Results for 'Cardinals'

197 found
Order:
  1. Cardinal Composition.Lisa Vogt & Jonas Werner - 2024 - Erkenntnis 89 (4):1457-1479.
    The thesis of Weak Unrestricted Composition says that every pair of objects has a fusion. This thesis has been argued by Contessa and Smith to be compatible with the world being junky and hence to evade an argument against the necessity of Strong Unrestricted Composition proposed by Bohn. However, neither Weak Unrestricted Composition alone nor the different variants of it that have been proposed in the literature can provide us with a satisfying answer to the special composition question, or so (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  2. A Cardinal Worry for Permissive Metaontology.Simon Hewitt - 2015 - Metaphysica 16 (2):159-166.
    Permissivist metaontology proposes answering customary existence questions in the affirmative. Many of the existence questions addressed by ontologists concern the existence of theoretical entities which admit precise formal specification. This causes trouble for the permissivist, since individually consistent formal theories can make pairwise inconsistent demands on the cardinality of the universe. We deploy a result of Gabriel Uzquiano’s to show that this possibility is realised in the case of two prominent existence debates and propose rejecting permissivism in favour of substantive (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3. The Cardinal Role of Respect and Self-Respect for Rawls’s and Walzer’s Theories of Justice.Manuel Dr Knoll - 2017 - In Elena Irrera & Giovanni Giorgini (eds.), The Roots of Respect: A Historic-Philosophical Itinerary. De Gruyter. pp. 207–227.
    The cardinal role that notions of respect and self-respect play in Rawls’s A Theory of Justice has already been abundantly examined in the literature. However, it has hardly been noticed that these notions are also central for Michael Walzer’s Spheres of Justice. Respect and self-respect are not only central topics of his chapter on “recognition”, but constitute a central aim of his whole theory of justice. This paper substantiates this thesis and elucidates Walzer’s criticism of Rawls’s that we need to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  4. The Cardinal Role of Respect and Self-Respect for Rawls’s and Walzer’s Theories of Justice.Manuel Knoll - 2017 - In Elena Irrera & Giovanni Giorgini (eds.), The Roots of Respect: A Historic-Philosophical Itinerary. De Gruyter. pp. 207-224.
    The cardinal role that notions of respect and self-respect play in Rawls’s A Theory of Justice has already been abundantly examined in the literature. In contrast, it has hardly been noticed that these notions are also central to Michael Walzer’s Spheres of Justice. Respect and self-respect are not only central topics of his chapter “Recognition”, but constitute a central aim of a “complex egalitarian society” and of Walzer’s theory of justice. This paper substantiates this thesis and elucidates Walzer’s criticism of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5. Choice-Based Cardinal Utility. A Tribute to Patrick Suppes.Jean Baccelli & Philippe Mongin - 2016 - Journal of Economic Methodology 23 (3):268-288.
    We reexamine some of the classic problems connected with the use of cardinal utility functions in decision theory, and discuss Patrick Suppes's contributions to this field in light of a reinterpretation we propose for these problems. We analytically decompose the doctrine of ordinalism, which only accepts ordinal utility functions, and distinguish between several doctrines of cardinalism, depending on what components of ordinalism they specifically reject. We identify Suppes's doctrine with the major deviation from ordinalism that conceives of utility functions as (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  6. Totality, Regularity, and Cardinality in Probability Theory.Paolo Mancosu & Guillaume Massas - 2024 - Philosophy of Science 91 (3):721-740.
    Recent developments in generalized probability theory have renewed a debate about whether regularity (i.e., the constraint that only logical contradictions get assigned probability 0) should be a necessary feature of both chances and credences. Crucial to this debate, however, are some mathematical facts regarding the interplay between the existence of regular generalized probability measures and various cardinality assumptions. We improve on several known results in the literature regarding the existence of regular generalized probability measures. In particular, we give necessary and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7. Where Does Cardinality Come From?Markus Pantsar & Bahram Assadian - forthcoming - Review of Philosophy and Psychology.
    How do we acquire the notions of cardinality and cardinal number? In the (neo-)Fregean approach, they are derived from the notion of equinumerosity. According to some alternative approaches, defended and developed by Husserl and Parsons among others, the order of explanation is reversed: equinumerosity is explained in terms of cardinality, which, in turn, is explained in terms of our ordinary practices of counting. In their paper, ‘Cardinality, Counting, and Equinumerosity’, Richard Kimberly Heck proposes that instead of equinumerosity or counting, cardinality (...)
    Download  
     
