Results for 'Computation '

999 found
Order:
  1. Agent-Based Computational Economics: A Constructive Approach to Economic Theory.Leigh Tesfatsion - 2006 - In Leigh Tesfatsion & Kenneth L. Judd (eds.), Handbook of Computational Economics, Volume 2: Agent-Based Computational Economics. Amsterdam, The Netherlands: Elsevier.
    Economies are complicated systems encompassing micro behaviors, interaction patterns, and global regularities. Whether partial or general in scope, studies of economic systems must consider how to handle difficult real-world aspects such as asymmetric information, imperfect competition, strategic interaction, collective learning, and the possibility of multiple equilibria. Recent advances in analytical and computational tools are permitting new approaches to the quantitative study of these aspects. One such approach is Agent-based Computational Economics (ACE), the computational study of economic processes modeled as dynamic (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  2.  91
    Computers Are Syntax All the Way Down: Reply to Bozşahin.William J. Rapaport - 2019 - Minds and Machines 29 (2):227-237.
    A response to a recent critique by Cem Bozşahin of the theory of syntactic semantics as it applies to Helen Keller, and some applications of the theory to the philosophy of computer science.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  3. Implications of computer science theory for the simulation hypothesis.David Wolpert - manuscript
    The simulation hypothesis has recently excited renewed interest, especially in the physics and philosophy communities. However, the hypothesis specifically concerns {computers} that simulate physical universes, which means that to properly investigate it we need to couple computer science theory with physics. Here I do this by exploiting the physical Church-Turing thesis. This allows me to introduce a preliminary investigation of some of the computer science theoretic aspects of the simulation hypothesis. In particular, building on Kleene's second recursion theorem, I prove (...)
    Download  
     
    Export citation  
     
    Bookmark  
  4. Computability, Notation, and de re Knowledge of Numbers.Stewart Shapiro, Eric Snyder & Richard Samuels - 2022 - Philosophies 1 (7).
    Saul Kripke once noted that there is a tight connection between computation and de re knowledge of whatever the computation acts upon. For example, the Euclidean algorithm can produce knowledge of which number is the greatest common divisor of two numbers. Arguably, algorithms operate directly on syntactic items, such as strings, and on numbers and the like only via how the numbers are represented. So we broach matters of notation. The purpose of this article is to explore the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5. Handbook of Computational Economics, Volume 2: Agent-Based Computational Economics.Leigh Tesfatsion & Kenneth L. Judd (eds.) - 2006 - Amsterdam, The Netherlands: Elsevier.
    The explosive growth in computational power over the past several decades offers new tools and opportunities for economists. This handbook volume surveys recent research on Agent-based Computational Economics (ACE), the computational study of economic processes modeled as open-ended dynamic systems of interacting agents. Empirical referents for “agents” in ACE models can range from individuals or social groups with learning capabilities to physical world features with no cognitive function. Topics covered include: learning; empirical validation; network economics; social dynamics; financial markets; innovation (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  6. Implications of computer science theory for the simulation hypothesis.David Wolpert - manuscript
    Download  
     
