estabelecimento da gestação é o objetivo fundamental dos programas reprodutivos. Após a fertilização, o zigoto se divide e dá origem a embriões de duas, quatro, oito, dezesseis células, e no sétimo dia o embrião tem mais de 80 células. Entre os dias 16 e 18 do ciclo estral, o embrião se alonga e atinge 15 cm de comprimento. O estabelecimento da gestação depende da supressão da secreção (...) de PGF2α pelo embrião, que é realizada por meio da secreção de interferon-τ. Em vacas leiteiras, uma alta proporção de embriões morre antes do reconhecimento materno da gravidez. -/- Para evitar perdas embrionárias, é importante conhecer a fisiologia da gestação. Este capítulo descreve os principais processos fisiológicos que levam ao estabelecimento e manutenção da gestação e ao manejo da vaca prenhe. -/- -/- 3.1 Transporte de gametas -/- -/- Os gametas, óvulo e esperma, são definidos como células germinativas maduras que possuem um número haploide (n = 23) de cromossomos que, quando unidos, dão origem a um novo indivíduo geneticamente diferente de ambos os pais. -/- -/- 3.1.1 Transporte dos espermatozoides -/- -/- Os espermatozoides obtidos diretamente do testículo são funcionalmente imaturos, incapazes de fertilizar o óvulo. Durante sua permanência no epidídimo, os espermatozoides sofrem alterações na morfologia, mobilidade e metabolismo, o que lhes dá a capacidade de fertilização. No entanto, eles terão que passar algum tempo no trato genital feminino para que adquiram o estado ideal para fertilizar; processo conhecido como capacitação. -/- Durante a monta natural, a ejaculação ocorre na vagina e são depositados cerca de 5 x 109 de espermatozoides (volume ejaculado de três a cinco ml e concentração espermática de 1 x 109 a 1,2 x 109 por ml) suspensos no plasma seminal, este é basicamente constituído pelas secreções das vesículas seminais e da próstata. Após a ejaculação, o transporte dos espermatozoides é favorecido pelas contrações uterinas e vaginais que ocorrem durante e após a relação sexual. Nos primeiros minutos após a cópula, os espermatozoides já podem ser encontrados no oviduto, o que se deve às contrações do trato genital. Durante o transporte dos espermatozoides, a mobilidade individual é importante, já que apenas os espermatozoides com essa capacidade chegam ao local da fertilização. -/- O primeiro local para o estabelecimento de uma população de espermatozoides é a cérvix do útero, principalmente nas criptas, onde permanecem protegidos da fagocitose. É importante observar que apenas os espermatozoides móveis permanecem nas criptas; aqueles que estão mortos ou sem movimento são eliminados pelos fagócitos ou pelo movimento do muco cervical em direção a vagina. Embora uma população temporária de espermatozoides seja estabelecida no colo do útero, o reservatório funcional de espermatozoides está localizado na região distal do istmo. -/- As características do muco cervical são importantes para o transporte dos espermatozoides; assim, durante o estro e a ovulação, o muco fica mais aquoso, o que favorece a migração dos espermatozoides, enquanto na fase lútea o muco torna-se mais viscoso, dificultando sua movimentação. -/- Já no útero, o transporte de espermatozoides depende principalmente das contrações uterinas. Aqui, os espermatozoides ficam suspensos nas secreções uterinas, cuja função é promover sua viabilidade e transporte. As secreções uterinas contêm fagócitos que removem os espermatozoides mortos e imóveis, embora os espermatozoides normais também sejam removidos por esse meio. Algumas substâncias, como prostaglandinas e ocitocina, promovem o transporte. -/- O oviduto desempenha um papel muito importante no transporte e maturação dos gametas, bem como na fertilização e desenvolvimento embrionário inicial. As características das secreções do oviduto variam de acordo com a região do oviduto e o estágio do ciclo estral. Uma vez que os espermatozoides atingem o oviduto, eles são distribuídos em dois lugares. Alguns espermatozoides são imediatamente transportados para a região da ampola; esses são os primeiros que encontram o ovócito, mas sua capacidade de fertilização é limitada. O outro local de distribuição é a região caudal do istmo; aqui eles permanecem até que a ovulação seja iminente. Para que a fertilização ocorra, é necessário que o espermatozoide se estabeleça neste local por um período de seis a oito horas, antes da ovulação. Uma a duas horas, antes da ovulação, um movimento ativo do espermatozoide é observado em direção à região da ampola. -/- No oviduto, o transporte de espermatozoides depende de seu movimento, do fluido ovidutal e das contrações musculares. É comum que alguns espermatozoides continuem seu movimento e saiam pela fímbria. A viabilidade do espermatozoide de uma ejaculação varia de 24 a 48 horas. -/- -/- 3.1.2 Transporte do ovócito -/- -/- A ovulação é o processo pelo qual o ovócito é liberado. Este evento é desencadeado pela secreção de LH conhecida como pico de LH ovulatório ou pré-ovulatório. -/- Devido ao efeito de LH o cúmulos descola-se da parede folicular e começa a observar-se um adelgaçamento em uma pequena área da parede folicular, causada pela isquemia e pela ação de enzimas proteolíticas. Mais tarde, nesta área, uma pequena vesícula protuberante (estigma) se forma e eventualmente se quebra. Depois que o estigma é quebrado, o cúmulos que contém o ovócito junto com as células da granulosa. O ovócito é capturado pela fimbria; processo apoiado por movimentos dos cílios da mucosa e por contrações das pregas desta estrutura. Assim que o oócito é capturado, ele é transportado para a ampola. -/- 3.8 Manejo da vaca seca -/- -/- Em programas de manejo anteriores, a vaca seca recebia comida de pior qualidade e permanecia no esquecimento até o parto ocorrer. No entanto, os resultados dos estudos mostram que o período de seca é decisivo para que a vaca atinja um nível ótimo de produção e tenha um bom desempenho reprodutivo pós-parto. Por outro lado, o manejo correto no período seco reduz a incidência de doenças metabólicas no puerpério. O objetivo do período de seca é oferecer um descanso à vaca antes do parto, durante o qual o tecido mamário se regenera, o feto atinge seu crescimento máximo e a vaca atinge uma condição corporal adequada para enfrentar uma nova lactação. A duração recomendada do período de seca é de seis a oito semanas (60 dias). A involução do tecido da glândula mamária leva de duas a três semanas e um período semelhante é necessário para reiniciar a síntese do leite antes do parto. Assim, um período de seca de 60 dias é suficiente; entretanto, a duração desse período é questionada e tempos mais curtos foram propostos. Provavelmente, nos próximos anos, mais informações estarão disponíveis para apoiar a redução do período de seca. -/- Em termos de produção, o objetivo do manejo durante o período de seca é levar a vaca ao pico de lactação cinco a seis semanas após o parto, com produção máxima de leite. Estima-se que para cada kg de leite que aumenta no pico da lactação, ocorre um aumento de 120 kg ao longo da lactação. Para atingir este objetivo é necessário que a vaca tenha um consumo adequado de matéria seca após o parto; porém, três semanas antes do parto, a vaca reduz seu consumo em até 30%, para o qual é necessário estabelecer um manejo eficaz para promover um alto consumo de matéria seca durante a parte final do período de seca e durante as três primeiras semanas pós-parto (período de transição: três semanas antes e três após o parto). -/- A falta de capacidade de consumir as necessidades de matéria seca após o parto obriga a vaca a mobilizar suas reservas de gordura. Praticamente todas as vacas após o parto mobilizam suas reservas de gordura e perdem a condição corporal. A mobilização da gordura corporal causa degeneração gordurosa do fígado e é responsável por distúrbios metabólicos e retardo da atividade ovariana pós-parto. O grau de degeneração da gordura está relacionado à magnitude da mobilização da gordura corporal, que é diretamente dependente da capacidade de consumir matéria seca. Dessa forma, vacas com alto consumo de matéria seca no pós-parto, mobilizam menos gordura e, portanto, o dano ao fígado é menor. -/- O período de secagem é dividido em duas partes, a primeira compreende desde a secagem até duas semanas antes do parto; a segunda parte inclui as últimas duas semanas de gestação e é conhecida como período de desafio. -/- O período de desafio é decisivo para o desempenho produtivo e reprodutivo. Durante este período, uma dieta semelhante em ingredientes e forma deve ser oferecida à dieta que farão após o parto. Para facilitar esse manejo, as vacas deste grupo devem ser separadas do restante das vacas secas. -/- No período de seca, atenção especial deve ser dada para que as vacas não alcancem escores de condição corporal de quatro ou mais, uma vez que o excesso de gordura causa problemas metabólicos durante o puerpério, que afetam negativamente o comprometimento uterino e início da atividade ovariana pós-parto (figura 8). -/- -/- -/- Figura 8: Estágios fisiológicos e reprodutivos da vaca leiteira. Período de espera voluntário (PVE). -/- -/- 3.9 O período de transição -/- -/- O período de transição na vaca leiteira é três semanas antes e três após o parto (também conhecido como periparto). Nos últimos anos, esse tema tem merecido muitas pesquisas, pois o que for bem ou mal feito durante ele terá impacto na eficiência reprodutiva e na produção de leite. Durante o período de transição, a glândula mamária se prepara para a lactogênese, o feto cresce exponencialmente, a resposta imune é suprimida e o consumo de matéria seca diminui; além disso, o rúmen deve se adaptar à dieta recebida pelas vacas in natura (primeiras três semanas pós-parto), dieta caracterizada por alto teor de energia na forma de grãos. -/- Muitos distúrbios que se manifestam nas duas primeiras semanas pós-parto (hipocalcemia clínica e subclínica, cetose, retenção placentária, prolapso uterino, metrite, mastite, deslocamento do abomaso etc.), como os que se apresentam posteriormente (laminite, cistos ovarianos , endometrite e anestro) têm sua origem nos erros cometidos durante o período de transição. Em grande parte, os problemas estão relacionados à diminuição do consumo de matéria seca durante o período de transição; assim, o consumo diminui cerca de 30% durante as últimas três semanas de gestação, mas a maior parte da redução ocorre cinco a sete dias antes do parto. O manejo correto do período de transição tem como objetivo manter a normocalcemia, fortalecer o sistema imunológico, adaptar o rúmen a uma dieta rica em energia e aumentar a ingestão de matéria seca. Algumas recomendações gerais de manejo durante o período de transição são: separar as novilhas das vacas, ter comedouro suficiente para todos os animais, ter as mesmas características dos comedouros de vacas frescas e a dieta deve estar disponível 24 horas por dia (figuras 9 e 10). -/- -/- -/- Figura 10: O desempenho produtivo e reprodutivo das vacas depende em grande parte da condição corporal no momento do parto. Nesta fotografia são mostradas vacas recém-paridas, com uma condição corporal ideal (3,5). -/- Figura 9: Vacas no curral do desafio. Recomenda-se separar as novilhas das vacas, ter espaço suficiente com comedouro e a dieta deve estar disponível 24 horas por dia. -/- -/- RESUMO -/- -/- Cerca de 5 bilhões de espermatozoides são depositados em a genitália da vaca durante a cópula. Os espermatozoides devem permanecer no istmo e na região da junção útero-tubária por seis a oito horas antes da ovulação para obter uma alta taxa de fertilização. A viabilidade dos espermatozoides no útero é de 24 a 48 horas. A polispermia é efetivamente bloqueada nas primeiras 10 horas após a ovulação. Os blastômeros de embriões de duas, quatro e oito células são pluripotentes. A eclosão do embrião ocorre no oitavo dia. O tempo que o embrião leva para chegar ao útero é de três a quatro dias. Entre os dias 16 e 18 do ciclo, o embrião produz interferon-t, para bloquear a secreção de PGF2α. Entre os dias 17 e 18, o embrião se fixa ao endométrio. A medição da progesterona entre os dias 20-24 pós-infecção é 100% precisa na identificação de vacas não gestantes. A vaca deve atingir seu pico de lactação entre cinco e seis semanas após o parto. Para cada kg de leite que é aumentado no pico da lactação, um aumento de 120 kg é alcançado na lactação de 305 dias. Três semanas antes do parto, a vaca reduz seu consumo em até 30%. O período de transição inclui três semanas antes e três após o parto. As vacas ao parto não devem ter mais do que quatro pontos de condição corporal. A proporção de vacas secas deve ser de 15% (12,5% de vacas secas e 2,5% de novilhas). -/- -/- REFERÊNCIAS BIBLIOGRÁFICAS -/- -/- BEARDEN, Henry Joe et al. Applied animal reproduction. Reston Publishing Company, Inc., 1984. -/- Endocrinologia da Reprodução Animal. Recife, UFRPE, 2020. -/- Fisiologia da Reprodução Animal: Fecundação e Gestação. Recife: UFRPE, 2020. -/- HAFEZ, Elsayed Saad Eldin; HAFEZ, Bahaa. Reprodução animal. São Paulo: Manole, 2004. -/- HIDALGO, Galina et al. Reproducción de animales domésticos. México: Limusa, 2008. -/- HOLY, Lubos; MARTÍNEZ JÚSTIZ, G. Colab. Biología de la reproducción bovina. Havana: Revolucionária, 1975. -/- HOPPER, Richard M. (Ed.). Bovine reproduction. John Wiley & Sons, 2014. -/- LEBLANC, Stephen. Monitoring metabolic health of dairy cattle in the transition period. Journal of reproduction and Development, v. 56, n. S, p. S29-S35, 2010. -/- SARTORI, Roberto; BASTOS, Michele R.; WILTBANK, Milo C. Factors affecting fertilisation and early embryo quality in single-and superovulated dairy cattle. Reproduction, Fertility and Development, v. 22, n. 1, p. 151-158, 2009. -/- SENGER, Phillip L. et al. Pathways to pregnancy and parturition. Current Conceptions, Inc., 1615 NE Eastgate Blvd., 1997. -/- VIVEIROS, Ana Tereza de Mendonça. Fisiologia da reprodução de bovinos. Lavras: UFLA, p. 62, 1997. (shrink)
DIFERENCIAÇÃO SEXUAL -/- Emanuel Isaque Cordeiro da Silva Instituto Agronômico de Pernambuco Embrapa Semiárido -/- • _____OBJETIVO -/- Os estudantes de Veterinária e de Zootecnia estão ligados à disciplina Reprodução Animal, um pelos mecanismos fisiológicos para evitar e tratar as possíveis patologias do trato reprodutivo dos animais domésticos, e outro para o entendimento dos processos fisiológicos visando o manejo reprodutivo e a procriação para a formação de um plantel geneticamente melhorado. Sendo assim, a finalidade do presente trabalho é apresentar os (...) mecanismos que regulam as diferenças sobre o desenvolvimento embrionário relativos à diferenciação e determinação sexual de machos e fêmeas, que também incluem o desenvolvimento dos órgãos envolvidos na reprodução e a origem das diferenças entre ambos os sexos. -/- •____INTRODUÇÃO -/- Os organismos que se reproduzem sexualmente são descendentes de organismos ao qual não existia a diferenciação sexual. Em algum momento da evolução surgiu a reprodução sexual como um mecanismo para incrementar a diversidade genética e facilitar a troca de informações genéticas mediante o material genético da fêmea com o do macho. Devido sua origem comum, na maioria das espécies, tanto os machos como as fêmeas possuem todos os genes necessários para desenvolverem-se em qualquer dos sexos. O que efetivamente faz diferença entre os sexos é a forma e a ordem ao qual se expressam os genes durante o processo de desenvolvimento. A diferenciação sexual é regulada principalmente por mecanismos epigenéticos, mais do que as diferenças genéticas de grande magnitude entre os sexos. Todo o controle epigenético de qualquer processo de desenvolvimento depende basicamente de uma série de expressões gênicas, através da qual a expressão de certa combinação de genes resulta na presença de determinadas proteínas, conhecidas como os fatores de transcrição, que induzem ou reprimem a expressão de outro(os) gene(es), a partir dos quais se produzem novas proteínas, que em certos casos também atuam como fatores de transcrição para outros genes, e assim sucessivamente. Logo, a expressão ou falta de expressão de um gene ao início da série pode resultar em um ladrão totalmente diferente da expressão de outros genes subsequentes, o que pode ocasionar profundas mudanças no processo de desenvolvimento e até a mutações indesejáveis. O padrão predeterminado de expressões gênica relativo a diferenciação sexual na maioria das espécies tanto domésticas quanto selvagens, leva ao desenvolvimento de um dos sexos (o padrão predeterminado dos mamíferos é o sexo feminino). Em consequência, a diferenciação faz com que um indivíduo do sexo oposto exija a expressão de um gene de determinação sexual que desvie a subsequente série de expressões gênica em direção ao dito sexo. Nos mamíferos, a expressão do gene SRY, localizado no cromossomo Y (e portanto ausente nas fêmeas), redige o padrão de diferenciação sexual de sua via pré-estabelecida feminina em direção ao padrão masculino. A existência de uma única diferença genética (presença do gene SRY nos machos e ausentes nas fêmeas), vai se amplificando e termina resultando no