    Export citation  
     
    Bookmark  
  8. Thomas Hobbes and Cardinal Bellarmine: Leviathan and 'he ghost of the Roman empire'.Patricia Springborg - 1995 - History of Political Thought 16 (4):503-531.
    As a representative of the papacy Bellarmine was an extremely moderate one. In fact Sixtus V in 1590 had the first volume of his Disputations placed on the Index because it contained so cautious a theory of papal power, denying the Pope temporal hegemony. Bellarmine did not represent all that Hobbes required of him either. On the contrary, he proved the argument of those who championed the temporal powers of the Pope faulty. As a Jesuit he tended to maintain the (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  9. A Happy Possibility About Happiness (And Other Subjective) Scales: An Investigation and Tentative Defence of the Cardinality Thesis.Michael Plant - manuscript
    There are long-standing doubts about whether data from subjective scales—for instance, self-reports of happiness—are cardinally comparable. It is unclear how to assess whether these doubts are justified without first addressing two unresolved theoretical questions: how do people interpret subjective scales? Which assumptions are required for cardinal comparability? This paper offers answers to both. It proposes an explanation for scale interpretation derived from philosophy of language and game theory. In short: conversation is a cooperative endeavour governed by various maxims (Grice 1989); (...)
    Download  
     
    Export citation  
     
    Bookmark  
  10. (1 other version)Cardinality logics. Part II: Definability in languages based on `exactly'.Harold Hodes - 1988 - Journal of Symbolic Logic 53 (3):765-784.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  11. Nota: ¿CUÁL ES EL CARDINAL DEL CONJUNTO DE LOS NÚMEROS REALES?Franklin Galindo - manuscript
    ¿Qué ha pasado con el problema del cardinal del continuo después de Gödel (1938) y Cohen (1964)? Intentos de responder esta pregunta pueden encontrarse en los artículos de José Alfredo Amor (1946-2011), "El Problema del continuo después de Cohen (1964-2004)", de Carlos Di Prisco , "Are we closer to a solution of the continuum problem", y de Joan Bagaria, "Natural axioms of set and the continuum problem" , que se pueden encontrar en la biblioteca digital de mi blog de Lógica (...)
    Download  
     