    Export citation  
     
    Bookmark  
  7. Computer Simulations in Science and Engineering. Concept, Practices, Perspectives.Juan Manuel Durán - 2018 - Springer.
    This book addresses key conceptual issues relating to the modern scientific and engineering use of computer simulations. It analyses a broad set of questions, from the nature of computer simulations to their epistemological power, including the many scientific, social and ethics implications of using computer simulations. The book is written in an easily accessible narrative, one that weaves together philosophical questions and scientific technicalities. It will thus appeal equally to all academic scientists, engineers, and researchers in industry interested in questions (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  8. Computation in Physical Systems: A Normative Mapping Account.Paul Schweizer - 2019 - In Matteo Vincenzo D'Alfonso & Don Berkich (eds.), On the Cognitive, Ethical, and Scientific Dimensions of Artificial Intelligence. Springer Verlag. pp. 27-47.
    The relationship between abstract formal procedures and the activities of actual physical systems has proved to be surprisingly subtle and controversial, and there are a number of competing accounts of when a physical system can be properly said to implement a mathematical formalism and hence perform a computation. I defend an account wherein computational descriptions of physical systems are high-level normative interpretations motivated by our pragmatic concerns. Furthermore, the criteria of utility and success vary according to our diverse purposes (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  9. Cognitive Computation sans Representation.Paul Schweizer - 2017 - In Thomas Powers (ed.), Philosophy and Computing: Essays in epistemology, philosophy of mind, logic, and ethics,. Cham, Switzerland: Springer. pp. 65-84.
    The Computational Theory of Mind (CTM) holds that cognitive processes are essentially computational, and hence computation provides the scientific key to explaining mentality. The Representational Theory of Mind (RTM) holds that representational content is the key feature in distinguishing mental from non-mental systems. I argue that there is a deep incompatibility between these two theoretical frameworks, and that the acceptance of CTM provides strong grounds for rejecting RTM. The focal point of the incompatibility is the fact that representational content (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  10.  45
    On the computational complexity of ethics: moral tractability for minds and machines.Jakob Stenseke - 2024 - Artificial Intelligence Review 57 (105):90.
    Why should moral philosophers, moral psychologists, and machine ethicists care about computational complexity? Debates on whether artificial intelligence (AI) can or should be used to solve problems in ethical domains have mainly been driven by what AI can or cannot do in terms of human capacities. In this paper, we tackle the problem from the other end by exploring what kind of moral machines are possible based on what computational systems can or cannot do. To do so, we analyze normative (...)
    Download  
     
    Export citation  
     
    Bookmark  
  11. The Info-Computational Turn in Bioethics.Constantin Vică - 2018 - In Emilian Mihailov, Tenzin Wangmo, Victoria Federiuc & Bernice S. Elger (eds.), Contemporary Debates in Bioethics: European Perspectives. [Berlin]: De Gruyter Open. pp. 108-120.
    Our technological lifeworld has become an info-computational media populated by data and algorithms, an artificial environment for life and shared experiences. In this chapter, I tried to sketch three new assumptions for bioethics – it is hardly possible to substantiate ethical guidelines or an idea of normativity in an aprioristic manner; moral status is a function of data entities, not something solely human; agency is plural and thus is shared or sometimes delegated – in order to chart a proposal for (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  12. The computational and the representational language-of-thought hypotheses.David J. Chalmers - 2023 - Behavioral and Brain Sciences 46:e269.