desenvolvimento de indivíduos diferentes entre si. Esse é um mecanismo de diferenciação sexual cromossômica. O primeiro passo de uma série de diferenciação sexual, em sentido estrito, não depende nem requer necessariamente a presença de um gene diferente em algum dos sexos. O gene “disparador” da diferenciação sexual pode estar presente em todos os embriões, porém pode expressar-se somente em algum deles, devido a fatores ambientais que formam parte da sua regulação epigenética, isto é, uma determinação sexual ambiental. Em algumas espécies de tartarugas ou de lagartos a expressão ou falta de expressão do gene “disparador”, por exemplo, depende da temperatura existente durante a incubação dos ovos, pelo qual alguns embriões desenvolvem-se como machos e outros como fêmeas, apesar de não existir diferença genética entre eles, simplesmente como consequência da temperatura: a determinação sexual depende da temperatura a que cada um deles foi submetido durante a incubação. Em certas espécies as temperaturas mais elevadas facilitam o desenvolvimento de fêmeas e outras de machos, enquanto que em outras espécies as temperaturas amenas (intermediárias) resultam em machos, e as inferiores como as superiores induzem o desenvolvimento de fêmeas. A existência dessa diversidade indica que a temperatura por si mesma não é a que induz ou a que provoca o desenvolvimento do macho e da fêmea, senão a que atua somente como um regulador inicial da diferenciação sexual. Em outras espécies o fator ambiental que regula a determinação sexual pode ser distinto. A densidade populacional, por exemplo, pode atuar como um regulador. Podemos concluir que a determinação sexual dependente da temperatura ou de outros fatores ambientais estabelece-se antes da determinação sexual cromossômica, a qual evoluiu depois como um método que oferece maior certeza e resultado, já que a proporção de machos e fêmeas não é afetada por mudanças ambientais ou de hábitat. -/- •___FORMAÇÃO INICIAL DA GÔNADA -/- Basicamente em todos os embriões, inicialmente se formam as chamadas gônadas indiferenciadas (com o potencial de desenvolver-se em ovários ou testículos) a partir da invasão das cristas genitais pelas células germinais primordiais, que migram desde seu local de origem no epiblasto, perto do lugar onde o saco vitelino se une com o intestino primitivo e que chegam até às cristas genitais que são engrossamentos de tecido situados na região mesonéfrica do embrião. A migração das células germinais primordiais ocorre muito cedo sobre o processo de desenvolvimento do embrião (dia 26 nos bovinos). Ao chegas as cristas genitais, as células germinativas proliferam-se e se organizam com as células somáticas já existentes nas cristas para ir formando a gônada (figura 1). Para regular essa remodelação e conformação adequada da gônada vários genes se expressam, como o OCT-4 (que aparentemente mantém a totipotencialidade da gônada), assim como o SF-1 (Fator esteroidogênico 1) e o WT-1 (gene associado ao tumor de Wilms). Esses dois últimos genes estimulam a proliferação celular e estabelecimento dos cordões sexuais. Nessa etapa inicial do desenvolvimento todos esses genes se expressam sem distinção de sexo, pelo que a gônada em formação mantém a capacidade de se diferenciar em testículo ou em ovário. -/- Figura 1: migração das células germinais primordiais em direção a crista gonodal. Diferenciação das gônadas femininas e masculinas. Fonte: ZARCO, 2018. -/- •___SEXO CROMOSSÔMICO -/- Têm-se observado que nos mamíferos a determinação sexual depende diretamente dos cromossomos. As fêmeas possuem dois cromossomos sexuais X (um contribuído do óvulo e o outro por um espermatozoide “X”). Os machos, por sua vez, possuem um cromossomo sexual X(proveniente do óvulo) e um cromossomo sexual Y, que provém de um espermatozoide “Y” (figura 2). A metade dos espermatozoides produzidos por um macho são X e a metade Y, isso porque durante a espermatogênese a divisão meiótica provoca que a partir de cada espermatócito primário, célula diploide que por pertencer a um indivíduo macho tem um cromossomo X e um Y, se originem das espermátides haploides a cada um das que eles tocam cromossomos X, e outras espermátides haploides as que eles tocam os cromossomos Y. Dessa forma, de acordo com o tipo do espermatozoide que fertilize o ovócito, se originará um indivíduo com cariótipo feminino “XX” ou um cariótipo masculino “XY” (figura 2). Esse processo é conhecido como sexo cromossômico, ao qual se determina o momento da fertilização. Figura 2: nos mamíferos todos os óvulos produzidos pelas fêmeas possuem um cromossomo sexual X. A metade dos espermatozoides produzidos pelos machos possuem um cromossomo X e a outra metade possui um cromossomo Y. Dependendo do cromossomo presente no espermatozoide que fertilize o óvulo pode-se gerar um indivíduo XX (fêmea) ou um XY (macho). Fonte: ZARCO, 2018. -/- O cromossomo “Y” é uma “invenção” relativamente recente na história da evolução das espécies e do estudo da genética. Surgiu a partir de uma mutação de um cromossomo “X”, que resultou na perda de um de seus braços, que é por onde se originou a morfologia do cromossomo Y. A maioria dos genes presentes no cromossomo Y também existem no cromossomo X; assim mesmo somente alguns genes do cromossomo Y foram evoluídos até ser diferentes dos genes do cromossomo X. Embora os machos possuam um cromossomo que não está presente nas fêmeas, esse mesmo cromossomo não aporta toda a informação genética original. Todos os genes existentes nas fêmeas estão também presentes nos dos machos, já que eles também possuem um cromossomo X. Uma particularidade do cromossomo Y, ao existir somente uma cópia nos machos, é que ele sofre um entrecruzamento com um cromossomo análogo durante o processo de meiose, pelo que o cromossomo Y de um macho é idêntico ao de seu progenitor e ao de seus descendentes, exceto no caso em que ocorra uma mutação espontânea. Em contraste, os cromossomos X das fêmeas (um proveniente do pai e outro da mãe) se entrecruzam durante a meiose, por onde cada óvulo produzido pela fêmea terá uma combinação de alelos distinta em seu cromossomo X. Ao estudar as diferenças presentes na sequência de DNA do cromossomo Y, é possível identificar a distância filogenética entre os indivíduos (quanto mais diferenças existirem entre os cromossomos significa que seu ancestral comum está mais longe). Algo análogo ocorre com o DNA das mitocôndrias, que sempre são aportados pela mãe e nunca sofrem recombinação genética. Gene SRY -/- Um dos poucos genes do cromossomo Y que não possuem correspondência com o cromossomo X é o gene SRY (Sex-determining Region of the Y chromossome – região do cromossomo Y determinante do sexo). Esse gene se expressa somente na gônada em formação nos embriões machos, em particular em células precursoras das células de Sertoli; ele codifica uma proteína da família SOX (SRY-like Box) que é uma família formada por proteínas que possuem um domínio de união ao DNA e que atuam como fatores de transcrição. Ao produzir-se a proteína SRY nas células precursoras das células de Sertoli estimula-se a expressão (transcrição) de outro gene análogo, denominado SOX-9 que, por sua vez, atua como um fator de transcrição que ativa a expressão de outros genes, como o FGF-9 (Fibroblast Growth Factor-9), ou seja ele é o estimulante de ativação dos demais. Os produtos dos genes SOX-9 e FGF-9 iniciam uma cascata de expressões que provocam a diferenciação das células de suporte da gônada indiferenciada (crista genital) em células de Sertoli. Em seguida, essas células dirigem a diferenciação das células intersticiais da crista genital em células de Leydig, o que finalmente resulta na formação de um testículo. Outro dos efeitos da proteína codificada por SOX-9 é um estímulo maior da expressão de seu próprio gene, pelo qual é produzido um ciclo de retroalimentação positiva que favorece a continuidade do processo de formação testicular. Como nos embriões da fêmea não existe o gene SRY, a gônada indiferenciada não é estimulada para expressar os genes SOX-9 nem o FGF-9 nas células de suporte (que nesse caso serão precursoras de células da granulosa). A gônada, em mudança, expressa em forma constitutiva, isto é, sem a necessidade de estimulação, outra cascata de genes que incluem o WNT4 (Wingless-integration Factor 4) e o RAPO1 (Respondina-1), que por sua vez iniciam uma cascata de expressão gênica, a qual provoca a diferenciação das células somáticas da gônada indiferenciada para formação das células da granulosa e células da teca, esse feito conduz, por sua vez, a formação de um ovário. No embrião macho a proteína SOX-9 inibe a expressão dos genes WNT4 e RSPO-1, pelo que a presença do gene SRY, e portanto de SOX-9, inibem a formação de um ovário ao mesmo tempo que estimulam a formação do testículo (figura 3). Em suma, se o embrião possui genótipo XY (um embrião macho), o gene SRY começa a expressar-se sobre as células precursoras da gônada imediatamente depois da formação da mesma, quando os cordões sexuais primários estão se desenvolvendo na medula. A expressão do gene, assim como a presença subsequente das proteínas SOX-9 e FGF-9 estimula a distinção das células de Sertoli e que se organizem os tubos seminíferos a partir dos cordões sexuais primários. Em contrapartida, em um embrião com genótipo XX (fêmea) não existe o gene SRY, pelo qual é impossível que se elevem os níveis das proteínas SOX-9 e FGF-9 e as células precursoras não se diferenciam em células de Sertoli, e portanto os cordões sexuais primários sofrem regressão. Depois de alguns dias, começam a organizar-se os cordões sexuais secundários e as células precursoras iniciam a expressão do gene WNT4, o que leva as mesmas a diferenciar-se em células da granulosa, que serão a base para a conformação dos folículos ovarianos. Se em um embrião XY, macho, a expressão do gene SRY demora, é formada um ovo-testículo devido a que algumas das células somáticas das cristas gonodais começam a expressar o gene WNT4, e a diferenciar-se em células da granulosa, enquanto que em outras a proteína SRY chega a tempo para dirigir a diferenciação para formação das células de Sertoli. No ovário em formação é expressado um gene denominado DAX-1 (Dosage-sensitive Sex Reversal). Esse gene, localizado no cromossomo X, codifica uma proteína que é um membro da família dos receptores nucleares ao que lhe falta o domínio de união ao DNA, pelo que parece atuar no bloqueio de diversos fatores de transcrição, entre os que se encontra o SRY. Como a proteína DAX-1 impede a ação da proteína SRY, um excesso de expressão do gene DAX-1 pode provocar a feminilização gonodal de indivíduos XY, macho, embora tenham SRY. Em condições normais, a expressão adequada do gene DAX-1 não é capaz de evitar a masculinização gonodal de embriões com o gene SRY, daqui o nome de reversão sexual dependente da dose. Figura 3: série de expressão gênica para a determinação gonodal. SRY (Região do cromossomo Y determinante do sexo), SOX-9 (SRY-like Box-9), FGF-9 (Fator de crescimento de fibroblastos-9), WNT4 (Wingless-integration Factor-4), RSPO-1 (Respondina-1). Uma vez que o SRY induz a expressão de SOX-9 na gônada masculina, inicia-se um processo de feedback positivo mediante o qual os níveis de expressão de SOX-9 e FGF-9 vão aumentando, ao mesmo tempo que inibem a expressão de WNT-4 e RSPO-1. Na gônada feminina não se expressam SRY, SOX-9 e nem FGF-9, o que permite que se expressem os genes WNT-4 e RSPO-1, que iniciam uma cascata de sinalização que dirige a formação de um ovário. Fonte: ZARCO, 2018. -/- • ___DIFERENCIAÇÃO SEXUAL DOS GENITAIS -/- Uma vez que se formam os testículos, todo o desenvolvimento subsequente dos órgãos e as características “masculinas” em lugar das femininas é em consequência dos hormônios produzidos pelos testículos em formação, incluindo os andrógenos e o hormônio inibidor dos ductos de Müller. Mediante a ausência de testículos todo o desenvolvimento dos órgãos genitais internos e externos segue um padrão feminino, sem levar em conta se estão presentes os ovários; o que significa a ausência de hormônios gonodais determina que o embrião se desenvolva como fêmea, uma vez que não requerem hormônios ovarianos para desencadear o padrão feminino. Por sua vez, as gônadas masculinas (os testículos), produzem substâncias que desviam o desenvolvimento em direção ao padrão masculino. Sob etapas relativamente rápidas da diferenciação todos os embriões possuem dois pares de dutos sexuais, os dutos de Wolff ou mesonéfricos e os dutos de Müller ou paramesonéfricos (figura 4). A testosterona secretada pelos testículos do feto macho em desenvolvimento atua sobre os dutos de Wolff, o que induz a formação posterior dos dutos deferentes, do epidídimo e das glândulas seminais (figura 4). Figura 4: formação dos órgãos genitais internos a partir dos dutos de Wolff no macho e dos dutos de Müller na fêmea. Fonte: ZARCO, 2018. -/- Os testículos produzem ao mesmo tempo, uma glicoproteína chamada Hormônio Inibidor dos Dutos de Müller (Müllerian Inhibiting Hormone, MIH, também chamado de Anti-Müllerian Hormone, AMH); como o seu nome indica, inibe o desenvolvimento dos dutos de Müller ou paramesonéfricos, provocando sua regressão, que impede a formação dos órgãos genitais característicos da fêmea como os ovidutos, o útero, a cérvix e a porção cranial da vagina (figura 4). O MIH é uma glicoproteína da família dos fatores de crescimento transformativo β (TGFβ). O gene MIH possui locais de união para os produtos dos genes SOX-9 e SF-1, pelo que a presença simultânea de ambos fatores de transcrição é necessária para a secreção do MIH e leva a cabo sua função de iniciação dos dutos de Müller sobre o embrião macho (vale lembrar que nessa etapa tanto a gônada de embriões machos como de embriões fêmeas expressam o gene SF-1, mas somente o macho expressa o SOX-9, para que unicamente esse último produza MIH). O certo é que na gônada do embrião fêmea não se produzem quantidades importantes da proteína SOX-9, além de que se produz a proteína DAX-1, mesma que antagoniza tanto a SOX-9 como a SF-1, todo o qual impede a produção de MIH e resulta no desenvolvimento dos dutos de Müller até a formação dos ovidutos, útero, cérvix e a porção cranial da vagina (figura 4). Assim, na fêmea, ao não haver testículos não circulam concentrações elevadas de andrógenos, o que impedirá o desenvolvimento dos dutos de Wolff, enquanto que os dutos de Müller se desenvolvem já que não haverá a presença do MIH para impedi-lo. O desenvolvimento dos genitais internos e externos femininos não requerem a presença de nenhum hormônio ovariano o que levará a cabo de maneira predeterminada (ou pré-estabelecida) na ausência de testículos. Outra estrutura interna que também se desenvolve de forma distinta nos machos e nas fêmeas é o seio urogenital, que no embrião macho é estimulado pela testosterona para formação da próstata, das glândulas bulbouretrais e da uretra peniana, enquanto que na fêmea forma a porção caudal da vagina. A respeito dos órgãos genitais externos (figura 5), nos embriões de ambos os sexos existem estruturas precursoras chamadas de tubérculo genital e pregas vestibulares. Na fêmea o tubérculo genital da origem ao clitóris e as pregas vestibulares dão origem aos lábios vulvares sem a necessidade da atuação de hormônios ovarianos, já que o padrão “por via pré-estabelecida” é feminino. Em contrapartida, no macho, tanto o tubérculo genital quanto as pregas vestibulares respondem ao hormônio 5α-dehidro-testosterona (DHT), ao qual se formam as células da pele da zona genital a partir da testosterona que é secretada pelos testículos. Para isso existem nas células a enzima 5α-reductasa, que transforma a testosterona em DHT. Uma vez formada, a DHT atua sobre as pregas vestibulares do embrião macho para que se fusionem e formem o escroto (em lugar dos lábios vulvares), e sobre o tubérculo genital para formar o pênis (em lugar do clitóris). Figura 5: estruturas que se desenvolvem nos embriões de cada sexo a partir do seio urogenital, o tubérculo genital e as pregas vestibulares. A cor do né de cada estrutura final corresponde com a cor do nome da estrutura a partir da qual se originou. Fonte: ZARCO, 2018. -/- • ___DIFERENCIAÇÃO SEXUAL DO SISTEMA NERVOSO -/- Existem inúmeras diferenças funcionais entre o sistema nervoso da fêmeas e o do machos, em humanos podem incluir diferenças tão complexas como a maior capacidade de verbal da mulher ou a maior capacidade de orientação espacial do homem. Nessa parte será abordada aquelas diferenças que influenciam diretamente sobre a função reprodutiva, como as diferenças na regulação da secreção de gonadotropinas ou as diferenças na capacidade de comportamento sexual masculino ou feminino. É necessário lembrar que, apesar de que essas diferenças se originem durante um período crítico da vida fetal ou neonatal (dependendo da espécie), geralmente se fazem presentes até que o animal chegue a vida adulta e demonstre obter ou não a capacidade para se comportar como macho ou como fêmea uma vez que é exposto aos hormônios sexuais que são secretada depois da puberdade. Igualmente aos processos acima citados, podemos afirmar