    Export citation  
     
    Bookmark  
  12. Exclusion Problems and the Cardinality of Logical Space.Tim Button - 2017 - Journal of Philosophical Logic 46 (6):611-623.
    Wittgenstein’s atomist picture, as embodied in his Tractatus, is initially very appealing. However, it faces the famous colour-exclusion problem. In this paper, I shall explain when the atomist picture can be defended in the face of that problem; and, in the light of this, why the atomist picture should be rejected. I outline the atomist picture in Section 1. In Section 2, I present a very simple necessary and sufficient condition for the tenability of the atomist picture. The condition is: (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  13. Reverence as a Cardinal Ethical Value in the Western Philosophy.Saad Malook - 2024 - Research Journal for Societal Issues 6 (2):286-302.
    This article explains and defends reverence as a cardinal ethical value in the Western philosophical tradition, which was considered an underpinning value in ancient society, and it then gradually declined over time. Many contemporary Western philosophers embark on respect rather than reverence. Reverence and respect are not the same. Reverence is all-inclusive, while respect is limited. Reverence values the genuine person, while respect may flatter a powerful arrogant person. Reverence is a cardinal moral and political value necessary for decent politics, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  14. Creationism and cardinality.Daniel Nolan & Alexander Sandgren - 2014 - Analysis 74 (4):615-622.
    Creationism about fictional entities requires a principle connecting what fictions say exist with which fictional entities really exist. The most natural way of spelling out such a principle yields inconsistent verdicts about how many fictional entities are generated by certain inconsistent fictions. Avoiding inconsistency without compromising the attractions of creationism will not be easy.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  15. Rethinking Cantor: Infinite Iterations and the Cardinality of the Reals.Manus Ross - manuscript
    In this paper, I introduce an iterative method aimed at exploring numbers within the interval [0, 1]. Beginning with a foundational set, S0, a series of algorithms are employed to expand and refine this set. Each algorithm has its designated role, from incorporating irrational numbers to navigating non-deterministic properties. With each successive iteration, our set grows, and after infinite iterations, its cardinality is proposed to align with that of the real numbers. This work is an initial exploration into this approach, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  16. Generalized Löb’s Theorem. Strong Reflection Principles and Large Cardinal Axioms.Jaykov Foukzon - 2013 - Advances in Pure Mathematics (3):368-373.
    In this article, a possible generalization of the Löb’s theorem is considered. Main result is: let κ be an inaccessible cardinal, then ¬Con( ZFC +∃κ) .
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  17. The Basic Laws of Cardinal Number.Richard Kimberly Heck - 2019 - In Philip A. Ebert & Marcus Rossberg (eds.), Essays on Frege's Basic Laws of Arithmetic. Oxford: Oxford University Press. pp. 1-30.
    An overview of what Frege accomplishes in Part II of Grundgesetze, which contains proofs of axioms for arithmetic and several additional results concerning the finite, the infinite, and the relationship between these notions. One might think of this paper as an extremely compressed form of Part II of my book Reading Frege's Grundgesetze.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  18. (1 other version)Zeno’s Paradoxes. A Cardinal Problem. I. On Zenonian Plurality.Karin Verelst - 2005 - The Baltic International Yearbook of Cognition, Logic and Communication 1.
    It will be shown in this article that an ontological approach for some problems related to the interpretation of Quantum Mechanics (QM) could emerge from a re-evaluation of the main paradox of early Greek thought: the paradox of Being and non-Being, and the solutions presented to it by Plato and Aristotle. More well known are the derivative paradoxes of Zeno: the paradox of motion and the paradox of the One and the Many. They stem from what was perceived by classical (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  19. Can an Ancient Argument of Carneades on Cardinal Virtues and Divine Attributes be Used to Disprove the Existence of God?Douglas Walton - 1999 - Philo 2 (2):5-13.
    An ancient argument attributed to the philosopher Carneades is presented that raises critical questions about the concept of an all-virtuous Divine being. The argument is based on the premises that virtue involves overcoming pains and dangers, and that only a being that can suffer or be destroyed is one for whom there are pains and dangers. The conclusion is that an all-virtuous Divine (perfect) being cannot exist. After presenting this argument, reconstructed from sources in Sextus Empiricus and Cicero, this paper (...)
    Download  
     
    Export citation  
     
    Bookmark  
  20. Inconsistent Countable Set in Second Order ZFC and Nonexistence of the Strongly Inaccessible Cardinals.Jaykov Foukzon - 2015 - British Journal of Mathematics and Computer Science 9 (5):380-393.
    In this article we derived an important example of the inconsistent countable set in second order ZFC (ZFC_2) with the full second-order semantics. Main results: (i) :~Con(ZFC2_); (ii) let k be an inaccessible cardinal, V is an standard model of ZFC (ZFC_2) and H_k is a set of all sets having hereditary size less then k; then : ~Con(ZFC + E(V)(V = Hk)):.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  21. The Nineteenth-Century Thomist from the Far East: Cardinal Zeferino González, OP (1831–1894).Levine Andro Lao - 2021 - Philippiniana Sacra 56 (167):277-306.
    This article reintroduces Fr. Zeferino González, OP (1831-1894) to scholars of Church history, philosophy, and cultural heritage. He was an alumnus of the University of Santo Tomás in Manila, a Cardinal, and a champion of the revival of Catholic Philosophy that led to the promulgation of Leo XIII’s encyclical Aeterni Patris. Specifically, this essay presents, firstly, the Cardinal’s biography in the context of his experience as a missionary in the Far East; secondly, the intellectual tradition in Santo Tomás in Manila, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  22. Some Intellectual Aspects of the Cardinal Virtues.Paul Bloomfield - 2013 - In Mark Timmons (ed.), Oxford Studies in Normative Ethics, Volume 3. Oxford, GB: Oxford University Press. pp. 287-313.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  23. Generalized Löb’s Theorem.Strong Reflection Principles and Large Cardinal Axioms. Consistency Results in Topology.Jaykov Foukzon - 2015 - Pure and Applied Mathematics Journal (Vol. 4, No. 1-1):1-5.
    Download  
     