    There are two versions of the language-of-thought hypothesis (LOT): Representational LOT (roughly, structured representation), introduced by Ockham, and computational LOT (roughly, symbolic computation) introduced by Fodor. Like many others, I oppose the latter but not the former. Quilty-Dunn et al. defend representational LOT, but they do not defend the strong computational LOT thesis central to the classical-connectionist debate.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  13. Mechanistic Computational Individuation without Biting the Bullet.Nir Fresco & Marcin Miłkowski - 2019 - British Journal for the Philosophy of Science:axz005.
    Is the mathematical function being computed by a given physical system determined by the system’s dynamics? This question is at the heart of the indeterminacy of computation phenomenon (Fresco et al. [unpublished]). A paradigmatic example is a conventional electrical AND-gate that is often said to compute conjunction, but it can just as well be used to compute disjunction. Despite the pervasiveness of this phenomenon in physical computational systems, it has been discussed in the philosophical literature only indirectly, mostly with (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  14. From Computer Metaphor to Computational Modeling: The Evolution of Computationalism.Marcin Miłkowski - 2018 - Minds and Machines 28 (3):515-541.
    In this paper, I argue that computationalism is a progressive research tradition. Its metaphysical assumptions are that nervous systems are computational, and that information processing is necessary for cognition to occur. First, the primary reasons why information processing should explain cognition are reviewed. Then I argue that early formulations of these reasons are outdated. However, by relying on the mechanistic account of physical computation, they can be recast in a compelling way. Next, I contrast two computational models of working (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  15. Computer simulation and the features of novel empirical data.Greg Lusk - 2016 - Studies in History and Philosophy of Science Part A 56:145-152.
    In an attempt to determine the epistemic status of computer simulation results, philosophers of science have recently explored the similarities and differences between computer simulations and experiments. One question that arises is whether and, if so, when, simulation results constitute novel empirical data. It is often supposed that computer simulation results could never be empirical or novel because simulations never interact with their targets, and cannot go beyond their programming. This paper argues against this position by examining whether, and under (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  16. Computational entrepreneurship: from economic complexities to interdisciplinary research.Quan-Hoang Vuong - 2019 - Problems and Perspectives in Management 17 (1):117-129.
    The development of technology is unbelievably rapid. From limited local networks to high speed Internet, from crude computing machines to powerful semi-conductors, the world had changed drastically compared to just a few decades ago. In the constantly renewing process of adapting to such an unnaturally high-entropy setting, innovations as well as entirely new concepts, were often born. In the business world, one such phenomenon was the creation of a new type of entrepreneurship. This paper proposes a new academic discipline of (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  17. Computational modeling in philosophy: introduction to a topical collection.Simon Scheller, Christoph Merdes & Stephan Hartmann - 2022 - Synthese 200 (2):1-10.
    Computational modeling should play a central role in philosophy. In this introduction to our topical collection, we propose a small topology of computational modeling in philosophy in general, and show how the various contributions to our topical collection fit into this overall picture. On this basis, we describe some of the ways in which computational models from other disciplines have found their way into philosophy, and how the principles one found here still underlie current trends in the field. Moreover, we (...)
    Download  
     