que nos mamíferos o padrão pré-estabelecido de comportamento sexual e de secreção de gonadotropinas é o feminino. Se durante os primeiros dias de vida neonatal uma rata fêmea não é exposta a nenhum hormônio gonodal, ao chegar a vida adulta ela terá a capacidade de se comportar como fêmea na presença de estrógenos, assim como de secretar um pico pré-ovulatório de GnRH/LH em resposta aos mesmos (figura 6). Essa rata, portanto, não poderá se comportar como macho embora que em sua vida adulta seja exposta a testosterona. O sistema nervoso do rato macho recém-nascido que é exposto aos andrógenos produzidos pelos testículos, em detrimento, faz com que adquiram o potencial para se comportar como machos em sua vida adulta e que perdem o potencial para ter conduta de fêmeas na presença e/ou administração de estrógenos (processo conhecido como desfeminização do SNC). Se por meios de experimentos injetamos testosterona em uma rata fêmea recém-nascida, essa rata não poderá se comportar como fêmea em sua vida adulta, e passará a se comportar como macho. A castração neonatal de um rato (visando evitar a exposição de seu SNC a andrógenos testiculares), assim mesmo, resultará em sua vida adulta um padrão feminino (SNC feminizado e não masculinizado). O hipotálamo das ratas adultas possui uma área em que o número, características e densidade dos corpos neurais difere em machos e fêmeas, essa área é denominada como “núcleo sexualmente dimórfico do hipotálamo”, e tem demonstrado que quando as ratas são tratadas com testosterona na vida neonatal, a morfologia de seu núcleo sexualmente dimórfico será masculinizado em sua vida adulta, enquanto que a castração neonatal de ratos resulta em um núcleo sexualmente dimórfico feminizado em sua vida adulta. Isso significa que a exposição ou não a testosterona na vida neonatal é o que determina que tipo de núcleo sexualmente dimórfico se desenvolverá, o que por sua vez está relacionado com o tipo de conduta que o animal poderá expressar em sua vida adulta. Não deixa de ser um paradoxo que ao injetar uma dose elevada de estrógenos nos primeiros dias de vida de uma rata, os núcleos sexualmente dimórficos da mesma se desenvolverão como macho e em sua vida adulta seu potencial de conduta estará masculinizado e desfeminizado. O hormônio “feminino” conhecido como estradiol, masculiniza o hipotálamo e a conduta do animal. Logo, se a rata neonatal for exposta a injeção de andrógeno não-aromatizado (que não pode ser transformado em estrógenos pelas células) ela não se masculiniza. A masculinização e desfeminização dos ratos ou das ratas tratados com testosterona, na realidade, não são provocados pela própria testosterona, senão pelos estrógenos que se formam dentro dos neurônios quando absorvem a testosterona do sangue e a aromatizam para transformá-la em estrógenos (figura 6). Figura 6: desfeminização e masculinização do sistema nervoso central por meio da testosterona, que quando não absorvida pela α-fetoproteína pode entrar nos neurônios, onde se aromatizam para serem transformados em estrógenos, hormônio que é responsável pela desfeminização. Fonte: ZARCO, 2018. Por que as ratas, que possuem ovários funcionalmente produtores de estrógenos, não se masculinizam? A resposta está em uma proteína denominada α-fetoproteína que circula em altas concentrações nos fetos e nos recém-nascidos. Essa proteína possui a capacidade de unir-se aos estrógenos, ao qual impede seu entrada nas células. Os ratos, em desenvolvimento, produzem testosterona, no entanto não possui afinidade pela α-fetoproteína, o que permite com que ela circule livremente. Ao chegar ao SNC, a testosterona (que não foi absorvida) pode entrar nos neurônios e dentro deles se aromatizam e transformam-se em estrógenos, que finalmente masculinizam o SNC. A diferenciação sexual do hipotálamo depende, em síntese, da presença ou ausência dos testículos, o que permite que se produza ou não o hormônio testosterona que pode não ser absorvida por parte da α-fetoproteína, transformar-se em estrógenos e masculinizar o SNC. -/- •___CONCLUSÃO -/- Nos mamíferos todo o processo que se requerem para o desenvolvimento de um macho depende da existência de somente um gene do cromossomo Y, o gene SRY; a ausência desse gene resulta no desenvolvimento de uma fêmea. A presença ou ausência do gene SRY determina, então, a cadeia de eventos morfogênicos que ocorrerá em sua expressão ou não, para desenvolver todos os órgãos e características de um macho ou de uma fêmea. Por essa razão, os indivíduos com uma monossomia XOA (síndrome de Turner) são fêmeas (por não possuir o cromossomo Y nem o gene SRY), enquanto que os indivíduos triploides XXY (síndrome de Kleinefelter) são machos embora possuam dois cromossomos X. Em algumas espécies, no entanto, têm-se identificado machos que são cromossomicamente XX; nesses casos é determinado invariavelmente que por ser um erro durante a meiose a região do cromossomo Y em que reside o gene SRY tem sido transloucada ao cromossomo X. Da mesma forma, em alguns casos tem sido encontrado fêmeas com cariótipo XY; que nelas se identifica uma mutação inabilitante do gene SRY. Isso demonstra experimentalmente que por meio da engenharia genética é possível produzir machos com cariótipo XY mas com o gene SRY eliminado (knockout). Como é de se esperar, esses machos desenvolvem ovários e todos seus órgãos genitais, tanto internos quanto externos, e se desenvolvem como fêmeas. Os machos cromossomicamente XX transgênicos aos que se insertam uma cópia do gene SRY, desenvolvem testículos e um fenótipo masculino, embora sejam estéreis por causa da ausência de alguns genes do cromossomo Y que são necessários para a realização de uma espermatogênese normal. As falhas nos mecanismos de diferenciação sexual podem, diretamente, ocasionar anormalidades como as observadas nas bezerras Freemartin, que são bezerras originadas de uma gestação gemelar em que seu gêmeo era macho. O que sucede é que na espécie bovina, quando há uma gestação gemelar, é produzido um certo grau de anastomose entre as placentas dos fetos, o que permite a troca de sangue e de células entre ambos. Os produtos recebem, então, algumas células de seu gêmeos, que encontram seu lugar no órgão correspondente e se integram a ele. No caso particular das gônadas, quando o ovário primitivo de um embrião fêmea é colonizado por algumas células gonodais de seu gêmeo macho, essas células expressam o gene SRY, o que fará com que essa região da gônada se diferencie como testículo. Como resultado, se desenvolve um ovo-testículo (com maior ou menor proporção de tecido testicular dependendo do grau de colonização da gônada em formação por células provenientes do gêmeo macho). Ademais, ao haver certa quantidade de tecido testicular produtor de MIH, circularão sobre o feto fêmea níveis desse hormônio que, embora baixos, afetarão o desenvolvimento normal dos dutos de Müller, fazendo com que as bezerras Freemartin possuam genitálias internas ausentes ou pouco desenvolvidas. Os andrógenos produzidos pelas zonas de tecido testicular, por fim, são suficientes para causar um certo grau de masculinização, que se manifesta como um clitóris mais grande que o normal ou um desenvolvimento corporal masculinizado. -/- REFERÊNCIAS BIBLIOGRÁFICAS -/- ARNOLD, Arthur P.; CHEN, Xuqi; ITOH, Yuichiro. What a difference an X or Y makes: sex chromosomes, gene dose, and epigenetics in sexual differentiation. In: Sex and gender differences in pharmacology. Springer, Berlin, Heidelberg, 2013. p. 67-88. CUNNINGHAM, James. Tratado de fisiologia veterinária. Elsevier Health Sciences, 2011. DERIVAUX, Jules; BARNABÉ, Renato Campanarut. Reprodução dos animais domésticos. Zaragoza: Acribia, 1980. DA SILVA, Emanuel Isaque Cordeiro. Desenvolvimento Embrionário e Diferenciação Sexual nos Animais Domésticos. Disponível em:. Acesso em: Julho de 2020. HAFEZ, Elsayed Saad Eldin; HAFEZ, Bahaa. Reprodução animal. São Paulo: Manole, 2004. HIDALGO, C. Galina et al. Reproducción de animales domésticos. México: Limusa, 2008. MACLAUGHLIN, David T.; DONAHOE, Patricia K. Sex determination and differentiation. New England Journal of Medicine, v. 350, n. 4, p. 367-378, 2004. MCCARTHY, Margaret M.; ARNOLD, Arthur P. Reframing sexual differentiation of the brain. Nature neuroscience, v. 14, n. 6, p. 677, 2011. PLANT, Tony M.; ZELEZNIK, Anthony J. (Ed.). Knobil and Neill's physiology of reproduction. Academic Press, 2014. REY, Rodolfo. Diferenciación sexual embrio-fetal: De las moléculas a la anatomía. Revista chilena de anatomía, v. 19, n. 1, p. 75-82, 2001. SENGER, P. L. Embryogenesis of the pituitary gland and male or female reproductive system. In. Pathways to Pregnancy and Parturition. Current Conception Inc, v. 1, p. 8-76, 1997. ZARCO, L. Diferenciación sexual. In. PORTA, L. R.; MEDRANO, J. H. H. Fisiología reproductiva de los animales domésticos. Cidade do México: FMVZ-UNAM, 2018. -/- REALIZAÇÃO -/- . (shrink)
Este livro e a maioria de suas fontes gostaria de ser textos da psicologia, embora a maioria dos autores não o realizem. Trata-se de comportamento humano e raciocínio-sobre por que pensamos e agir da maneira que fazemos e como podemos mudar no futuro. Mas (como toda essa discussão até recentemente) nenhum dos explicações são realmente explicações (melhor chamado de descrições na maioria dos contextos, como insistiu Wittgenstein), e assim eles não dão nenhuma visão sobre o comportamento humano. Ninguém discute os (...) mecanismos mentais envolvidos. É como descrever como um carro funciona by discutindo o volante e metal e pintura sem qualquer conhecimento do motor, combustível ou trem de acionamento. Na verdade, como a maioria dos mais velhos ' explicações ' de comportamento, os textos citado aqui e os comentários por Wilber são muitas vezes mais interessante para que tipos de coisas que eles aceitam (e omitir!) como explicações, e o tipo de raciocínio eles usam, do que para o conteúdo real. Se um está acima na filosofia e na psicologia cognitiva e evolucionária, a maioria disto é arcaico. Como quase todos (eruditos e públicos iguais-e.g., veja a minha resenha de Dennett ́S ‘Freedom Evolves’ e outros livros), ele não entende que os fundamentos da religião e da ética-na verdade, todo o comportamento humano, são programados em nossos genes. Uma revolução na compreensão de nós mesmos estava ocorrendo enquanto ele estava escrevendo seus muitos livros e passou por ele. Aqueles que desejam um quadro até à data detalhado para o comportamento humano da opinião moderna dos dois sistemas consultar meu livros Falando Macacos 3ª Ed (2019), A Estrutura Lógica da Filosofia, Psicologia, Mente e Linguagem em Ludwig Wittgenstein e John Searle 2a Ed (2019), Suicídio Pela Democracia,4aEd(2019), Entendendo as Conexões entre Ciência, Filosofia, Psicologia, Religião, Política e Economia Artigos e Análises 2006-2019 (2019), Ilusões Utópicas Suicidas no 21St século 5a Ed (2019), A Estrutura Lógica do Comportamento Humano (2019),. (shrink)
APRESENTAÇÃO O material Nutrição sobre a Reprodução e Fertilidade dos Bovinos é fruto de diversas pesquisas realizadas com o rebanho leiteiro do Instituto Agronômico de Pernambuco (IPA) de São Bento do Una em parceria com curso técnico em agropecuária do Instituto Federal de Pernambuco Campus Belo Jardim que visa demonstrar os fatores nutricionais como agentes diretos de alterações no sistema fisiológico do aparelho reprodutivo dos bovinos bem como na fertilidade destes animais. O trabalho estruturado de forma sistemática e mais didática (...) possível, é dividido em 18 capítulos que apresentam as principais variações fisiológicas no sistema reprodutivo e sobre a fertilidade dos animais mediante aos elementos nutricionais e possíveis desbalanceamentos das dietas fornecidas aos animais. É parte inerente do trabalho de conclusão de curso que me conferiu o título de técnico em agropecuária pelo IFPE Belo Jardim, texto laureado pela banca examinadora com nota máxima e êxito. A partir da realização de dias em campo e de pesquisas na literatura zootécnica e veterinária, esse projeto visa oferecer meios para que a comunidade técnico-científica e leiga, além dos produtores é claro, possam conhecer os principais distúrbios reprodutivos e férteis que a nutrição pode ocasionar nos animais, efeitos esses que causam prejuízos sem precedentes. Com isso, visa a melhoria na produção e produtividade dos animais mediante ao conhecimento das possíveis consequências de negligência nutricional e da má formulação de dietas que não suprem os requerimentos básicos dos animais em energia, proteína, vitaminas e/ou minerais. -/- 1. -/- RETENÇÃO DE PLACENTA -/- A retenção da placenta é uma anomalia reprodutiva de diferentes origens. Nos bovinos, caracteriza-se pela não expulsão dos anexos dos sacos placentários nas primeiras 12 horas após o parto. Os principais fatores que podem causar a retenção de placenta são: a) dificuldades no processo normal do parto (distorcias, partos gêmeos etc.), b) distúrbios hormonais, c) estresse intenso (subnutrição, falta de movimento, mau manejo do período de transição), d) doenças infecciosas, e) prolongamento do processo de gestação e f) fatores hereditários (KANKOFER, et al. 2005). Na apresentação das retenções de placenta considera-se a seguinte ordem: a primeira opção é de tipo infeccioso, portanto, deve-se descartar agentes indutores de aborto e de retenção infecciosa de placenta como: Brucella (principal causa de aborto), Leptospira, Neospora etc. Logo, a causa mais frequente de retenções de placenta, corresponde a intervenções muito precoces na atenção do parto. Isto faz com que não haja descolamento normal da placenta, terminando o parto. Esta segunda causa seria de origem mecânica ou traumática ao induzir o rasgo incompleto da unidade cotilédone-caruncular. A terceira causa de retenção de placenta são desequilíbrios nutricionais (FRAZER, 2005; GORDON, 1996), entre os quais podemos citar: 1.1 Deficiência de energia Dentro do aspecto nutricional este é um dos fatores que tem grande importância devido à deficiência na dieta de energia, levando a um Balanço Energético Negativo (BEN), já que o animal se vê obrigado a mobilizar reservas (CONTRERAS, 1998). Alterações metabólicas que ocorrem, causam stress no animal, stress que é refletido em problemas reprodutivos como a retenção da placenta que é dada pelas alterações que levam ao não desprendimento do cotilédone das criptas carunculares ou por baixa resposta do endométrio que nos processos de contração produz isquemia temporária na carúncula. Outra razão associada é que quando têm-se uma baixa no consumo de energia também se reduz a produção de glicose, a médio prazo o colesterol não é sintetizado e, portanto, a produção de estrogénios diminui, uma vez que não haverá excedentes energéticos que possam sintetizar o precursor da hormona esteroide, que a mesma placenta segrega ocorrendo uma atonia uterina onde não haverá contratilidade do útero na hora do parto o que leva à retenção de placenta, como sequela imediata ao estresse do parto sob grave BEN. 1.2 Deficiências de minerais Uma das causas da retenção de placenta é o déficit de alguns nutrientes no pré-parto, dentro dos quais se encontram o iodo e o selênio. Por isso, um dos sinais de que evidenciaria a deficiência de selênio seria a retenção da placenta. Talvez a forragem que se está oferecendo ao animal seja afetada pela estação do ano que determina os aumentos das deficiências nos meses de inverno, e a carência deve-se não só à disponibilidade na planta, mas também à disponibilidade e mobilidade do mineral no solo. A presença de altas concentrações de selênio em tecidos como o ovário, a placenta, a hipófise e as glândulas adrenais é uma manifestação da importância do conhecimento de uma possível deficiência do mesmo e suas consequências na área reprodutiva. A deficiência de selênio afeta a função da tireoide, uma vez que demonstrou-se que a concentração de tiroxina (T4), produzida pela tiroide em animais com deficiência de selênio, está aumentada no plasma enquanto a triiodotironina (T3) está diminuída. Isto deve-se à ação da enzima tipo I, iodotironina-5-deiodinase, que contém selênio na sua molécula, o que explica a diminuição da função hormonal da glândula tiroide que pode ser encontrada em animais com deficiência de selênio. Podem ser tomadas medidas preventivas para evitar problemas de retenção da placenta com a administração parentérica (IM) de 5 a 10 mg de selênio 1 mês antes do parto, podendo também evitar-se este fenômeno através da administração do selênio orgânico do tipo seleniometionina. Isto eleva o nível de enzima antioxidante glutationa peroxidase pelo menos por 3 meses, este tempo de proteção favorece a redução na retenção da placenta, uma vez que o parto é o momento de maior geração de radicais livres de oxigênio, cujo efeito nocivo é neutralizado pela glutationa peroxidase que é rica em selênio. A disponibilidade de selênio nas forrageiras brasileira é deficiente, uma vez que esse elemento encontrado no solo e em pouquíssimas quantidades é lixiviado pelas condições naturais. O selênio ainda possui funções essenciais no trato reprodutivo de touros e vacas, dentre as funções nós touros que mais se destacam estão a função antioxidante, que protege a membrana lipídica dos espermatozoides e também a função estrutural dos mesmos, uma vez que é estrutura fixa intermediária da membrana e das mitocôndrias dos espermatozoides. Quando há deficiência de selênio nos machos, a gametogênese fica comprometida e os espermatozoides apresentam-se com anormalidades em sua estrutura e elevam-se as porcentagens de oligozoospermia e de necrozoospermia. Nas vacas, a função do selênio também é antioxidante e sua ação evita o aparecimento dos cistos nós ovários, que são folículos que, por alguma intempérie, não ovularam naturalmente e normalmente. Estudos feitos por Julian et al., demonstraram que a inserção do selênio e a vitamina E na dieta das vacas gestantes reduziram indubitavelmente a incidência de retenção de placenta nas vacas (tabela 1). Foram testadas 193 vacas com quantidades variáveis de selênio divididas em grupo de controle e grupo tratado, os resultados demonstram que o selênio é essencial para que se reduza o número de placentas retidas por vacas. Tabela 1: Efeito do selênio e da vitamina E na prevenção de retenção de placenta -/- Selênio na dieta (mg/kg) Grupo de controle Grupo de tratamento* N° de vacas Placentas retidas % N° de vacas Placentas retidas % 0,04 39 16 41 53 6 11,3 0,02 23 12 52 37 4 10,8 0,035 9 7 77,7 14 0 0 — 9 6 66,7 9 0 0 Total 80 41 51,2 113 10 88 * Injeção IM de 50 mg de selenito de sódio e 600 UI de acetato de alfa-tocoferol. 