    Export citation  
     
    Bookmark  
  24. Relativism, Today and Yesterday.Barbara Herrnstein Smith - 2007 - Common Knowledge 13 (2-3):227-249.
    An analysis of Cardinal Joseph Ratzinger's statements regarding relativism in his 2005 homily to the conclave meeting to elect the new pope in the context of the charge of "relativism" in 20th-century philosophy. Parts of this essay are adapted from Barbara Herrnstein Smith,"Pre-Post-Modern Relativism," in *Scandalous Knowledge: Science, Truth and the Human* (Edinburgh: Edinburgh University Press, 2005; Durham, NC: Duke University Press, 2006), 18 – 45.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  25. Iterated ultrapowers and prikry forcing.Patrick Dehornoy - 1978 - Annals of Mathematical Logic 15 (2):109-160.
    If $U$ is a normal ultrafilter on a measurable cardinal $\kappa$, then the intersection of the $\omega$ first iterated ultrapowers of the universe by $U$ is a Prikry generic extension of the $\omega$th iterated ultrapower.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  26. Chance and the Continuum Hypothesis.Daniel Hoek - 2020 - Philosophy and Phenomenological Research 103 (3):639-60.
    This paper presents and defends an argument that the continuum hypothesis is false, based on considerations about objective chance and an old theorem due to Banach and Kuratowski. More specifically, I argue that the probabilistic inductive methods standardly used in science presuppose that every proposition about the outcome of a chancy process has a certain chance between 0 and 1. I also argue in favour of the standard view that chances are countably additive. Since it is possible to randomly pick (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  27. A New Way Out of Galileo's Paradox.Guillaume Massas - manuscript
    Galileo asked in his Dialogue of the Two New Sciences what relationship exists between the size of the set of all natural numbers and the size of the set of all square natural numbers. Although one is a proper subset of the other, suggesting that there are strictly fewer squares than natural numbers, the existence of a simple one-to-one correspondence between the two sets suggests that they have, in fact, the same size. Cantor famously based the modern notion of cardinality (...)
    Download  
     