    Export citation  
     
    Bookmark  
  18. Computing in the nick of time.J. Brendan Ritchie & Colin Klein - 2023 - Ratio 36 (3):169-179.
    The medium‐independence of computational descriptions has shaped common conceptions of computational explanation. So long as our goal is to explain how a system successfully carries out its computations, then we only need to describe the abstract series of operations that achieve the desired input–output mapping, however they may be implemented. It is argued that this abstract conception of computational explanation cannot be applied to so‐called real‐time computing systems, in which meeting temporal deadlines imposed by the systems with which a device (...)
    Download  
     
    Export citation  
     
    Bookmark  
  19. Computer-assisted argument mapping: A Rationale Approach.Martin Davies - 2009 - Higher Education 58:799-820.
    Computer-Assisted Argument Mapping (CAAM) is a new way of understanding arguments. While still embryonic in its development and application, CAAM is being used increasingly as a training and development tool in the professions and government. Inroads are also being made in its application within education. CAAM claims to be helpful in an educational context, as a tool for students in responding to assessment tasks. However, to date there is little evidence from students that this is the case. This paper outlines (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  20. Computers Aren’t Syntax All the Way Down or Content All the Way Up.Cem Bozşahin - 2018 - Minds and Machines 28 (3):543-567.
    This paper argues that the idea of a computer is unique. Calculators and analog computers are not different ideas about computers, and nature does not compute by itself. Computers, once clearly defined in all their terms and mechanisms, rather than enumerated by behavioral examples, can be more than instrumental tools in science, and more than source of analogies and taxonomies in philosophy. They can help us understand semantic content and its relation to form. This can be achieved because they have (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  21. Computational Mechanisms and Models of Computation.Marcin Miłkowski - 2014 - Philosophia Scientiae 18:215-228.
    In most accounts of realization of computational processes by physical mechanisms, it is presupposed that there is one-to-one correspondence between the causally active states of the physical process and the states of the computation. Yet such proposals either stipulate that only one model of computation is implemented, or they do not reflect upon the variety of models that could be implemented physically. In this paper, I claim that mechanistic accounts of computation should allow for a broad variation (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  22. Computational Mechanisms and Models of Computation.Marcin Miłkowski - 2014 - Philosophia Scientiae 18:215-228.
    In most accounts of realization of computational processes by physical mechanisms, it is presupposed that there is one-to-one correspondence between the causally active states of the physical process and the states of the computation. Yet such proposals either stipulate that only one model of computation is implemented, or they do not reflect upon the variety of models that could be implemented physically. -/- In this paper, I claim that mechanistic accounts of computation should allow for a broad (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  23. Learning Computer Networks Using Intelligent Tutoring System.Mones M. Al-Hanjori, Mohammed Z. Shaath & Samy S. Abu Naser - 2017 - International Journal of Advanced Research and Development 2 (1).
    Intelligent Tutoring Systems (ITS) has a wide influence on the exchange rate, education, health, training, and educational programs. In this paper we describe an intelligent tutoring system that helps student study computer networks. The current ITS provides intelligent presentation of educational content appropriate for students, such as the degree of knowledge, the desired level of detail, assessment, student level, and familiarity with the subject. Our Intelligent tutoring system was developed using ITSB authoring tool for building ITS. A preliminary evaluation of (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  24. From Silico to Vitro: Computational Models of Complex Biological Systems Reveal Real-World Emergent Phenomena.Orly Stettiner - 2016 - In Vincent C. Müller (ed.), Computing and philosophy: Selected papers from IACAP 2014. Cham: Springer. pp. 133-147.
    Computer simulations constitute a significant scientific tool for promoting scientific understanding of natural phenomena and dynamic processes. Substantial leaps in computational force and software engineering methodologies now allow the design and development of large-scale biological models, which – when combined with advanced graphics tools – may produce realistic biological scenarios, that reveal new scientific explanations and knowledge about real life phenomena. A state-of-the-art simulation system termed Reactive Animation (RA) will serve as a study case to examine the contemporary philosophical debate (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25. Computable Rationality, NUTS, and the Nuclear Leviathan.S. M. Amadae - 2018 - In Daniel Bessner & Nicolas Guilhot (eds.), The Decisionist Imagination: Democracy, Sovereignty and Social Science in the 20th Century. New York, NY, USA:
    This paper explores how the Leviathan that projects power through nuclear arms exercises a unique nuclearized sovereignty. In the case of nuclear superpowers, this sovereignty extends to wielding the power to destroy human civilization as we know it across the globe. Nuclearized sovereignty depends on a hybrid form of power encompassing human decision-makers in a hierarchical chain of command, and all of the technical and computerized functions necessary to maintain command and control at every moment of the sovereign's existence: this (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  26. Transparency in Complex Computational Systems.Kathleen A. Creel - 2020 - Philosophy of Science 87 (4):568-589.
    Scientists depend on complex computational systems that are often ineliminably opaque, to the detriment of our ability to give scientific explanations and detect artifacts. Some philosophers have s...
    Download  
     