40 – 20 dias ou 20 dias pré-parto. Fonte: JULIEN et al., 1976. Para oferecer alimentos ricos em selênio, basta que o criador utilize farelos/rações com ingredientes como a semente de girassol, o arroz ou o próprio trigo, desde que a quantidade presente na ração supra as necessidades e exigências dos animais para seus processos fisiológicos. Todavia, vale salientar que o selênio é um elemento químico encontrado no solo, e que a quantidade do mesmo nesses ingredientes implica no manejo correto do solo onde foram cultivados. Outro elemento muito importante é o iodo em si, já que sua deficiência influenciará sobre o comportamento sexual produzindo-se supressão ou depressão dos níveis de estrogênio, também pode diminuir a incidência de partos prolongados, cuja pior consequência é o aumento de placentas retidas. A importância de suplementar os animais com este mineral nas zonas afastadas do mar mostra uma notável melhoria nas taxas de concepção e redução da retenção de placenta. O iodo é efetivamente absorvido na circulação sanguínea, a partir do qual passa para a glândula tireoide ou é eliminado através da urina. A tireoide contém grande quantidade de iodo na forma de tiroglobulina. A partir das tironinas é sintetizado T3 e T4. A deficiência do mineral produz bócio que consiste em uma hipertrofia da tireoide, uma vez que o órgão tenta compensar a falta de iodo tornando mais eficiente seu mecanismo para captá-lo. A tireoide produz compostos hormonais que têm uma característica única no organismo, é que em sua composição entra o iodo. Isto é um fato importante, porque se o organismo não tiver iodo, a tireoide não pode produzir hormonas da tireóideas (T3 e T4). O iodo é um dos elementos essenciais. Poder-se-ia viver com um número limitado de elementos, é possível viver sem níquel, sem cádmio, mas impossível viver sem iodo. O iodo é um elemento químico encontrado no mar, sendo assim, os animais marinhos como peixes, moluscos, lulas, etc. são notadamente ricos em iodo. Para suprir as necessidades de iodo das vacas, bem como de quaisquer outras espécies domésticas, o criador poderá obter por oferecer uma ração industrial que contenha o iodo necessário que supra as necessidades e exigências das vacas, ou poderá optar pela utilização de farinha de peixe, por exemplo, como fonte de iodo sustentável e de baixo valor comercial. Uma deficiência de cobre e zinco nos níveis séricos pode causar a retenção de placenta, sendo assim, deve-se ter em conta a idade do animal, já que em menor idade há maior probabilidade de ocorrer o problema (AKAR, et al. 2005). Os hormônios da tireoide têm múltiplas funções. Atualmente sabe-se que a mais importante delas é intervir no desenvolvimento do sistema nervoso, participa na calorigênese e na regulação do consumo de oxigênio, por essa razão, processos de elevada troca de oxigênio requerem elevados níveis circulantes de hormonas tireóideas, tal como acontece no parto, onde o miométrio e a musculatura abdominal sofrem constantes contrações para a expulsão do feto e da placenta. Por esta razão, deficiências de iodo gerarão menor síntese de T3 e T4, dando lugar a menor regulação da troca de oxigênio e, com isso, a uma provável retenção de placenta por esgotamento após a contração muscular. O cobre usado em quantidades adequadas nas rações dos animais de produção, pode ser um ótimo promotor de crescimento, sendo assim, é indispensável na dieta das vacas e quaisquer outros animais de criação, ele é encontrado em diversos cereais, sendo a aveia o maior destaque que o produtor pode obter para oferecer a seus animais, ou mesmo com uma ração balanceada. O zinco é um microelemento imprescindível na vida da vaca, pode ser oferecido através de ração, em pasto ou por meio de cereais como o amendoim ou a castanha do caju. Esses minerais supracitados (selênio, iodo, cobre e zinco), podem ser oferecidos, além do método mais tradicional que é por meio de alimentos concentrados (ração), por meio dos alimentos volumosos que são as forrageiras como os capins. Para tanto, o criador deve optar por uma variedade que consiga, por meio da sua fisiologia vegetal, apresentar quantidades aceitáveis desses minerais em sua matéria verde ou seca. As vacas, bem como as demais espécies de produção, possuem exigências específicas de minerais, vitaminas, carboidratos, proteínas, etc. como já supracitado. As quantidades dos minerais (tabela 2) presentes no alimento fornecido devem ser respeitadas para que não haja problemas maiores como Intoxicações. Tabela 2: Exigências minerais para vacas de corte e leite -/- Mineral Vacas de corte em gestação (mg/kg) Vacas leiteiras em transição (mg/kg) Vacas leiteiras em lactação (mg/kg) Selênio 0,10 0,3 0,3 Iodo 0,50 0,4 – 0,5 0,34 – 0,88 Cobre 10 12 – 18 9 – 16 Zinco 30 21 – 30 43 – 73 Fonte: BARBOSA & SOUZA, 2003. 1.3 Fitoestrógenos Outra possível causa da retenção placentária é a manifestação do chamado "Síndrome Hiperestrogênico", que pode resultar no consumo de grandes quantidades de fitoestrogênios provenientes da alfafa, trevos e outras plantas ricas em estrogênios de origem vegetal. Os fitoestrogênios, tais como cumarinas e isoflavonas, são substâncias que têm a capacidade de ligar-se aos receptores endógenos de estrogênios, provocando nos animais que os ingerem em grandes quantidades, alterações reprodutivas por hiperestrogenização. Nos bovinos foram observados casos de ninfomania, hiperemia vulvar, quistos ováricos, hiperplasia das mamas e do útero, prolapsos da vagina, relaxamento dos ligamentos pélvicos e até a esterilidade. O fitoestrogênio encontra-se presente em maior quantidade na alfafa (coumestrol), que é 30 a 100 vezes mais potente do que outros fitoestrogênios presentes em vegetais como as isoflavonas. Estas substâncias encontram-se naturalmente em pequenas quantidades nas forragens e possuem efeitos antimicrobianos e fungicidas. A diferença com os estrogênios provenientes de ervas ou fitoestrogênios, representados pela genisteína, genistina e coumestrol presentes em muitas plantas leguminosas, e estrogênio endógeno, como 17-beta estradiol, estrona e outros compostos esteroides, é que os estrogênios endógenos são eliminados através da urina, das fezes ou são biologicamente desativados e não são armazenados como os fitoestrogênios. O possível efeito direto dos fitoestrogênios sobre a retenção da placenta, seria o bloqueio dos receptores para os estrogênios naturais, perdendo esta fonte de estímulo contrátil que resulta na expulsão da placenta. -/- Figura 1: vaca leiteira com retenção placentária pós-parto de bezerro. Acervo pessoal do autor. 2. -/- INVOLUÇÃO UTERINA -/- A involução uterina retardada é uma desordem reprodutiva parcialmente ocasionada por problemas nutricionais. Terminados os mecanismos do parto, os órgãos genitais da fêmea sofrerá alterações em seu tamanho, peso e forma, eles reduzem de tamanho até sua normalização, esse processo é conhecido como involução uterina (LANDAETA-HERNÁNDEZ, et al. 2004); a sua duração pode variar entre quatro a oito semanas, embora idealmente deva ser atingida aos 30 dias, é mais rápida em vacas de primeiro parto, bem como em vacas que amamentam os seus bezerros e pode ser retardada em vacas que tiveram problemas nutricionais (mal alimentadas ou até desnutridas), partos gêmeos, distorcias e retenção placentária. A recuperação do útero pós-parto ou involução uterina depende de contrações miometriais, eliminação da possível infecção bacteriana e regeneração do endométrio. A regeneração como tal, é denominada involução microscópica e usualmente segue à involução macroscópica ou de redução de peso e tamanho. Esta última pode levar entre 2 a 4 semanas e a primeira, entre 4 a 6 semanas (FRAZER, 2005; GORDON, 1996). A eliminação dos loquios e a redução do tamanho uterino são causadas por contrações miometriais, devidas inicialmente à presença de estrogênio durante o parto e posteriormente à secreção sustentada de prostaglandinas após o parto, as quais aumentam o tônus uterino e assim promovem a involução. Quando, de forma anormal, o período de involução se prolonga além dos mecanismos fisiológicos normais, define-se a situação como retardo na involução uterina com riscos potenciais de redução da eficiência reprodutiva, pela maior probabilidade de desenvolvimento de metrite, alteração da ciclicidade pós-parto e posteriores falhas na implantação por falhas na recuperação endometrial. 2.1 Relação energia e proteína O excesso de energia antes do parto pode levar ao retardo na involução uterina por que, a acumulação em excesso de reservas, se faz na forma de tecido adiposo, o qual ao ser mobilizado, durante o periparto, em resposta à busca pelo animal de fontes de energia para a depleção do glicogênio hepático e para a redução do consumo de matéria seca, deve ativar mecanismos gliconeogênicos (ZUÑIGA, 2006). Entre os substratos para a gliconeogênese incluem-se, em primeiro lugar, o tecido adiposo. Um rápido sinal endócrino para sua mobilização provém do cortisol (em excesso durante o parto), mas na presença de grande quantidade de tecido adiposo se apresentará dois efeitos imediatos; o primeiro uma cetose aguda e o segundo a infiltração da gordura do fígado, também chamado fígado graxo. Estas duas situações alteram a homeostase, em especial do tecido uterino (que sob pouca oferta de glicose, já que a mesma está sendo utilizada por outros tecidos que na compartimentalização enérgica prevalecem sobre o tecido reprodutivo), não é abundante, assim, o miométrio não deve ter energia para manter a contractilidade induzida pelas prostaglandinas. Adicionalmente as prostaglandinas são estruturalmente um ácido graxo insaturado composto por 20 átomos de carbono (ácido araquidônico) que necessita da enzima ciclo-oxigenase que dá origem à síntese de compostos intermediários instáveis chamados endoperóxidos cíclicos (PGG e PGH) (BARRERA, 2003), indispensáveis para a formação da prostaglandina e que não podem ser sintetizados por estar alterado o mecanismo lipogênico. Da mesma forma, o fator contrário em relação ao balanço energético preparado, isto é, em casos de deficiência de energia no preparo, leva a involução uterina retarda mediante um mecanismo que finalmente se assemelha ao apresentado em excesso de energia, mas através de um processo fisiológico em alguns pontos diferentes. Dependendo da gravidade do déficit energético, o catabolismo tecidual pode atingir magnitudes exageradas e, se a ele se somam os excessos de amônio formado pelo déficit de energia a nível ruminal, é provável que fenômenos fisiológicos se convertam em patológicos. A rápida perda de condição corporal, afeta o desempenho reprodutivo devido aos efeitos da excessiva taxa de mobilização dos tecidos sobre a saúde do útero e sua motilidade, já que não se encontrará possibilidade de síntese de prostaglandinas por déficit nos precursores lípidos e tampouco haverá glicose disponível como combustível energético, além disso, o atraso na involução uterina está intimamente relacionada com o balanço energético negativo (BEN) e os seus efeitos na concentração de metabolitos que influenciam o balanço hormonal, em especial sobre os estrógenos. Igualmente, no início da lactação o balanço energético negativo é o resultado de uma alta relação entre a hormona do crescimento e a insulina no sangue, que promove a mobilização de ácidos graxos de cadeia longa do tecido adiposo (ZUÑIGA, 2006). O BEN provoca alterações nas concentrações de metabolitos e hormonas como a glicose, a insulina, a hormona do crescimento (GH) (GALVIS, et al. 2003) e o fator insulínico de crescimento tipo 1 (IGF-1) que estão envolvidos no metabolismo energético intermediário e informam do estado nutricional do hipotálamo afetando a secreção de GnRH atrasando, dessa maneira, o tempo de involução uterina. Ações bloqueadoras mediadas por opioides endógenos que freiam a liberação de FSH e dela derivada, ocorre uma menor síntese de estrogênios que ativam receptores específicos no endométrio e não promovem contractilidade endometrial. Para suprir as necessidades das fêmeas quanto a proteínas e energias, os farelos de milho, soja, arroz, algodão, girassol, amendoim etc., suprem muito bem as quantidades necessárias. Para tanto, faz-se necessário o cálculo correto das quantidades a serem disponibilizadas na ração, bem como ao cálculo da quantidade fornecida no cocho para o animal, uma vez que a ingestão superior de determinados elementos como o molibdênio, a exemplo, pode causar diversos transtornos para além dos reprodutivos. As forrageiras podem suprir as fontes de energia e proteínas das fêmeas, como as leguminosas por exemplo, em especial a leucena, que serve como alternativa alimentar para a alimentação dos animais, porém mesmo com o fornecimento à vontade das forrageiras como os capins, é necessária uma complementação e a ração concentrada é o melhor remédio para tal. 2.2 Minerais Sabe-se que as deficiências de alguns minerais, incluindo o cálcio, fósforo, cobalto, cobre, iodo, manganês e selênio e os excessos de molibdênio afetam diretamente o sistema reprodutivo (MONCADA, 2001). Suas deficiências correm paralelas com alterações do eixo hipotálamo-hipófise-ovário. Sendo o cálcio um elemento indispensável na contractilidade do útero, seu déficit na dieta poderia ser responsável por uma involução uterina inadequada (RÚGELES, 2001). O cobalto é necessário no rúmen para a formação da vitamina B12. Quando ocorre uma deficiência de cobalto observa-se, primeiro, uma diminuição no consumo de alimentos e, com isso, uma baixa síntese de glicose, um consumo anormal de minerais (pica ou depravação do gosto) e uma queda na produção. Como consequência, pode-se afetar indiretamente, tanto a quantidade de nutrientes consumidos como seu aproveitamento refletindo-se finalmente sobre a fertilidade em forma negativa (DEHNING, 1988). As exigências nutricionais de cobalto em bovinos de corte ou leite, são escassas a nível de pesquisas, porém pode-se obter através da ingestão de matéria seca (MS) sobre um coeficiente fixo que é 0,1, esse número é o pico do fornecimento de cobalto, uma vez ultrapassado a quantidade de 0,1 mg/kg os animais serão acometidos por altos índices de toxidade, por isso o criador deve estar atento ao fornecimento desse microelemento aos animais. Porém, segundo estudos, o intervalo sugerido em quantidades desse elemento é de 0,07 e 0,11 mg/kg. Alguns cereais podem disponibilizar o cobalto em concentrações ideais, porém é melhor a prevenção, sendo assim, a deficiência de cobalto pode ser prevenida ou tratada mediante a adição de sais de cobalto às misturas minerais ingredientes da ração fornecida aos animais, ou pode-se optar pela injeção da vitamina B12 diretamente no animal. Da mesma forma que a deficiência de cálcio e fósforo, na deficiência de cobre, é observado um aumento da involução uterina retardada, calores silenciosos e ciclos estrais irregulares, uma vez que as funções deste mineral estão associadas às enzimas relacionadas com o citocromo C oxidase, transporte de albumina e ceruloplasmina, esta última de vital importância como principal oxidadora de ferro e ativadora nos processos de regulação dos mecanismos antioxidantes a nível celular. Não deve-se esquecer a estreita relação entre cobre e molibdênio. Excessos de molibdênio inibem a absorção de cobre. Em animais criados à pasto, deve-se estar atento a áreas onde as concentrações de molibdênio são mais presentes, se houver grande quantidade desse elemento nas forrageiras que o animal consumir, a melhor maneira de suplementação do cobre nesses animais é a injeção periódica de compostos a base de cobre, que evitarão a complexação do trato gastrointestinal. Os bovinos requerem 8,0 