    Export citation  
     
    Bookmark  
  28. Composition and Relative Counting.Massimiliano Carrara & Giorgio Lando - 2017 - Dialectica 71 (4):489-529.
    According to the so-called strong variant of Composition as Identity (CAI), the Principle of Indiscernibility of Identicals can be extended to composition, by resorting to broadly Fregean relativizations of cardinality ascriptions. In this paper we analyze various ways in which this relativization could be achieved. According to one broad variety of relativization, cardinality ascriptions are about objects, while concepts occupy an additional argument place. It should be possible to paraphrase the cardinality ascriptions in plural logic and, as a consequence, relative (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  29. First-order modal logic in the necessary framework of objects.Peter Fritz - 2016 - Canadian Journal of Philosophy 46 (4-5):584-609.
    I consider the first-order modal logic which counts as valid those sentences which are true on every interpretation of the non-logical constants. Based on the assumptions that it is necessary what individuals there are and that it is necessary which propositions are necessary, Timothy Williamson has tentatively suggested an argument for the claim that this logic is determined by a possible world structure consisting of an infinite set of individuals and an infinite set of worlds. He notes that only the (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  30. Countabilism and Maximality Principles.Neil Barton & Sy-David Friedman - manuscript
    It is standard in set theory to assume that Cantor's Theorem establishes that the continuum is an uncountable set. A challenge for this position comes from the observation that through forcing one can collapse any cardinal to the countable and that the continuum can be made arbitrarily large. In this paper, we present a different take on the relationship between Cantor's Theorem and extensions of universes, arguing that they can be seen as showing that every set is countable and that (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  31. (1 other version)Overgeneration in the higher infinite.Salvatore Florio & Luca Incurvati - 2021 - In Gil Sagi & Jack Woods (eds.), The Semantic Conception of Logic : Essays on Consequence, Invariance, and Meaning. New York, NY: Cambridge University Press.
    The Overgeneration Argument is a prominent objection against the model-theoretic account of logical consequence for second-order languages. In previous work we have offered a reconstruction of this argument which locates its source in the conflict between the neutrality of second-order logic and its alleged entanglement with mathematics. Some cases of this conflict concern small large cardinals. In this article, we show that in these cases the conflict can be resolved by moving from a set-theoretic implementation of the model-theoretic account (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  32. Steel's Programme: Evidential Framework, the Core and Ultimate-L.Joan Bagaria & Claudio Ternullo - 2021 - Review of Symbolic Logic:1-25.
    We address Steel’s Programme to identify a ‘preferred’ universe of set theory and the best axioms extending ZFC by using his multiverse axioms MV and the ‘core hypothesis’. In the first part, we examine the evidential framework for MV, in particular the use of large cardinals and of ‘worlds’ obtained through forcing to ‘represent’ alternative extensions of ZFC. In the second part, we address the existence and the possible features of the core of MV_T (where T is ZFC+Large (...)). In the last part, we discuss the hypothesis that the core is Ultimate-L, and examine whether and how, based on this fact, the Core Universist can justify V=Ultimate-L as the best (and ultimate) extension of ZFC. To this end, we take into account several strategies, and assess their prospects in the light of MV’s evidential framework. (shrink)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  33. Ordinal Utility Differences.Jean Baccelli - 2024 - Social Choice and Welfare 62 ( 275-287).
    It is widely held that under ordinal utility, utility differences are ill-defined. Allegedly, for these to be well-defined (without turning to choice under risk or the like), one should adopt as a new kind of primitive quaternary relations, instead of the traditional binary relations underlying ordinal utility functions. Correlatively, it is also widely held that the key structural properties of quaternary relations are entirely arbitrary from an ordinal point of view. These properties would be, in a nutshell, the hallmark of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  34. (1 other version)The Transition within Virtue Ethics in the context of Benevolence.Prasasti Pandit - 2022 - Philosophia (Philippines) 23 (1):135-151.
    This paper explores the value of benevolence as a cardinal virtue by analyzing the evolving history of virtue ethics from ancient Greek tradition to emotivism and contemporary thoughts. First, I would like to start with a brief idea of virtue ethics. Greek virtue theorists recognize four qualities of moral character, namely, wisdom, temperance, courage, and justice. Christianity recognizes unconditional love as the essence of its theology. Here I will analyze the transition within the doctrine of virtue ethics in the Christian (...)
    Download  
     
    Export citation  
     
    Bookmark  
  35. Two Mereological Arguments Against the Possibility of an Omniscient Being.Joshua T. Spencer - 2006 - Philo 9 (1):62-72.
    In this paper I present two new arguments against the possibility of an omniscient being. My new arguments invoke considerations of cardinality and resemble several arguments originally presented by Patrick Grim. Like Grim, I give reasons to believe that there must be more objects in the universe than there are beliefs. However, my arguments will rely on certain mereological claims, namely that Classical Extensional Mereology is necessarily true of the part-whole relation. My first argument is an instance of a problem (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  36. The hidden use of new axioms.Deborah Kant - 2023 - In Carolin Antos, Neil Barton & Giorgio Venturi (eds.), The Palgrave Companion to the Philosophy of Set Theory. Palgrave.
    This paper analyses the hidden use of new axioms in set-theoretic practice with a focus on large cardinal axioms and presents a general overview of set-theoretic practices using large cardinal axioms. The hidden use of a new axiom provides extrinsic reasons in support of this axiom via the idea of verifiable consequences, which is especially relevant for set-theoretic practitioners with an absolutist view. Besides that, the hidden use has pragmatic significance for further important sub-groups of the set-theoretic community---set-theoretic practitioners with (...)
    Download  
     
    Export citation  
     
    Bookmark  
  37. Logic of paradoxes in classical set theories.Boris Čulina - 2013 - Synthese 190 (3):525-547.
    According to Cantor (Mathematische Annalen 21:545–586, 1883 ; Cantor’s letter to Dedekind, 1899 ) a set is any multitude which can be thought of as one (“jedes Viele, welches sich als Eines denken läßt”) without contradiction—a consistent multitude. Other multitudes are inconsistent or paradoxical. Set theoretical paradoxes have common root—lack of understanding why some multitudes are not sets. Why some multitudes of objects of thought cannot themselves be objects of thought? Moreover, it is a logical truth that such multitudes do (...)
    Download  
     