    Export citation  
     
    Bookmark   53 citations  
  27. Morphological Computation: Nothing but Physical Computation.Marcin Miłkowski - 2018 - Entropy 10 (20):942.
    The purpose of this paper is to argue against the claim that morphological computation is substantially different from other kinds of physical computation. I show that some (but not all) purported cases of morphological computation do not count as specifically computational, and that those that do are solely physical computational systems. These latter cases are not, however, specific enough: all computational systems, not only morphological ones, may (and sometimes should) be studied in various ways, including their energy (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  28. Computability in Quantum Mechanics.Wayne C. Myrvold - 1995 - In Werner De Pauli-Schimanovich, Eckehart Köhler & Friedrich Stadler (eds.), Vienna Circle Institute Yearbook. Kluwer Academic Publishers. pp. 33-46.
    In this paper, the issues of computability and constructivity in the mathematics of physics are discussed. The sorts of questions to be addressed are those which might be expressed, roughly, as: Are the mathematical foundations of our current theories unavoidably non-constructive: or, Are the laws of physics computable?
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  29. Manufacturing Morality A general theory of moral agency grounding computational implementations: the ACTWith model.Jeffrey White - 2013 - In Computational Intelligence. Nova Publications. pp. 1-65.
    The ultimate goal of research into computational intelligence is the construction of a fully embodied and fully autonomous artificial agent. This ultimate artificial agent must not only be able to act, but it must be able to act morally. In order to realize this goal, a number of challenges must be met, and a number of questions must be answered, the upshot being that, in doing so, the form of agency to which we must aim in developing artificial agents comes (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  30. Computers Are Syntax All the Way Down: Reply to Bozşahin.William J. Rapaport - 2019 - Minds and Machines 29 (2):227-237.
    A response to a recent critique by Cem Bozşahin of the theory of syntactic semantics as it applies to Helen Keller, and some applications of the theory to the philosophy of computer science.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  31. Integrating Computer Vision Algorithms and Ontologies for Spectator Crowd Behavior Analysis.Davide Conigliaro, Celine Hudelot, Roberta Ferrario & Daniele Porello - 2017 - In Vittorio Murino, Marco Cristani, Shishir Shah & Silvio Savarese (eds.), Group and Crowd Behavior for Computer Vision, 1st Edition. pp. 297-319.
    In this paper, building on these previous works, we propose to go deeper into the understanding of crowd behavior by proposing an approach which integrates ontologi- cal models of crowd behavior and dedicated computer vision algorithms, with the aim of recognizing some targeted complex events happening in the playground from the observation of the spectator crowd behavior. In order to do that, we first propose an ontology encoding available knowledge on spectator crowd behavior, built as a spe- cialization of the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  32. Kurt Gödel and Computability Theory.Richard Zach - 2006 - In Beckmann Arnold, Berger Ulrich, Löwe Benedikt & Tucker John V. (eds.), Logical Approaches to Computational Barriers. Second Conference on Computability in Europe, CiE 2006, Swansea. Proceedings. Springer. pp. 575--583.
    Although Kurt Gödel does not figure prominently in the history of computabilty theory, he exerted a significant influence on some of the founders of the field, both through his published work and through personal interaction. In particular, Gödel’s 1931 paper on incompleteness and the methods developed therein were important for the early development of recursive function theory and the lambda calculus at the hands of Church, Kleene, and Rosser. Church and his students studied Gödel 1931, and Gödel taught a seminar (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  33. Computational Modeling as a Philosophical Methodology.Patrick Grim - 2004 - In Luciano Floridi (ed.), The Blackwell Guide to the Philosophy of Computing and Information. Oxford, UK: Blackwell. pp. 337–349.
    Since the sixties, computational modeling has become increasingly important in both the physical and the social sciences, particularly in physics, theoretical biology, sociology, and economics. Sine the eighties, philosophers too have begun to apply computational modeling to questions in logic, epistemology, philosophy of science, philosophy of mind, philosophy of language, philosophy of biology, ethics, and social and political philosophy. This chapter analyzes a selection of interesting examples in some of those areas.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  34. Computational Dynamics of Natural Information Morphology, Discretely Continuous.Gordana Dodig-Crnkovic - 2017 - Philosophies 2 (4):23.
    This paper presents a theoretical study of the binary oppositions underlying the mechanisms of natural computation understood as dynamical processes on natural information morphologies. Of special interest are the oppositions of discrete vs. continuous, structure vs. process, and differentiation vs. integration. The framework used is that of computing nature, where all natural processes at different levels of organisation are computations over informational structures. The interactions at different levels of granularity/organisation in nature, and the character of the phenomena that unfold (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  35. Neural Computation of Surface Border Ownership and Relative Surface Depth from Ambiguous Contrast Inputs.Birgitta Dresp-Langley & Stephen Grossberg - 2016 - Frontiers in Psychology 7.
    The segregation of image parts into foreground and background is an important aspect of the neural computation of 3D scene perception. To achieve such segregation, the brain needs information about border ownership; that is, the belongingness of a contour to a specific surface represented in the image. This article presents psychophysical data derived from 3D percepts of figure and ground that were generated by presenting 2D images composed of spatially disjoint shapes that pointed inward or outward relative to the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  36. Quantum Computer: Quantum Model and Reality.Vasil Penchev - 2020 - Epistemology eJournal (Elsevier: SSRN) 13 (17):1-7.
    Any computer can create a model of reality. The hypothesis that quantum computer can generate such a model designated as quantum, which coincides with the modeled reality, is discussed. Its reasons are the theorems about the absence of “hidden variables” in quantum mechanics. The quantum modeling requires the axiom of choice. The following conclusions are deduced from the hypothesis. A quantum model unlike a classical model can coincide with reality. Reality can be interpreted as a quantum computer. The physical processes (...)
    Download  
     