mg/kg (4 – 10 mg/kg) de cobre na dieta para corte e de 10,0 mg/kg (9 – 11 mg/kg) na dieta para bovinos leiteiros. Além da opção de ração que contenha esses níveis de cobre, o criador pode optar pelas forragens, que possuem quantidades variadas de cobre dependendo da disponibilidade do mesmo no solo, e que as leguminosas apresentam os melhores valores para que os animais possam consumir as quantidades essenciais para que não haja nem cobre demais nem cobre de menos no organismo, e que evite-se, com isso a involução uterina ou quaisquer outras doenças reprodutivas ou não. A deficiência de iodo induzida pelo consumo de forragens com níveis inferiores a 2 mg/kg de Matéria Seca (MS) ou baixa suplementação mineral, induz a retenção de membranas fetais e involuções uterinas retardadas. A tiroxina (T4) e a triiodotironina (T3) estimulam a produção de ATP mitocondrial, o que, por sua vez, estimula a captação celular de oxigênio e aumenta o metabolismo energético. Em casos de deficiência de iodo, as tiroxinas não poderão ser sintetizadas (RÚGELES, 2001). -/- 3. -/- METRITE -/- O transtorno caracterizado pela inflamação do útero, devido a causas sépticas ou assépticas que atuam sobre ele, denomina-se genericamente como metrite. As metrites são afecções de grande importância, tanto pela frequência como pela gravidade. As metrites podem ser divididas segundo seu caráter anatômico, como mucosa (catarral), purulenta, hemorrágica, crupal, pútrida e flegmonosa e segundo seu curso, em agudas e crônicas (FRAZER, 2005; GORDON, 1996). Estão associadas às doenças do puerpério. -/- Figura 2: vaca leiteira com escorrimento típico da metrite puerperal. Acervo pessoal do autor. -/- Quando a inflamação é limitada à mucosa é chamada de endometrite; e se ademais interessa a camada muscular denomina-se metrite ou miometrite; se afeta o revestimento peritoneal, perimetrite ou metroperitonite; e se a inflamação se estende ao paramétrio, ou seja, ao tecido conjuntivo pélvico e ligamentos, chama-se parametrite (FÖLDI, et al. 2006). A metrite ocorre em consequência de diversos acidentes que resultam de partos distócicos, após retenção fetal ou secundinas seguidas de putrefação, por arrancamento brutal dos cotilédones; por injeções uterinas irritantes; após o prolapso uterino; tudo o que favorece o desenvolvimento microbiano. Em fêmeas que se inseminam artificialmente sob condições sépticas ou de pobre destreza se produz endometrite seguida com infecundidade passageira, isto se produz como consequência das erosões produzidas pela pistola de inseminação, desassossego geral no procedimento ou por levar o sêmen a maior temperatura que a devida e em lugar inadequado. Algumas situações de origem nutricional se associam em maior ou menor grau com a incidência de metrite, em especial processos de retenção de placenta ou involução uterina de origem nutricional podem levar, de forma indireta, a incidência de metrite. 3.1 Relação energia e proteína Uma das situações de origem nutricional associada à metrite é o excesso de proteína crua na dieta. As vacas necessitam de um adequado fornecimento de proteína. No afã de suprir as necessidades nutricionais e evitar as limitações de aminoácidos, cai-se no erro de fornecer excessos de proteína, trazendo como consequência uma diminuição da eficiência reprodutiva, devido à relação dos altos níveis de proteína na dieta com a falha reprodutiva específica. Um excesso de proteína resulta num aumento da produção de amoníaco e, como consequência, numa maior síntese de ureia pelo fígado (BACH, 2000). Consequentemente, existe um aumento do nível de ureia no sangue, no útero e no muco vaginal. A nível uterino, a ureia parece ter um efeito sobre a função hormonal e depressora da proteção imunitária. O mecanismo específico baseia-se na toxicidade direta da ureia, na perda do balanço energético e na concentração de diaminas de ácido carbônico que favorecem a ampla difusão da ureia em todo o endométrio. O fornecimento de fontes alternativas de nitrogênio na alimentação dos animais vem ganhando espaço no debate entre os especialistas e a ureia é uma dessas fontes. Ela é conhecida como uma fonte de nitrogênio não-proteico (NNP), porém não se destaca tanto pelos inúmeros fatores negativos como a baixa aceitabilidade dos animais ou aos índices de intoxicação pela mesma. O rúmen necessita de um teor de 1% de nitrogênio para manter os mecanismos fisiológicos e a população microbiana, sendo assim, o produtor deve estar atento ao fornecimento desse mineral para seus animais. Especialistas apontam a fórmula de 30 g de ureia por dia para animais de 100 kg, e que essa quantidade nunca pode exceder os 200 g por animal por dia. Esses dados só podem ser postos em prática se as forrageiras existentes na propriedade não conseguirem suprir a exigência de 1% de nitrogênio no animal. Uma fonte vegetal de ótima qualidade e abundante em meios nutricionais e fonte extra de renda é a cana-de-açúcar. Ao nível hormonal a presença de ureia impede a manutenção do gradiente de pH (induzido pela progesterona) que existe entre as células apicais e basais da parede uterina (MARÍN & CÁRDENAS, 1999). Assim, a progesterona não consegue manter o gradiente de pH e aumenta a secreção de PGF2α, que afeta negativamente tanto a sobrevivência como o desenvolvimento embrionário. A nível imunológico, ocorre um efeito negativo devido à elevada concentração de amônio e ureia no sangue, o que diminui a atividade dos linfócitos e impede a defesa celular contra os agentes nocivos provocadores da metrite infecciosa, favorecendo o desenvolvimento microbiano. Para determinar a quantidade e a qualidade da nutrição proteica do animal são utilizados indicadores como a concentração de ureia no sangue e no leite. As proteínas, em geral, possuem inúmeras funções, dentre elas componentes estruturais, funções enzimáticas, funções hormonais, recepção de estímulos hormonais e armazenamento de informações genéticas. Na nutrição animal, as proteínas são divididas entre bruta (PB) e metabolizável (PM), ainda outras, mas o enfoque é esse. Os animais necessitam de níveis distintos de proteínas em suas respectivas fases de vida. Para elucidar melhor, tomemos como exemplo uma vaca nelore de 420 kg no final da gestação necessita, em média, de 389 g/dia de proteína metabolizável e, em média de 581 g/dia de proteína bruta. Os alimentos de origem vegetal (forrageiras) fornecem muito bem e eficazmente teores aceitáveis de proteínas, porém como o elemento mais presente é a fibra, faz-se necessário a suplementação nos animais, e um meio de suprir as necessidades dos mesmos, é optando por farelos de soja que possuem mais de 60% de proteína em sua composição, ou outras fontes alternativas como as farinhas de origem animal como a de sangue, por exemplo. A deficiência de fibra crua desencadeia principalmente uma deficiência de energia no ruminante; pois a partir da fibra formam-se os ácidos graxos voláteis (AGV) que constituem até 60% das fontes energéticas para estes animais. Devido à síntese reduzida de AGV, é muito baixa a concentração destes, são absorvidos pela corrente sanguínea e o animal entra em estado de déficit de precursores glicogênios. Como o consumo de alimento no pós-parto está reduzido, e não há a suficiente disposição de energia (deficiência de AGV principalmente ácido acético, devido a deficiência em fibra crua), o organismo realiza uma mobilização de ácidos graxos para a compensação energética. Os ácidos graxos são levados até acetil-CoA, este é convertido pelo fígado em corpos cetônicos que são utilizados em baixa concentração por alguns tecidos periféricos (cérebro) como fonte de energia, pois os excessos de corpos cetônicos produzem toxicidade. Os excessos de acetil-CoA no fígado podem sofrer condensação e converterem-se em β-hidroxi-β-metil-glutaril-CoA que serve como fonte de mevalonato (precursor do colesterol formado em excesso). Os excessos provocam fígado graxo que gera danos hepáticos, isso deprime a síntese de ácidos graxos para a formação do colesterol que se encontra diretamente implicado na síntese de estrogênios. Após o parto uma deficiência de estrogênio provoca de forma subsequente atonia uterina, retenção de placenta, endometrite puerperal e finalmente metrite. 3.2 Vitaminas Outra causa nutricional que incide na manifestação de metrite, é a vitamina A, que faz parte do grupo de vitaminas lipossolúveis e tem relevância especial na função reprodutiva. Esta exerce sua ação sobre a integridade estrutural e funcional das células epiteliais do organismo animal, atua sobre o crescimento, a reprodução e o desenvolvimento embrionário; mas seu papel principal é atuar como protetora dos epitélios, incluindo o endométrio. Além disso, tem um efeito estabilizador sobre várias membranas celulares e atua regulando a permeabilidade da membrana. A vitamina A, atua como estimuladora dos epitélios da mucosa tubária, uterina e vaginal, aumentando sua resistência contra os agentes infecciosos que produzem problemas que finalizam em metrite, também é necessária para as alterações histológicas que ocorrem na mucosa durante as diferentes fases do ciclo estral. Uma deficiência de vitamina A, pode causar morte embrionária, aborto, bezerros fracos ao nascimento e de forma subsequente uma retenção de placenta, (BACH, 2000) devido a não regulação da filtração de líquidos e gases através das membranas fetais; também dificulta a fecundação, devido à geração de uma atresia ovariana e à degeneração do epitélio germinal. Além disso, são produzidos edemas que ocasionam bezerros mortos ou prematuros (natimortos), o que provoca uma posterior retenção de placenta. Estas retenções provocam metaplasia queratinizam-te, dos epitélios da mucosa uterina-vaginal, o que provoca o aparecimento de metrite. Também, uma deficiência de outras vitaminas provocam o aparecimento de pequenas hemorragias, inchaço vulvar e degeneração epitelial das mucosas, em geral, isto provoca uma endometrite que posteriormente torna-se em metrite devido ao que se afeta a submucosa e a camada muscular do útero. Em relação ao pós-parto precoce, a capacidade de consumo de alimentos (forragem) é limitada, o que conduz, principalmente, a uma deficiência de fibras cruas na ruminação do animal, que conduzirá, em algumas circunstâncias, à predisposição para o desenvolvimento de metrite. Atentos a essas intempéries, o produtor deve estar atento aos requerimentos exigidos pelos animais de vitaminas para que possam manter seu funcionamento normal e longe de quaisquer problema ou agente infeccioso ou patógeno. Para tanto, os níveis de vitaminas por categoria animal, deve prezar pelas quantidades conforme demonstrado nas tabelas abaixo: Tabela 3: Exigências de vitaminas por categoria animal em bovinos de corte -/- Categoria Vitamina A (UI/dia) Vitamina E (mg/dia) Vitamina D (UI/dia) Niacina (g/dia) Vacas lactantes 80.000 – 120.000 100 – 1.000 15.000 – 50.000 1 - 2 Vacas secas 75.000 – 125.000 500 – 900 10.000 – 20.000 0 – 1 Fonte: BERCHIELLI et al., 2006. Tabela 4: Exigências de vitaminas em vacas gestantes de corte -/- Vitamina UI/kg de MS A 2.800 D 275 Fonte: BERCHIELLI et al., 2006. Para que se consiga suprir todas essas quantidades requeridas dos animais, em especial, das vacas gestantes para que não venha a ocorrer a incidência de metrite ou outro transtorno reprodutivo, o criador poderá optar pela injeção direta de complexos vitamínicos e minerais mediante os inúmeros fármacos da indústria farmacêutica animal, ou poderá suprir essas necessidades fisiológicas mediante o fornecimento de rações com teores adequados de vitaminas, ou ainda por intermédio de alimentos volumosos que além das vitaminas necessárias fornecem também as fibras. As forrageiras, leguminosas e gramíneas fornecem minerais, fibras e vitaminas; dentre elas as espécies tifton (capim) apresenta cerca de 34,8% de vitamina A, o capim-tanzânia apresenta 24% e a alfafa 23,4%. Por fim, métodos para fornecimento de fibras, vitaminas e/ou minerais não faltam. -/- 4. -/- CATARRO GENITAL II E III -/- O catarro genital ou metrite (inflamação do miométrio) é uma inflamação inespecífica no trato genital. Existem duas barreiras que impedem a chegada de germes ao interior do trato genital. As barreiras de tipo hemático (diferença de fluxo sanguíneo) e imunossupressão parcial originada pela progesterona, superadas as barreiras, podem se apresentar inflamação no momento do parto ou após o mesmo e frequentemente é acompanhada de retenção de placenta. A principal causa é a deficiência de fatores nutricionais, que causam distúrbios no metabolismo normal do animal. Os catarros trazem problemas de infertilidade, anestro, aumento entre o intervalo entre partos (IEP), o que acarretam altas perdas econômicas na produção (FRAZER, 2005; GORDON, 1996). Podem se manifestar em diferentes graus, que caracterizam-se por fatores específicos; serão abordados os catarros de 2° e 3° grau. 4.1 Relação Sódio (Na) e Potássio (K) Um dos fatores nutricionais associados ao catarro genital é a deficiência de sódio ou o excesso de potássio, o problema existente entre o excesso ou deficiência de um mineral reside na presença imediata de um desequilíbrio homeostático entre a relação fisiológica dos mesmos e, portanto, um desequilíbrio no metabolismo (funcionamento normal do organismo). A relação potássio:sódio (K:Na) ideal situa-se entre 10-15:1 (DEHNING, 1987) e demonstrou-se que à medida que se amplia essa relação se agrava a eficiência reprodutiva. Ao haver um excesso de sódio no organismo altera-se o equilíbrio de potássio:sódio (K:Na), aumentando os níveis de sódio os níveis de potássio diminuem, causando principalmente problemas na síntese de hormonas sexuais, que por sua vez apresentam um efeito negativo no ciclo estral normal da fêmea, além de problemas no parto (partos distócicos), isto porque no córtex adrenal deve produzir-se aldosterona para regular a homeostase mineral, devido ao fato do substrato bioquímico para a síntese da aldosterona ser o mesmo que para a síntese das hormonas sexuais, nomeadamente estrogênios, portanto, estes não se produzem provocando menor contratilidade uterina, o que favorece a contaminação e colonização bacterial típica dos quadros de metrite. Em média, uma vaca de 600 kg com uma produção de leite de 15 kg/dia, requer uma dieta com 230 g/dia de potássio. As concentrações sugeridas pela NRC para bovinos de corte com dieta de matéria seca (MS) é de 0,6 – 0,7% e a concentração máxima de 3%. Para garantir esses níveis de exigências, as forragens apresentam entre 1 % e 4% de K, portanto são excelentes fontes desse mineral. Em geral, os grãos de cereais são deficientes, menos 0,5% de K, no entanto farelos de oleaginosas são uma boa fonte de suplementação. O excesso de fornecimento de sódio (Na) é relativamente raro, mas clinicamente resulta em achados semelhantes de acetonemia, além de enfraquecimento, retenção de placenta, inflamação do aparelho genital e distúrbios no funcionamento ovariano. As forrageiras possuem um teor deficiente em sódio, uma vez que tal elemento é considerado prejudicial às plantas. Uma das formas de garantir a exigência de sódio no animal, é a disponibilidade à vontade de sal mineral (NaCl) em cochos espalhados pela propriedade. De forma geral, o consumo de sódio por animal/ dia deve ser de 20 a 25 g, o que perfaz aproximadamente 50 g de NaCl/cab./dia, considerando-se um percentual de 39% de sódio nesse composto. Vale salientar que o sódio tem função reguladora, portanto, sua disponibilidade não deve ser maior que a exigência requerida pelo animal. 