    Export citation  
     
    Bookmark  
  38. (2 other versions)Utrum Sit Una Tantum Vera Enumeratio Virtutum Moralium.Sophie Grace Chappell - 2018 - Metaphilosophy 49 (3):207-215.
    As its Latin title says, this article inquires whether there is a single correct list of the moral virtues. Virtue ethics tells us to “act in accordance with the virtues” but can often be accused, for example in Aristotle's Ethics, of helping itself without argument to an account of what the virtues are. This paper is, stylistically, an affectionate tribute to the Angelic Doctor, and it works with a correspondingly Thomistic background and approach. It argues for the view that there (...)
    Download  
     
    Export citation  
     
    Bookmark  
  39. (1 other version)There is No Standard Model of ZFC and ZFC_2. Part I.Jaykov Foukzon - 2017 - Journal of Advances in Mathematics and Computer Science 2 (26):1-20.
    In this paper we view the first order set theory ZFC under the canonical frst order semantics and the second order set theory ZFC_2 under the Henkin semantics. Main results are: (i) Let M_st^ZFC be a standard model of ZFC, then ¬Con(ZFC + ∃M_st^ZFC ). (ii) Let M_stZFC_2 be a standard model of ZFC2 with Henkin semantics, then ¬Con(ZFC_2 +∃M_stZFC_2). (iii) Let k be inaccessible cardinal then ¬Con(ZFC + ∃κ). In order to obtain the statements (i) and (ii) examples of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  40. What Do Infinite Sets Look Like? ? It Depends on the Perspective of the Observer.Roger Granet - manuscript
    Consider an infinite set of discrete, finite-sized solid balls (i.e., elements) extending in all directions forever. Here, infinite set is not meant so much in the abstract, mathematical sense but in more of a physical sense where the balls have physical size and physical location-type relationships with their neighbors. In this sense, the set is used as an analogy for our possibly infinite physical universe. Two observers are viewing this set. One observer is internal to the set and is of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  41. Steiris, Georgios. 2024. "Bessarion on the Value of Oral Teaching and the Rule of Secrecy" Philosophies 9, no. 3: 81.Georgios Steiris - 2024 - Philosophies 9 (3):1-13.
    Cardinal Bessarion (1408–1472), in the second chapter of the first book of his influential work In calumniatorem Platonis, attempted to reply to Georgios Trapezuntios’ (1396–1474) criticism against Plato in the Comparatio Philosophorum Platonis et Aristotelis. Bessarion investigates why the Athenian philosopher maintained, in several dialogues, that the sacred truths should not be communicated to the general public and argued in favor of the value of oral transmission of knowledge, largely based on his theory about the cognitive processes. Recently, Fr. Bessarion (...)
    Download  
     