    Export citation  
     
    Bookmark  
  37. Cognition, Computing and Dynamic Systems.Mario Villalobos & Joe Dewhurst - 2016 - Límite. Revista Interdisciplinaria de Filosofía y Psicología 1.
    Traditionally, computational theory (CT) and dynamical systems theory (DST) have presented themselves as opposed and incompatible paradigms in cognitive science. There have been some efforts to reconcile these paradigms, mainly, by assimilating DST to CT at the expenses of its anti-representationalist commitments. In this paper, building on Piccinini’s mechanistic account of computation and the notion of functional closure, we explore an alternative conciliatory strategy. We try to assimilate CT to DST by dropping its representationalist commitments, and by inviting CT (...)
    Download  
     
    Export citation  
     
    Bookmark  
  38. Why Computers are not Intelligent: An Argument.Richard Oxenberg - 2017 - Political Animal Magazine.
    Computers can mimic human intelligence, sometimes quite impressively. This has led some to claim that, a.) computers can actually acquire intelligence, and/or, b.) the human mind may be thought of as a very sophisticated computer. In this paper I argue that neither of these inferences are sound. The human mind and computers, I argue, operate on radically different principles.
    Download  
     
    Export citation  
     
    Bookmark  
  39. Info-computational Constructivism and Cognition.G. Dodig-Crnkovic - 2014 - Constructivist Foundations 9 (2):223-231.
    Context: At present, we lack a common understanding of both the process of cognition in living organisms and the construction of knowledge in embodied, embedded cognizing agents in general, including future artifactual cognitive agents under development, such as cognitive robots and softbots. Purpose: This paper aims to show how the info-computational approach (IC) can reinforce constructivist ideas about the nature of cognition and knowledge and, conversely, how constructivist insights (such as that the process of cognition is the process of life) (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  40. Using Computer-Assisted Argument Mapping to Teach Reasoning to Students.Martin Davies, Ashley Barnett & Tim van Gelder - 2021 - In J. Anthony Blair (ed.), The Critical Thinking Anthology. pp. 115-152.
    Argument mapping is a way of diagramming the logical structure of an argument to explicitly and concisely represent reasoning. The use of argument mapping in critical thinking instruction has increased dramatically in recent decades. This paper overviews the innovation and provides a procedural approach for new teaches wanting to use argument mapping in the classroom. A brief history of argument mapping is provided at the end of this paper.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  41. Computational Theories of Conscious Experience: Between a Rock and a Hard Place.Gary Bartlett - 2012 - Erkenntnis 76 (2):195-209.
    Very plausibly, nothing can be a genuine computing system unless it meets an input-sensitivity requirement. Otherwise all sorts of objects, such as rocks or pails of water, can count as performing computations, even such as might suffice for mentality—thus threatening computationalism about the mind with panpsychism. Maudlin in J Philos 86:407–432, ( 1989 ) and Bishop ( 2002a , b ) have argued, however, that such a requirement creates difficulties for computationalism about conscious experience, putting it in conflict with the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  42. Computer-Aided Argument Mapping and the Teaching of Critical Thinking (Part 1).Martin Davies - 2012 - Inquiry: Critical Thinking Across the Disciplines 27 (2):15-30.
    This paper is in two parts. Part I outlines three traditional approaches to the teaching of critical thinking: the normative, cognitive psychology, and educational approaches. Each of these approaches is discussed in relation to the influences of various methods of critical thinking instruction. The paper contrasts these approaches with what I call the “visualisation” approach. This approach is explained with reference to computer-aided argument mapping (CAAM) which uses dedicated computer software to represent inferences between premise and conclusions. The paper presents (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  43. Cloud computing and its ethical challenges.Matteo Turilli & Luciano Floridi - manuscript
    The paper analyses six ethical challenges posed by cloud computing, concerning ownership, safety, fairness, responsibility, accountability and privacy. The first part defines cloud computing on the basis of a resource-oriented approach, and outlines the main features that characterise such technology. Following these clarifications, the second part argues that cloud computing reshapes some classic problems often debated in information and computer ethics. To begin with, cloud computing makes possible a complete decoupling of ownership, possession and use of data and this helps (...)
    Download  
     