4.2 Relação do Fósforo (P) Outro fator associado com metrite é, o excesso de fósforo (P) na dieta, pode ser dado por uma excessiva ou inadequada suplementação mineral, por intensa fertilização nas pastagens, por utilização de pastos sumamente jovens ou pelo consumo de grandes quantidades de grãos (soja) e cereais. Simultaneamente, com o excesso de fósforo é frequentemente encontrada uma diminuição do teor de manganês no tecido uterino, como consequência a diminuição da resposta do útero aos estrogênios (DEHNING, 1987). Estes, por sua vez, são responsáveis pelo movimento uterino e por criar maior resistência às infecções do trato genital. O intervalo sugerido pelas instituições de pesquisa está entre 0,12 – 0,20% na dieta de MS. Porém esse intervalo depende de alguns fatores como a idade dos animais e a categoria em que se encontram. O fósforo é um elemento que encontra-se em constantes debates em empresas e instituições agropecuárias. Pesquisadores da Austrália revelaram que 0,12% de sódio na matéria seca estaria o mais próximo possível dos níveis exigidos pelos bovinos de corte, o que contradiz os 30% requeridos pela NRC. Contudo, experimentos realizados pela Embrapa, concluíram que uma dieta em matéria seca de forrageiras com 100%, 70% e 40% dos níveis exigidos de fósforo, tiveram ganho de peso semelhantes. Por exemplo, os animais que receberam 70% dos requisitos tiveram ganho de peso médio entre 0,500 e 0,600 g/dia, muito semelhante ao mesmo ganho quando se forneceram 100% dos requisitos do fósforo. Nas forrageiras a disponibilidade de fósforo depende da disponibilidade do mesmo no solo. Nos grãos de cereais e farelos de oleaginosas contêm de moderado a alto teor de P, e nos produtos de origem animal, como farinha de peixe, o teor de P é considerado alto. 4.3 Relação Cálcio (Ca) e Fósforo (P) O caso de fornecimento exagerado de fósforo causa um efeito inverso da relação cálcio:fósforo (Ca:P), ou seja, sendo o fósforo dominante, maior será o déficit absoluto ou relativo de cálcio, cujas manifestações clínicas no aspecto reprodutivo correspondem amplamente com aquelas do excesso de fósforo. Um excesso absoluto de fósforo na presença de um abastecimento suficiente de cálcio é menos prejudicial para a reprodução do que um fornecimento de fósforo de acordo com os requisitos na presença de níveis deficitários de cálcio (DEHNING, 1987). Isto porque o cálcio, regula a contratilidade do músculo liso, como no miométrio. O intervalo sugerido de cálcio na dieta em MS está entre 0,19 e 0,33%, dependendo de fatores como a idade dos animais e o ganho de peso diário. Por exemplo, uma vaca de 600 kg que produz 15 kg/leite/dia requer uma dieta que contenha 40 g/dia de cálcio. O teor tóxico de cálcio na MS de forrageiras, leguminosas e gramíneas é de 4,4%. Para suprir a exigência em cálcio do animal, para que previna os catarros genitais em seus diferentes graus, bem como demais doenças a dieta está alicerçadamente entre o fornecimento de ração concentrada com misturas como farinha de ossos e fosfato bicálcico com elevados teores de Ca, ou entre os volumosos como as gramíneas, leguminosas ou forrageiras. Vale destacar que as leguminosas possuem baixo teor de Ca em sua composição, entretanto é maior do que a presença em gramíneas. A alfafa é uma forrageira que possui bastante cálcio em sua composição e que pode ser todo disponível para o animal. Por fim, os grãos de cereais como milho, soja, sorgo, etc., possui baixo teor de cálcio. O déficit de cálcio em vacas leiteiras de alta produção traz consequências como a doença da vaca caída (hipocalcemia) devido a sua alta exigência do mineral, especialmente após o parto, isto, por sua vez, causa uma inércia uterina que dificulta a eliminação de bactérias adquiridas durante o parto, propiciando um ambiente adequado para a multiplicação e contaminação do trato genital. 4.4 Relação energia:proteína e vitamina A O excesso de proteína ocorre frequentemente quando a alimentação é baseada em pastoreio, especialmente quando os animais recebem uma carga intensa de fertilizantes (com estrume ou nitrogênio) e, simultaneamente, é oferecido um suplemento concentrado rico em proteína (DEHNING, 1987). O excesso de proteína depende da quantidade de alimento consumido, sendo os animais de maior produção os mais afetados, uma vez que passam maior tempo para chegar ao peso ideal de abate (animais de corte), ou quando sua produção é potencialmente leiteira. As grandes quantidades de amônio produzido pelo processo de degradação da proteína nos ruminantes resultam numa sobrecarga prolongada no fígado, aumento dos níveis da enzima GOT (alterações hepáticas; que por sua vez resultam na apresentação de catarros genitais de grau II e III) e altos níveis da enzima GLDH. Estes distúrbios são agravados quando, ao mesmo tempo, há uma deficiência de energia. O excesso de proteína crua faz com que nas secreções uterinas se produzam mudanças no conteúdo dos minerais e um desequilíbrio entre os mesmos causando problemas reprodutivos de índole infecciosa e diminui adicionalmente a capacidade de sobrevivência dos espermatozoides e óvulos. A deficiência de vitamina A, também pode causar catarro genital. Recordando que as vitaminas são um grupo de compostos orgânicos essenciais no metabolismo necessário para o crescimento e o bom funcionamento do organismo. Entre estas, a vitamina A é considerada uma vitamina lipossolúvel que deriva dos carotenos presentes nos vegetais. Esta afeta a formação e manutenção da pele, membranas mucosas, ossos e dentes, retina e possui íntima relação com a reprodução. No último caso há falta de secreção da membrana mucosa do trato genital, o que produz susceptibilidade à invasão bacteriana (catarro genital II e III). O corpo obtém a vitamina A, fabricando-a a partir dos carotenos, precursores da vitamina A, que se encontram nos vegetais (forrageiras, leguminosas e gramíneas). O fornecimento de betacarotenos depende do conteúdo dos mesmos na ração. E se houver deficiência destes não pode haver formação de vitamina A, assim a porcentagem de falhas no crescimento do tecido endometrial leva a catarros genitais, mortalidade embrionária e abortos precoces. Logo, mediante os trabalhos anteriores, o fornecimento dessa vitamina, quantos dos demais macronutrientes exigidos pelo animal por meio da alimentação volumosa ou concentrada é essencial para obtenção do sucesso contra esse transtorno reprodutivo do catarro genital, quanto de demais outros seja no combate ou prevenção. -/- Figura 3: vaca leiteira com corrimento típico do catarro genital de 2º e 3º grau. Acervo pessoal do autor. -/- 5. -/- MORTALIDADE EMBRIONÁRIA -/- A mortalidade embrionária (ME) é uma desordem reprodutiva responsável por cerca de 15% das falhas da gestação. Em si, a ME pode ser dividida em dois grandes grupos, a ME precoce, ou seja, aquela que ocorre nos primeiros dias da gestação, por problemas específicos de reconhecimento materno-fetal, que não geram alteração significativa do ciclo estral, já que, não se afeta o corpo lúteo (BONDURANT, 2004). A segunda forma da ME, denominada ME tardia, altera o ciclo estral e se apresenta por rejeição da implantação em suas primeiras fases, usualmente se apresenta entre 25 e 40 dias pós-serviço. Figura 4: a morte fetal, tipicamente do embrião em desenvolvimento, ocorre em estágios iniciais, isto é, em fetos de aproximadamente 72 dias. Acervo pessoal do autor. -/- De acordo com GEARY (2005) existem múltiplas causas associadas à ME, entre essas causas listam-se os problemas de rejeição imunológica, a ausência de fatores de reconhecimento materno-fetal, problemas infecciosos, estresse e deficiências nutricionais, sobre essa última pode-se citar: 5.1 Deficiência de betacarotenos Os betacarotenos são precursores da vitamina A (provitamina A). São pigmentos vegetais de cor amarela ou laranja que, uma vez ingeridos, se transformam no fígado e no intestino delgado em vitamina A. São antioxidantes que ajudam o organismo a eliminar os radicais livres tóxicos que causam a oxidação dos tecidos (reação química de peroxidação que produz lesão nos tecidos já que os peróxidos são compostos tóxicos e cancerígenos) em células, proteínas e no material genético como DNA. Os radicais livres são normalmente formados como subprodutos do metabolismo oxidativo energético do organismo. Os betacarotenos atuam atrapalhando estes radicais livres e moléculas de oxigênio livre, e daí parte seu efeito protetor o qual centra-se na defesa da parede epitelial, pois sendo precursores da vitamina A, induzindo a sua síntese protegem a parede epitelial do enfraquecimento das suas membranas, evitando assim a entrada fácil de microrganismos patogênicos que possam, especificamente no caso de uma fêmea gestante, produzir infecções que ataquem o embrião provocando a sua morte, uma vez que aumenta-se a resistência imunológica. Além disso, intervêm também na diferenciação das células estaminais do embrião, evitando que ocorram malformações que possam originar mortalidade embrionária, e também evitando a assimetria do organismo que se está formando. A vitamina A, ajuda na conservação dos epitélios para um funcionamento normal. Uma deficiência desta, produz uma alteração dos epitélios que revestem o aparelho genital, podendo ocasionar diminuição da barreira protetora que formam as membranas, os microrganismos patogênicos podem entrar facilmente, desencadeando a morte do embrião. A vitamina A, atua no momento em que as células tronco do embrião entram em uma área deste, chamada "Nódulo de Hensen", começam a formar três camadas embrionárias de células que dão passagem ao sistema nervoso, digestivo, circulatório e outros sistemas do corpo. Células específicas localizadas nesta zona do embrião utilizam seus cílios (que segregam vitamina A) para criar correntes no fluido que as rodeia e dirigir as células estaminais para o seu destino. Estas células-tronco, antes de chegar ao nódulo do embrião "não estão orientadas espacialmente e tampouco estão diferenciadas em tecidos concretos" embora depois de cruzar esta porta, recebem ordens genéticas necessárias para se colocarem no interior do organismo em desenvolvimento e conhecerem qual vai ser a sua diferenciação específica. Então a ação desta vitamina faz com que algumas destas células ignorem as instruções de diferenciação esquerda e direita, prosseguindo simetricamente. Segundo isto, em uma deficiência de vitamina A, o aspecto exterior do corpo também acabaria por ser assimétrico perdendo potencial de aceitação na implantação, levando os mecanismos naturais de vigilância de estabilidade celular a sua destruição e, portanto, gerando a ME (TORRES et al., 2002). Os níveis de vitamina A, bem como de outras vitaminas, na alimentação de bovinos de corte ou leite já foram discutidos. Cada animal tem sua particularidade de ingestão diária de vitaminas conforme a idade, sexo, categoria etc. e que esses requerimentos são, muitas vezes, variáveis conforme a disponibilidade, isto é, pode-se fazer a injeção direta de fármacos em líquido ricos em vitaminas no animal, ou pode-se optar pelo fornecimento nos alimentos concentrados (ração) ou pelos volumosos (gramíneas, forrageiras e leguminosas). Deve-se estar atento para que os níveis não ultrapassem o necessário para que nenhum elemento sobressaia outro e venha a ocasionar afecções além de reprodutivas. 5.2 Relação com a proteína O excesso de proteína crua na dieta tem sido associado com mortalidade embrionária. Há uma hipótese que sugere que a concentração de LH, e, portanto, de progesterona, poderiam ser afetadas por elevados níveis de proteína na ração, talvez não de forma direta, porém pela deficiência de energia que os excessos proteicos geram. Existe uma relação estreita entre o excesso de proteína crua e a concentração de progesterona, esta relação é através de uma "exacerbação" do balanço energético negativo em vacas no início da lactação, pela despesa de precursores da glicose e o consumo energético extra que supõe transformar o amônio em ureia (este fato só se relaciona com a proteína degradável no rúmen). Isso ocasionaria um aumento negativo do balanço energético negativo e queda de glicemia, o que seria captado pela hipófise como um sinal negativo para a liberação de LH. Um excesso de proteína tal que reduza os níveis de progesterona e de bTP-1 (proteína trofoblástica), hoje identificada como o Interferão tau (IFN-t), pertencente a uma subclasse dos interferões Ômega, e definidos como fatores de reconhecimento materno-fetal em bovinos, pode causar mortalidade embrionária por volta do 17° dia após a inseminação devido à perda do efeito de ambos os compostos contra a resposta imunitária da mãe (MOREIRA & MORALES, 2001). Os níveis excessivos de proteína na dieta que conduzem a níveis elevados de ureia no sangue reduzem o pH uterino, estimulando assim a produção da prostaglandina F2 alfa (PGF2-α) que, por sua vez, estimula a contratilidade uterina e reduz a viabilidade de implantação do embrião (GALVIS, 2003). Foi também observado que concentrações elevadas de ureia no sangue reduzem a formação de progesterona, alterando a atividade reprodutiva em ambos os casos. A progesterona é uma hormona lipídica que é produzida pelo corpo lúteo sob o estímulo do (IGF-I) e, como foi indicado anteriormente, este fator de crescimento foi igualmente reduzido, uma vez que o potencial genético para a produção de leite aumentou de tal maneira que a redução da concentração de IGF- I pode ser uma das causas da diminuição da concentração da progesterona, por exemplo. Agora, embora considere-se que a hormona do crescimento (HC) regula a síntese de IGF-I no fígado, esta hormona não é eficaz a menos que exista um nível limiar de insulina e esta última também é reduzida em vacas de alta produção no início da lactação (GALVIS, 2003) e em condições de balanço energético negativo, tal como ocorre no pós-parto precoce. As proteínas são essenciais na vida dos animais e do ser humano. Os animais possuem sua particularidade conforme a exigência requerida de proteína e já foi discutido que os melhores métodos para fornecimento racional dessa macromolécula são por meio dos alimentos concentrados ricos em soja que é considerado um alimento proteico por possuir um teor de 45-60% desta, ou por meio de alimentos volumosos no caso dos capins, silagens etc. Como já discutido em outros trabalhos, existem tipos diferentes de proteínas com funções também distintas, citamos a proteína bruta (PB) e a proteína metabolizável (PM), ao qual os animais requerem em porcentagens que devem estar presentes no alimento que o criador fornece e que o animal ingere. -/- 6. -/- TRANSTORNOS DO CICLO ESTRAL -/- Qualquer alteração na frequência, duração ou intensidade do ciclo estral é considerada uma perturbação do ciclo, cujas origens variam etiologicamente. As perturbações do ciclo podem originar-se em qualquer das partes do eixo hipotálamo-hipófise-ovário (FRAZER, 2005; GORDON, 1996). Pode ou não ser do tipo permanente e pode depender de sua origem, momento e intensidade cursar com outras alterações reprodutivas, por exemplo uma retenção do corpo lúteo, dá lugar a prolongamento da fase lútea, altos níveis de progesterona circulante e pode, finalmente, desencadear em um cisto luteal ou em uma metrite. Entre os fatores desencadeadores da falha do ciclo estral estão os fatores de origem nutricional, dentre eles: 6.1 Minerais 6.1.1 Relação Na:K (sódio:potássio) A deficiência de sódio pode causar distúrbios do ciclo estral, isto porque as células animais intracelularmente possuem uma alta concentração de K e uma baixa concentração de Na, esta relação pode chegar a 10:1 ou mais, em relação ao meio externo. Com esta relação, as concentrações intracelulares estão em equilíbrio com o meio externo. A absorção e secreção de cátions pela célula para conseguir o equilíbrio é simultânea, gerada por um sistema de transporte específico chamado "bomba Na:K". Se a nível celular não existe um balanço iônico de K:Na, a maior prioridade das células tubulares do rim é a de conseguir novamente um equilíbrio, o mecanismo destas células é o da reabsorção do íon que se encontre em excesso de água, diminuindo a quantidade deste no líquido para manter as funções em equilíbrio dinâmico. Os desequilíbrios não compensados a nível celular ou renal, levam a alterações na condutividade nervosa por alteração da bomba de transmissão elétrica. O ciclo estral é alterado por diminuir a expressividade dos sinais comportamentais de estro, que são produzidos por concentrações crescentes de estrogênio, mas com alta necessidade de adequação nervosa para a exposição corporal do cio e a aceitação da monta. O potássio, em particular, desempenha um papel fundamental como coator em certas interações enzimáticas, incluindo a transferência de energia, a síntese de proteínas e o metabolismo de hidratos de carbono, em especial nos sistemas em que o ADP está envolvido, as hexoquinases e a anidrase carbônica. O sódio, por sua vez, é o principal cátion extracelular, regula o equilíbrio hídrico no organismo e a mecânica de fluidos, desta forma regula a pressão osmótica e a troca aquosa nos tecidos. Devido a esta função, um dos fatores importantes do fluxo Na:K é o rim, que é controlado pela aldosterona, a principal hormona reguladora da absorção de sódio e excreção de potássio. Qualquer desequilíbrio na relação Na:K, afetará o ciclo estral, de maneira direta e indireta, através da alteração na síntese de proteínas e da perda da regulação hídrica, fator importante pelas secreções que devem acompanhar as manifestações de cio/estro. 6.1.2 Relação Cobalto (Co) A deficiência de cobalto gera um efeito biológico determinado pela sua presença na molécula da vitamina B12, a qual regula a hematopoese (Ativa a síntese de protoporfirina) e afeta o metabolismo do nitrogênio e dos carboidratos. A vitamina B12 atua como uma coenzima da transmetilação (síntese do glutamato mutase, metilmalonil-CoA-Mutase, diol-dehidratase e redução dos ribonucleótidos a desoxirribonucleótidos, isomerização da a-lisina etc.). Especialmente em ruminantes, a reação mutase da metilmalonina-CoA está relacionada com o metabolismo do ácido propiônico e, portanto, com a síntese de glicose e o equilíbrio energético. O cobalto também está envolvido na carboxilação da propionil-CoA à metilmalonil-CoA e na isomerização deste último para succinil-CoA. O metabolismo do ácido propiônico ocorre no fígado e é reduzido pelo fato do metilmalonil não poder ser convertido em succinil-CoA, impedindo a sua passagem para oxalacetato e glicose, gerando uma relação inversa entre os níveis de energia e proteína; causando uma diminuição de GnRH que afeta negativamente a liberação de LH que, por sua vez, cria um aumento na FSH. Isso produz uma anulação da ovulação e, consequentemente, ausência de um ciclo estral verdadeiro. Vale reforçar que, para prevenção da deficiência do cobalto, o criador pode optar pelo fornecimento de volumosos que dispõem de quantidades de cobalto que suprem as exigências dos animais, ou pela inserção de sais de cobalto à mistura da ração, sempre no intervalo sugerido de 0,07 e 0,11 mg/kg para cada animal, suprindo a necessidade do mesmo e garantindo assim a prevenção dos transtornos do ciclo estral ou outras afecções do sistema reprodutivo. 