    Export citation  
     
    Bookmark  
  42. Infinite Aggregation and Risk.Hayden Wilkinson - 2023 - Australasian Journal of Philosophy 101 (2):340-359.
    For aggregative theories of moral value, it is a challenge to rank worlds that each contain infinitely many valuable events. And, although there are several existing proposals for doing so, few provide a cardinal measure of each world's value. This raises the even greater challenge of ranking lotteries over such worlds—without a cardinal value for each world, we cannot apply expected value theory. How then can we compare such lotteries? To date, we have just one method for doing so (proposed (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  43. “Just” accuracy? Procedural fairness demands explainability in AI‑based medical resource allocation.Jon Rueda, Janet Delgado Rodríguez, Iris Parra Jounou, Joaquín Hortal-Carmona, Txetxu Ausín & David Rodríguez-Arias - 2022 - AI and Society:1-12.
    The increasing application of artificial intelligence (AI) to healthcare raises both hope and ethical concerns. Some advanced machine learning methods provide accurate clinical predictions at the expense of a significant lack of explainability. Alex John London has defended that accuracy is a more important value than explainability in AI medicine. In this article, we locate the trade-off between accurate performance and explainable algorithms in the context of distributive justice. We acknowledge that accuracy is cardinal from outcome-oriented justice because it helps (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  44. Multidimensional Concepts and Disparate Scale Types.Brian Hedden & Jacob M. Nebel - 2024 - Philosophical Review 133 (3):265-308.
    Multidimensional concepts are everywhere, and they are important. Examples include moral value, welfare, scientific confirmation, democracy, and biodiversity. How, if at all, can we aggregate the underlying dimensions of a multidimensional concept F to yield verdicts about which things are Fer than which overall? Social choice theory can be used to model and investigate this aggregation problem. Here, we focus on a particularly thorny problem made salient by this social choice-theoretic framework: the underlying dimensions of a given concept might be (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  45. Public Attitudes Toward Cognitive Enhancement.Nicholas Fitz, Roland Nadler, Praveena Manogaran, Eugene Chong & Peter Reiner - 2013 - Neuroethics 7 (2):173-188.
    Vigorous debate over the moral propriety of cognitive enhancement exists, but the views of the public have been largely absent from the discussion. To address this gap in our knowledge, four experiments were carried out with contrastive vignettes in order to obtain quantitative data on public attitudes towards cognitive enhancement. The data collected suggest that the public is sensitive to and capable of understanding the four cardinal concerns identified by neuroethicists, and tend to cautiously accept cognitive enhancement even as they (...)
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  46. Wide Sets, ZFCU, and the Iterative Conception.Christopher Menzel - 2014 - Journal of Philosophy 111 (2):57-83.
    The iterative conception of set is typically considered to provide the intuitive underpinnings for ZFCU (ZFC+Urelements). It is an easy theorem of ZFCU that all sets have a definite cardinality. But the iterative conception seems to be entirely consistent with the existence of “wide” sets, sets (of, in particular, urelements) that are larger than any cardinal. This paper diagnoses the source of the apparent disconnect here and proposes modifications of the Replacement and Powerset axioms so as to allow for the (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  47. The Measure of Knowledge.Nick Treanor - 2012 - Noûs 47 (3):577-601.
    What is it to know more? By what metric should the quantity of one's knowledge be measured? I start by examining and arguing against a very natural approach to the measure of knowledge, one on which how much is a matter of how many. I then turn to the quasi-spatial notion of counterfactual distance and show how a model that appeals to distance avoids the problems that plague appeals to cardinality. But such a model faces fatal problems of its own. (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  48.  79
    A Polynomial Approximation Method for Welfarist Axiology.Walter Barta - manuscript
    DRAFT Several philosophers have suggested that it is impossible to formulate a theory of population ethics that simultaneously satisfies all of the necessary conditions set by our ethical intuitions (Arrhenius, 2000; Blackorby et al., 2004). However, we will attempt to demonstrate that, using the Stone-Weierstrass method, starting from scratch with a completely underspecified polynomial approximation function for commensurable cardinal utility (used here as a synonym for welfare) in a domain of commodities and populations, there are possible sets of functions that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  49. Review of the panel discussion “Philosophical and Ethical Analysis of the Concepts of Death and Human Existence in the Context of Cybernetic Immortality”, Samara, 29.03 2024.Oleg Gurov - 2024 - Artificial Societies 19 (2).
    This publication constitutes a comprehensive account of the panel discussion entitled “Philosophical and Ethical Analysis of the Concepts of Death and Human Existence in the Context of Cybernetic Immortality” which transpired within the confines of the international scientific symposium “The Seventh Lemovsky Readings” held in Samara from March 28th to 30th, 2024. The aforementioned panel discussion, which congregated scores of erudite scholars representing preeminent research institutions across the Russian Federation, emerged as one of the cardinal events of the conference. Eminent (...)
    Download  
     
    Export citation  
     
    Bookmark  
  50. Resolving Frege’s Other Puzzle.Eric Snyder, Richard Samuels & Stewart Shapiro - 2022 - Philosophica Mathematica 30 (1):59-87.
    Number words seemingly function both as adjectives attributing cardinality properties to collections, as in Frege’s ‘Jupiter has four moons’, and as names referring to numbers, as in Frege’s ‘The number of Jupiter’s moons is four’. This leads to what Thomas Hofweber calls Frege’s Other Puzzle: How can number words function as modifiers and as singular terms if neither adjectives nor names can serve multiple semantic functions? Whereas most philosophers deny that one of these uses is genuine, we instead argue that (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
1 — 50 / 197