6.1.3 Relação cobre (Cu) e molibdênio (Mo) A deficiência de cobre gera, indiretamente, molibdênio, durante esse processo, tanto o macho como a fêmea são inférteis ou sub-férteis, mas, em geral, os transtornos surgem não por molibdeniose, mas por hipocuprose condicionada por excesso de molibdênio nas pastagens e pelos sulfatos presentes na água de bebida (BREM, 2016). Isso leva à formação de tiomolibdato no rúmen, que por sua vez combina com o cobre para formar tiomolibdato de cobre, sal muito insolúvel. O tiomolibdato presente, formado em excesso e que não encontra cobre suficiente, contribuirá para produzir a diarreia, limitando ainda mais a absorção de cobre. A interferência mais importante do molibdênio ocorre no processo metabólico do cobre, interferindo sua atividade enzimática. O molibdênio atua sobre o complexo sulfeto-oxidase hepático. A enzima que está envolvida na oxidação de metabolitos sulfurados, reduz a sua atividade na presença de altos teores de molibdênio, especialmente quando a quantidade de cobre é baixa. Daqui resulta a formação de sulfureto de cobre, muito insolúvel e, portanto, pouco ou nada utilizável pelas células e/ou tecidos (QUIROZ-ROCHA & BOUDA, 2001). O excesso de molibdênio nas pastagens ou na água de bebida reduz a quantidade de cobre no fígado, mas para uma dada dose de molibdênio, esta redução é diretamente proporcional ao aumento dos sulfatos na ingestão, porque só na presença de sulfatos o molibdênio exerce sua ação limitante. O melhor modo de tratar o molibdênio e a ação dos sulfatos sobre o cobre, é aumentar a quantidade de cobre disponível pelos animais, seja por via bucal ou parenteral. Desta forma, há aumentos na cupremia e no ganho de peso. É conveniente, para o efeito, efetuar um controle dos resultados mediante a observação clínica, pesagem dos animais e análise de cobre no sangue. Isso permitirá estabelecer as doses ideais e adequadas para cada estabelecimento e efetuar um estudo econômico da suplementação (BAVERA, 2002). Como já foi tratado o requerimento do cobre para evitar os problemas reprodutivos das vacas, falemos do molibdênio (Mo). O Mo é um elemento primordial para bovinos leiteiros, uma vez que é componente de uma enzima presente no leite (xantina oxidasse). A deficiência de Mo a nível prático não foi relatada, porém casos podem acontecer. Para ovinos, que é uma espécie ruminante, a concentração exigida pelo animal em Mo presente na MS é de 5 a 10 mg/kg, porém deve levar em consideração a relação crítica entre o Mo e o Cu que deve ser no máximo 20 e nunca superior. O nível crítico de toxidade de Mo nos alimentos volumosos (forrageiras, gramíneas e leguminosas) não pode ultrapassar os 6% por kg de MS. Através de todos esses cuidados, o criador poderá obter sucesso tanto na prevenção contra os distúrbios do ciclo estral das vacas, quanto de outras complicações como toxidade, desnutrição etc. 6.2 Relação energia:proteína Em relação ao aumento do consumo de proteína crua ou de deficiência de energia, aumenta-se a quantidade de ureia no sangue e produz-se uma toxicidade tecidular, afetando o endométrio e diminuindo a produção de prostaglandinas, que são as encarregadas de manter o corpo lúteo, caso não se mantenha acaba provocando um ciclo estral longo. A situação pode ser explicada a nível do eixo hipotálamo-hipófise, no qual os baixos níveis de glicose inibem a secreção de GnRH e resultam na diminuição da pulsatilidade da LH, seja por ação direta ou mediada através das ß-endorfinas. Outro fator que afeta o crescimento folicular é a nutrição, especificamente a perda da condição corporal, quando o animal não se alimenta direito ou quando se alimenta não tem uma condição balanceada que supra suas exigências nutricionais e que tenha um aceitável ganho de peso diário (GPD), acaba perdendo massa muscular ou de gordura, em outras palavras altera-se a condição corporal do mesmo, e se a perda for de 22 a 24 % de peso corporal (PC), os animais que perdem essa condição entram em anestro o que acaba tornando um animal inviável para a reprodução e também para o abate, uma vez que encontra-se fora do peso ideal. Tanto as proteínas quanto a energia foram tratados em trabalhos anteriores, porém nunca é tarde para salientar que ambas devem ser fornecidas em qualidade e quantidade que consiga favorecer ao desenvolvimento do animal e aos mecanismos fisiológicos do mesmo. 6.3 Fito-toxidade Finalmente, um fator adicional que induz a alteração da ciclicidade estral são os fitoestrógenos, plantas com altos teores de isoflavonas que possuem, no organismo animal, uma ação estrogênica. Os fitoestrógenos estão amplamente difundidos, nos trevos, alfafa, milho e nas pastagens de cultivo intensivo. Os fitoestrogênios são diferentes dos estrogênios produzidos pelo animal, mas a sua ação é idêntica nos receptores do trato reprodutivo; o seu m. (shrink)
1. INTRODUÇÃO -/- No "mundo" das produções animais, e sem que saibamos exatamente o motivo ou os motivos, não é incomum observar, mesmo a nível docente (faceta em que nos sentimos especialmente culpados), uma notável discussão (obscuridade de ideias e/ou na linguagem, produzida deliberadamente ou não) ao abordar os conceitos de fertilidade, fecundidade e prolificidade. -/- Esta falta de clareza conceitual torna-se tanto mais manifesta quando, precisamente a partir dos referidos conceitos, se pretende efetuar, por exemplo, uma programação ou uma (...) análise técnico-econômica de uma exploração pecuária. -/- O objetivo do presente trabalho é tentar introduzir com "clareza de ideias" acerca dos referidos conceitos essenciais na Zootecnia, sempre no domínio que nos é próprio, o das produções animais. Com a finalidade de tornar a exposição mais didática, construindo os conceitos sobre a cultura dos suínos. No entanto, que fique bem claro desde já que, com pequenas variações, pode-se considerar qualquer outra «espécie animal superior», incluindo as aves. -/- Para efeitos de brevidade e concisão, e porque serão abordados noutros trabalhos, não vamos aprofundar aqui, para além do estritamente indispensável, as questões relativas à anatomia do aparelho reprodutor e à fisiologia da reprodução. -/- -/- 2. FERTILIDADE -/- Segundo o Dicionário Geral Ilustrado da Língua Portuguesa: -/- — Fertilidade: Qualidade de fértil. -/- — Fértil: Virtude que tem a terra para produzir copiosos frutos. -/- A palavra "fertilidade" tem a sua raiz no vocábulo latino "fertilis" (produtivo, abundante). Ao nível da produção animal, a fertilidade pode ser definida como: -/- «A capacidade de um macho ou de uma fêmea púbere de produzir e liberar gametas maduros fisiologicamente aptos a fecundar (espermatozoides) ou para serem fecundados (ovócitos de segunda ordem)». -/- No caso da fêmea, o aparecimento da puberdade começa com a intervenção das hormonas gonadotrofinas FSH e LH (folículo estimulante e lúteo estimulante, respectivamente). Com ela se inicia o desenvolvimento de 15-30 ou mais folículos primários localizados no estroma ovariano, processo que se repetirá de forma cíclica enquanto não se inicia um processo de anafrodisia funcional (gestação) ou patológica. -/- 2.1 Fertilidade em suínos: formação de ovários, ovócitos, folículos e generalidades das fêmeas -/- Na porca, os ovários são duas formações ovais situadas na cavidade abdominal na região sublombar em ambos os lados do raquis. Geralmente, o ovário direito tem um tamanho superior ao esquerdo e, como no caso da maioria das fêmeas mamíferas, a maior parte da superfície ovariana está rodeada pelo epitélio germinal e pelo peritoneu, exceto numa pequena porção, ílio-ovárico, por onde penetram os vasos e os nervos. -/- O estroma ovárico é formado por uma rede de tecido conjuntivo em cujas maias se encontram numerosos folículos que contêm as células germinativas ou ovócitos em diversos estágios de desenvolvimento. Estes folículos manifestam-se na superfície do ovário da porca sob a forma de uma série de eminências arredondadas que lhe dão um aspecto de amora. -/- A fêmea já nasce com um número determinado de folículos primários originados durante o desenvolvimento embrionário, contendo cada folículo um ovócito de primeira ordem que alcançou um desenvolvimento de dictiotene da prófase meiótica ou mitose I. -/- A partir dos folículos primários originam-se folículos secundários ou poliestratificados, alcançando-se o grau de folículos terciários de Graaf ou maduros, com o aparecimento da puberdade. O folículo terciário ou antral caracteriza-se por um aumento de volume e uma grande complexidade, contém, em princípio, o ovócito de primeira ordem que sofreu o período de vitelo-gênese e que vai dar lugar ao ovócito de segunda ordem quando ocorre a lise do cumulus proliger ou ooforo, com o qual a célula sexual permanece agora livre no seio do líquido folicular. Neste processo o ovócito de primeira ordem sofreu modificações características como são um deslocamento do núcleo para a superfície da célula e o protoplasma distribui-se irregularmente. -/- Um folículo terciário ou maduro tem a seguinte estrutura desde a parte externa à interna: teca externa, teca interna, membrana de Slajvansky, membrana granulosa e as células da coroa radiada que rodeiam o ovócito, uma membrana pelúcida que envolve totalmente o ovócito de grande transcendência no momento da fecundação e finalmente o ovócito de primeira ordem. Existe uma cavidade denominada cavidade folicular, que contém um líquido segregado pelas células da granulosa, licor folicular de composição complexa, destacando as hormonas sexuais femininas e concretamente o 17-beta-estradiol. A membrana granulosa está relacionada com a coroa radiada pelo «cumulus proliger» ou ooforo que serve de nexo de ligação. -/- Posteriormente, e seguindo o processo, origina-se o folículo pré-ovulatório ou deiscente, produzindo-se a eclosão do folículo e libertando-se um ovócito de segunda ordem em período de metafase II graças a um processo que Pérez García denominou como ovocitação, termo que foi aceito nos diversos meios científicos, já que considera que o termo ovulação no caso dos vertebrados é incorreto. Este ovócito de segunda ordem é a verdadeira célula fértil, coisa que não ocorre quando se libera ou se produz o óvulo no oviduto; os óvulos são células inférteis. No processo de ovocitação intervém uma série de mecanismos que classificamos em pressores, enzimáticos e neuro-hormonais, destacando entre estes últimos a hormona luteoestimulante (LH), além dos fatores introváricos descritos recentemente. -/- Consequentemente, uma fêmea, no nosso caso suína, será fértil quando for capaz de levar a bom termo de forma regular e de acordo com a periodicidade do seu ciclo sexual o processo descrito supra. -/- Na prática cotidiana das explorações não é possível saber diretamente se uma fêmea é fértil ou não. Neste contexto, por exemplo, ninguém poderá nos informar se ante as manifestações psicomáticas do zelo existe fertilidade; pode tratar-se de um zelo anovular que requer para o seu diagnóstico a utilização de métodos endoscópicos ou ecográficos, assim como métodos cirúrgicos como a perfusão dos ovidutos ou do útero para obter os ovócitos liberados avaliando-se a quantidade e qualidade dos mesmos. -/- Por conseguinte, a frase frequentemente ouvida a nível das explorações: «é uma fêmea muito fértil», é, a menos que tenha sido efetuado o «controle específico» da reprodutora, pelo menos «tecnicamente inadequado». -/- 2.2 Fertilidade em suínos: formação, translocação e generalidades dos espermatozoides no macho -/- O caso do porco é um pouco diferente. No período embrionário formam-se as espermatogônias, células equivalentes às ovogonias da fêmea. De cada espermatogônia primária ou espermatogônia A1 por numerosas mitoses, produzem-se 16 espermatócitos primários mais uma espermatogônia B1 que repetirá o processo. Por conseguinte, o período de proliferação ou multiplicação difere significativamente do mesmo período no caso da fêmea, uma vez que no macho durante toda a vida sexual são produzidas continuamente novas espermatogônias. -/- Cada espermatócito primário, através de um processo de crescimento muito limitado, origina um espermatócito de primeira ordem que, durante o período de maturação, originará dois espermatócitos de segunda ordem (haploides) e, em segundo lugar, quatro espermátides (haploides). Cada uma destas espermátides, através de um processo de transformação denominado espermiogênese ou espermatohistogênese, originará um espermatozoide. Os espermatozoides passarão posteriormente do rete testis ao epidídimo, onde se armazenarão alelostaticamente. A trajetória dos espermatozoides antes de chegar ao epidídimo passa pelos tubos retos de Haller (muito lentamente pela pressão exercida) para chegar às lagunas de Haller e daí aos cones eferentes. O trânsito dos espermatozoides através do epidídimo é de fundamental importância porque é aqui onde tem lugar a verdadeira maturação. Os espermatozoides obtidos a nível da cabeça do epidídimo não terminaram a sua maturação e, portanto, carecem de capacidade fecundante, enquanto que aqueles provenientes da cauda deste órgão a têm em grande medida. No entanto, à saída do epidídimo, os espermatozoides ainda não atingiram a sua plena maturidade. Para isso deverão passar pelas ampolas do ducto deferente ou de Henle para que, como afirmam a maioria dos autores, tenha lugar a seleção de formas anormais e de espermatozoides fracos. As células intersticiais do epitélio seminífero são responsáveis por fornecer aos espermatozoides um material nutricional que exerce ações tróficas e endócrinas que favorecem o equilíbrio celular do espermatozoide. Finalmente estes espermatozoides, conjuntamente com as secreções prostáticas, das vesículas seminais e das glândulas bulbouretrais, terminarão sua trajetória na uretra, sendo eliminados ao exterior pelo órgão copulador ou pênis mediante o processo de ejaculação. -/- No momento da ejaculação libera-se o esperma, ou sêmen, que é o resultado da mistura do material espermático de origem testicular e as sucessivas secreções das glândulas acessórias antes citadas, que derramam seus produtos na uretra. No entanto, o processo final espermatogênico não termina no trato genital masculino, mas sim no trato feminino depois do coito ou da inseminação artificial graças ao conhecido processo extremamente complexo da capacitação espermática. -/- Um varrão é fértil a partir do momento em que é capaz de produzir espermatozoides normais. Analisando o esperma de forma adequada poderemos constatar com uma relativa precisão, tendo em conta a grande quantidade de fatores endógenos e exógenos que afetam a um ser tão sensível como o porco, o nível de fertilidade do mesmo. Devemos ter em mente que macho suíno adulto pode ser inicialmente muito fértil (apresentar uma grande quantidade de espermatozoides, de 400-1.300 x 106/ml na fração espermática do seu ejaculado) e, em vez disso, não ser apto para a reprodução porque pode apresentar defeitos no epidídimo e/ou nas ampolas de Henle pelo qual os espermatozoides não amadurecem e portanto não são úteis para efeitos reprodutivos. -/- Contudo, na prática, e de acordo com a própria definição, o porco é considerado fértil quando produz espermatozoides maduros com as seguintes características: -/- - Concentração correta; -/- - Capacidade motora adequada; -/- - Capacidade metabólica; -/- - Estrutura correta em relação à cabeça e ao flagelo (pescoço, trato intermediário e cauda, considerando esta última formada por seu trato principal e seu trato terminal), avaliando-se também o estado do acrossoma; -/- - Adequado comportamento cromocitógeno. -/- Logo deve ficar claro que a fertilidade é uma aptidão que em geral têm os machos e as fêmeas púberes para produzir e liberar gametas anatômicos e fisiológicos corretos (os híbridos das espécies cavalar e asnal, os mulos e os burdéganos, por exemplo, não são férteis; uma fêmea com ausência de desenvolvimento gonodal tampouco). -/- -/- 3. FECUNDIDADE -/- De acordo com o Dicionário da Língua Portuguesa: -/- — Fecundidade: Qualidade de fecundo. -/- — Fecundo: Que produz ou se reproduz por meios naturais. -/- A palavra «fecundidade» provém do latim fecunditas, significa «virtude e faculdade de produzir». Qualidade de fecundo, do latim fecundus, que «produz ou se reproduz em virtude dos meios naturais». -/- Esta definição pode conduzir, no âmbito das produções animais, a equívocos. Somos a favor da aplicação da seguinte definição de fecundidade. -/- «É a capacidade que um macho e/ou uma fêmea fértil tem para conseguir que os seus gametas, anatómica e fisiológica, aumentem normalmente: uma vez liberados, juntam-se aos do outro sexo para formar um zigoto». -/- Este fenômeno recebe o nome de fecundação, não sendo correto o de fertilização, que é utilizado por alguns autores. -/- 3.1 Generalidades e a fecundação em suínos -/- No caso da porca, para continuar com o mesmo exemplo ao longo de todo o trabalho, os gametas femininos, ovócitos de segunda ordem, sofrem uma descida ou migração, uma vez liberados do folículo maduro, através do oviduto para entrar em contato com os espermatozoides. -/- Esta migração pode ocorrer porque antes de ocorrer a mencionada deiscência folicular caracterizada por um congestionamento, tanto do próprio ovário como dos ovidutos ou trompas de Falópio, o pavilhão destas últimas aproxima-se do ovário (o oviduto de três partes: bandeira, corpo e istmo). Constituindo uma espécie de funil, graças à intervenção das fimbrias do pavilhão, no qual, em princípio, os oócitos deiscentes devem ser depositados com o respectivo líquido folicular. -/- As razões pelas quais o ovócito se dirige ao pavilhão não são bem conhecidas, embora se pense que a causa é devida às correntes que originam os cílios com seus movimentos. O ovócito percorre o oviduto num tempo adequado (reunindo, portanto, as condições adequadas de pH, pressão osmótica, etc.) para que o espermatozoide possa alcançá-lo e entrar em contato com ele. -/- Se o ovócito de segunda ordem não cair no infundíbulo ou transitar a uma velocidade inadequada pelo oviduto não poderá ter lugar a impregnação (penetração do espermatozoide no ovócito de segunda ordem) e portanto a fecundação (singamia e cariogamia). Há que ter em conta que a fecundação provoca a segunda etapa da maturação do ovócito caracterizada pela finalização da mitose II, já que como supracitado o ovócito de segunda ordem se libera no processo de metafase II (equacional), originando um óvulo que já contém o material cromossômico masculino e eliminando o segundo polocito. -/- Podemos interpretar que a eliminação deste segundo polocito, como consequência da penetração da cabeça do espermatozoide no ovócito originando-se um óvulo, seria como o resultado de uma espécie de incompatibilidade entre o pronúcleo do polocito e o que fornece o espermatozoide. Por conseguinte, no período de maturação da ovogênese produz-se, através de um processo reducional, um ovócito de segunda ordem e um primeiro pólcito. Posteriormente, o ovócito de segunda ordem originará por uma mitose equacional, que carece do período de duplicação do ADN no ciclo de Savel, um óvulo e um segundo pólcito. Às vezes, mas nem sempre, o primeiro polocito originará um terceiro e um quarto polocito mediante mitose, pelo que no total podem originar-se três polocito. Estes polocitos podem ser chamados de ovos abortivos porque carecem praticamente de deutoplasma que ficou englobado no óvulo e que permitirá o desenvolvimento embrionário em seus primeiros estádios até que se estabeleçam as conexões feto-maternas. -/- O óvulo maduro apresenta o pronúcleo feminino capaz de conjugar-se com o pronúcleo masculino, dando lugar à formação do zigoto. Mas, insisto mais uma vez, a penetração do espermatozoide ocorre sempre no estágio de ovócito de segunda ordem e nunca quando a célula sexual tenha alcançado o estádio de óvulo. -/- Evidentemente e depois de todo o comentado: -/- UMA PORCA PODE SER FERTIL E NÃO FECUNDA -/- Por isso bastaria, por exemplo, que o pavilhão da tromba não conseguisse aproximar-se de maneira adequada ao ovário, com o que os ovócitos de segunda ordem, anatômica e fisiologicamente normais, cairiam na cavidade abdominal. Nestas circunstâncias a fecundação, logicamente, seria totalmente impossível. -/- O espermatozoide, por sua vez, tem que subir um trecho do oviduto para "encontrar" o ovócito. Este avanço ocorre como consequência das contrações peristálticas do útero que realiza uma sucção do esperma. Neste momento os espermatozoides experimentam uma importante seleção biológica dado que para atravessar o istmo tubárico necessitam ter uma adequada vitalidade (na porca a união uterotubárica, assim como a primeira parte do istmo, atuam parcialmente como uma barreira). -/- Evidentemente, o espermatozoide não o tem fácil, embora consiga aproximar-se do ovócito graças às quatro hormonas produzidas pelos gametas (dois androgamonas e duas ginogamonas), embora atualmente fala-se da existência de três ginogamonas já que o ovócito se comporta como um polo positivo e a parte terminal da cabeça do espermatozóide como um polo negativo. -/- Uma vez que o espermatozoide entra em contato com o ovócito, deve «salvar» a camada protetora do ovócito (formada por um aglomerado mucoso de natureza espessa e viscosa, além de uma camada interna que pode ser mais ou menos poliestratificada que constitui a coroa radiada procedente das células da membrana granulosa). Para superar estes obstáculos, os espermatozoides têm uma estrutura, o acrossoma. Esta estrutura contém um complexo específico de lipoglicoproteínas que inclui uma série de enzimas como hialuronidase e acrosina. A hialuronidase está provavelmente envolvida na dispersão do cumulus proliger. A acrosina está relacionada com a penetração do espermatozoide através da zona pelúcida. -/- Então também podemos afirmar, como fizemos no caso da reprodutora, que: -/- UM PORCO TAMBÉM PODE SER FERTIL E NÃO FECUNDO -/- Bastaria para isso que os espermatozoides experimentassem um hipocinese, por isso sendo excessivamente lentos não tinham suficiente motilidade de avanço. -/- No entanto, sem ter a necessidade de chegar a estes extremos, o que deve ficar claro é que: -/- a) Fertilidade e fecundidade são dois conceitos claramente distintos. -/- b) Para que um reprodutor ou uma reprodutora possam tornar-se fecundos antes devem ser férteis. -/- Assim, por exemplo, um macho fértil pode não ser fecundo; quando um reprodutor não tem ereção, não tem suficiente ardor genérico, não é capaz, obviamente, de introduzir seu aparelho copulador no trato genital da fêmea. Esta situação pode ser ultrapassada, pelo menos em alguns casos, mediante a utilização de um ejaculador elétrico e posterior aplicação da técnica de inseminação artificial. -/- Uma fórmula clássica para determinar a porcentagem global de fecundidade obtida num rebanho durante um determinado período de tempo (T) pode ser a seguinte: -/- Fecundidade (T)(%)=(N° de fêmeas gestantes (T))/(N° de fêmeas cobertas (T)) x 100 -/- A mesma fórmula é utilizada para determinar a «capacidade fecundante» (CF) de um macho X durante um período T. -/- CF(x)(T)(%)=(N° de fêmeas cobertas / macho X (T) gestantes)/(N° de fêmeas cobertas / macho X (T) ) x 100 -/- Obviamente, na prática, a «capacidade fecundante final» do macho X não é apenas função das suas próprias aptidões, é também função da aptidão fecundante das fêmeas por ele cobertas. -/- Por esta razão, para que o parâmetro CFX(T) seja «fiável», o macho X deve ter coberto um elevado número de fêmeas durante o período T. Consequentemente, este período de tempo não pode ser excessivamente curto, dependendo do ciclo sexual da espécie. -/- Analisados os termos fertilidade e fecundidade, vamos tratar a despeito da prolificidade. -/- -/- 4. PROLIFICIDADE -/- Segundo o Dicionário da Língua Portuguesa: -/- — Prolífico: Que tem a virtude de gerar.; -/- — Gerar: Dar origem a um novo ser. -/- No âmbito das produções animais é um termo realmente fácil de de compreender, não existindo discrepância entre os autores. -/- Poderíamos estabelecer a seguinte definição para a prolificidade: -/- "É a capacidade que a fêmea reprodutora tem para proporcionar aos zigotos um meio adequado em que possam realizar o seu desenvolvimento e chegar ao término". -/- 4.1 Generalidades e prolificidade em suínos -/- No caso da porca, poderíamos definir, em primeiro lugar, a prolificidade como o número de leitões nascidos por parto. A maioria dos autores consideram os leitões nascidos vivos e os nascidos mortos; outros só computam os nascidos vivos. Nós nos inclinamos pela primeira consideração. -/- No seio da fêmea, uma vez realizada a fecundação, a «fusão» das células germinativas do macho e da fêmea, inicia-se a divisão das células do zigoto, que constituem uma massa ou um aglomerado de células não especializadas. (Quando no processo de divisão forem atingidas as 16 células, a mencionada massa celular não identificada recebe a denominação de mórula, a qual dará lugar à blástula ou blastocisto.) -/- Durante os primeiros dias este zigoto em divisão, que irá transformar-se em embrião, desloca-se; primeiro, ao longo do oviduto; depois, no útero. Uma vez alcançado o útero é quando ocorre a nidificação. Esta nidificação pode ocorrer porque a mórula segrega uma enzima que é capaz de fixar-se em uma porção do endométrio, resultando em uma cavidade. É precisamente nesta cavidade que tem lugar a «implantação». -/- Nos suínos, o momento da nidificação situa-se entre 10 e 15 dias a contar do início da gestação. Aproximadamente entre os 15-16 dias de gestação os embriões estão totalmente fixados nas paredes uterinas. A partir deste momento pode-se iniciar o desenvolvimento das estruturas que vão permitir com que a mãe possa alimentar os novos seres (durante os primeiros dias, os ovos fertilizados alimentam-se do seu próprio deutoplasma e do chamado leite uterino de Williams proveniente do endotélio uterino). -/- Uma vez desenvolvidas todas as estruturas necessárias (saco vitelino, corioalantoides, saco amniótico, etc.), o embrião pode desenvolver-se no limite das suas possibilidades, transformar-se num feto e tentar atingir o seu objetivo que não é outro senão o de chegar com vida ao final, quero dizer, na altura do parto. -/- Em suma, de acordo com o exposto até aqui, acerca prolificidade da porca, um cálculo para medir o índice reprodutivo é dado por: prolificidade Y em seu parto n será: -/- Prolificidade porca Yn = Número de leitões nascidos (vivos+mortos) -/- Quando se fala da prolificidade média de um lote de reprodutoras (entendendo-se por «lote de reprodutoras» um conjunto de porcas que se encontram no mesmo estado fisiológico), considera-se o número médio de crias durante o período de partos. -/- Assim, por exemplo, a prolificidade média de um lote de 20 porcas que pariram, na respectiva maternidade, 180 leitões vivos e 6 leitões mortos é: -/- Prolificidade médiando lote=(180 l.v.+ 6 l.m.)/(20 porcas paridas)=9,3 leitões/porca -/- Se nos referirmos a uma exploração com 200 porcas reprodutoras ativas presentes na propriedade, desde o dia 1 de Janeiro a 31 de Dezembro, ao qual foram «obtidos» 1800 leitões vivos e 40 leitões nascidos mortos, a prolificidade média da exploração durante este ano será: -/- Prolificidade média do rebanho=(1800 l.v+40 l.m.)/(200 reprodutoras)= 9,2 leitões/reprodutora ativa -/- Este número, a nível prático e referente exclusivamente a um ano, é pouco indicativo dado que dependerá da calendarização no programa de gestão da exploração. -/- Normalmente, o parâmetro mais utilizado para refletir o desempenho de uma exploração no aspecto reprodutivo é o da produtividade definida pela expressão: -/- Produtividade final real=prolificidade média x (N° de fêmeas paridas)/(N° total de fêmeas) -/- Suponhamos que, numa exploração de 200 porcas reprodutoras, tenham parido 150 leitões (vivos+mortos) com uma prolificidade média de 9,0 leitões, a produtividade será: -/- Produtividade final real=9,0 leit./porca x (150 porcas paridas)/(200 porcas total)=6,75 leit./porca -/- Se esta produtividade for referente à um ano, a fórmula será: -/- Produtividade final anual = prolificidade média x (N° de fêmeas paridas)/(N° total de fêmeas) x (365 dias)/I -/- Sendo I – Intervalo médio entre dois partos. -/- No exemplo (exploração) anterior, se o intervalo médio entre dois partos é de 154 dias, a produtividade final anual será: -/- Produtiv. final anual = 9,0 leit./porca x (150 p.paridas)/(200 p.presentes) x (365 dias)/(154 dias)=16 leit./porca/ano -/- Trata-se de um valor muito indicativo do nível médio de «eficácia produtiva» ou eficiência reprodutiva da exploração. -/- Tal como foi calculado para as reprodutoras, estima-se a eficácia produtiva de um macho reprodutor X a partir de uma fórmula semelhante, dada por: -/- Produtividade(mX) = prolificidade x (N° de fêmeas paridas)/(N° de fêmeas cobertas) -/- Onde a prolificidade é a média de crias das fêmeas paridas. -/- Se um macho reprodutor tiver coberto (inseminado) 200 porcas, ao qual 140 pariram um total de 850 leitões vivos e 20 leitões mortos, seu coeficiente produtivo é: -/- Produtiv.macho X=(870 leitões (vivos+mortos))/(140 porcas paridas) x (140 p.paridas)/(200 p.cobertas)=4,35 leit./porca coberta -/- Este parâmetro expressa o número médio de crias nascidas por fêmea coberta. -/- Numa exploração pecuária (especialmente numa exploração suinícola) torna-se muito interessante, na prática, estudar a evolução da produtividade dos machos reprodutores ao longo do tempo. -/- Numa exploração pode também ser interessante calcular a eficácia reprodutiva das fêmeas da exploração que exprime o número de dias necessários para obter uma criação (índice Ni). Este índice permite comparar a diferente eficácia reprodutiva de duas fêmeas e é definido pela seguinte expressão: -/- Ni=Ii/(Prolificidade i) -/- Sendo: -/- Ii = Intervalo médio entre dois partos de uma fêmea i. -/- Prolificidade i = Número médio de crias nascidas por parto na fêmea i. -/- Em nosso caso, a porca 134 tem um intervalo médio entre partos de 156 dias e uma prolificidade média de 9,1 leitões. Por sua vez, a porca 143 tem um I = 163 dias e uma prolificidade média de 9,5 leitões. Com base nos dados apresentados achamos o índice Ni, mediante os cálculos: -/- N134 = (156 dias)/(9,1 leitões)=17,14 dias/leit. -/- N143 = (163 dias)/(9,5 leit.) =17,16 dias/leit. -/- Neste caso, ao contrário do que se poderia perceber a olho nu, as duas reprodutoras possuem a mesma eficácia reprodutiva (quanto menor o índice Ni, maior a eficácia reprodutiva). Esta é a razão, de que numa exploração nem sempre um desmame precoce dos leitões (18-24 dias) é melhor que um desmame mais tardio (24-28 dias). -/- A eficácia reprodutiva numa exploração de R fêmeas reprodutoras durante um período de T dias é avaliada através da fórmula: -/- NiR = (T x R)/(N° de crias nascidas em T) -/- Se, numa exploração de 200 porcas reprodutoras, tiverem nascido, nos últimos 365 dias, um total de 1840 leitões (1800 leitões vivos e 40 leitões mortos), a eficácia reprodutiva será: -/- N200 = (365 dias x 200 porcas)/(1840 leit.nascidos)=39,67 dias/leit. -/- Ao qual equivale a uma prolificidade média do rebanho, no tempo considerado, de: -/- Prolificidade média do rebanho=(365 dias)/(39,67 dias/leit.)=9,2 leit. -/- Tal e como havia sido estimado anteriormente. -/- Não é necessário insistir na importância prática que tem, a nível das explorações, a correta consideração e a adequada utilização dos conceitos, parâmetros e índices expostos nas páginas precedentes. Neste sentido, em muitas das nossas explorações, também aqui, há ainda um longo caminho a percorrer. -/- -/- 5. RESUMO E PRIMEIRAS CONCLUSÕES -/- Ao longo deste trabalho venho tentado expor de uma forma mais clara e simples possível a realidade conceitual dos termos fertilidade, fecundidade e prolificidade dentro da perspectiva das produções animais. -/- Em todos os casos, trata-se de capacidades ou aptidões anatômica-fisiológicas dos reprodutores ligadas ao exercício da sua atividade no âmbito da exploração. -/- Nessa presente exposição, objetivou-se deixar claro que: -/- a) Fertilidade, fecundidade e prolificidade são conceitos totalmente distintos embora estejam correlacionados. -/- b) Um reprodutor e/ou reprodutora pode ser fértil e não fecundo. -/- c) Consequentemente, um reprodutor e/ou reprodutora não pode ser fecundo se não for fértil antes. -/- d) Um reprodutor e/ou reprodutora pode ser fértil e fecundo e não ser prolífico. -/- e) Consequentemente, para que um reprodutor e/ou reprodutora possa ser prolífico antes tem que ser fecundo. E se for fecundo, significa que também é fértil. -/- f) Na prática, as explorações só podem estimar, no âmbito do conceito geral de «eficácia reprodutiva», a fecundidade e a prolificidade dos reprodutores, nunca a sua fertilidade. -/- Uma vez classificados e estudados os referidos conceitos, estamos em condições de enfrentar outros temas ligados ao processo reprodutivo. -/- -/- 6. REFERÊNCIAS BIBLIOGRÁFICAS -/- -/- BRACKETT, B. G.; JÚNIOR, G. E. A.; SEIDEL, S. M. Avances en zootecnia. Nuevas técnicas de reproducción animal. 1ª ed. Zaragoza: Editorial Acribia, 1988. -/- COLE, H. H.; CUPPS, P. T. Reproduction in domestic animals. 1ª ed. Londres: Academic Press, 1977. -/- FERREIRA, A. H. et al. Produção de suínos: teoria e prática. Brasília: ABCS, 2014. -/- GORDON, I. Reproducción controlada del cerdo. Zaragoza: Editorial Acribia, 1999. -/- HAFEZ, E. S. E.; HAFEZ, B. Reprodução animal. São Paulo: Manole, 2004. -/- HUGHES, P. E.; VARLEY, M. A. Reproducción del cerdo. Zaragoza: Editorial Acribia, 1984. (shrink)
Create an account to enable off-campus access through your institution's proxy server.
Monitor this page
Be alerted of all new items appearing on this page. Choose how you want to monitor it:
Email
RSS feed
About us
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.