    Export citation  
     
    Bookmark  
  44. Computer ethics beyond mere compliance.Richard Volkman - 2015 - Journal of Information, Communication and Ethics in Society 13 (3/4):176-189.
    If computer ethics is to constitute a real engagement with industry and society that cultivates a genuine sensitivity to ethical concerns in the creation, development, and implementation of technologies, a genuine sensitivity that stands in marked contrast to ethics as “mere compliance,” then computer ethics will have to consist in issuing an open invitation to inquiry, since going beyond mere compliance requires a sensitivity to the importance of what we care about, and inquiry has the potential to leverage what our (...)
    Download  
     
    Export citation  
     
    Bookmark  
  45. Platonic Computer— the Universal Machine That Bridges the “Inverse Explanatory Gap” in the Philosophy of Mind.Simon X. Duan - 2022 - Filozofia i Nauka 10:285-302.
    The scope of Platonism is extended by introducing the concept of a “Platonic computer” which is incorporated in metacomputics. The theoretical framework of metacomputics postulates that a Platonic computer exists in the realm of Forms and is made by, of, with, and from metaconsciousness. Metaconsciousness is defined as the “power to conceive, to perceive, and to be self-aware” and is the formless, con-tentless infinite potentiality. Metacomputics models how metaconsciousness generates the perceived actualities including abstract entities and physical and nonphysical realities. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  46. On Computable Numbers, Non-Universality, and the Genuine Power of Parallelism.Nancy Salay & Selim Akl - 2015 - International Journal of Unconventional Computing 11 (3-4):283-297.
    We present a simple example that disproves the universality principle. Unlike previous counter-examples to computational universality, it does not rely on extraneous phenomena, such as the availability of input variables that are time varying, computational complexity that changes with time or order of execution, physical variables that interact with each other, uncertain deadlines, or mathematical conditions among the variables that must be obeyed throughout the computation. In the most basic case of the new example, all that is used is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  47. Computing, Modelling, and Scientific Practice: Foundational Analyses and Limitations.Philippos Papayannopoulos - 2018 - Dissertation,
    This dissertation examines aspects of the interplay between computing and scientific practice. The appropriate foundational framework for such an endeavour is rather real computability than the classical computability theory. This is so because physical sciences, engineering, and applied mathematics mostly employ functions defined in continuous domains. But, contrary to the case of computation over natural numbers, there is no universally accepted framework for real computation; rather, there are two incompatible approaches --computable analysis and BSS model--, both claiming to (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  48. A Computational Framework for Concept Representation in Cognitive Systems and Architectures: Concepts as Heterogeneous Proxytypes.Antonio Lieto - 2014 - Proceedings of 5th International Conference on Biologically Inspired Cognitive Architectures, Boston, MIT, Pocedia Computer Science, Elsevier:1-9.
    In this paper a possible general framework for the representation of concepts in cognitive artificial systems and cognitive architectures is proposed. The framework is inspired by the so called proxytype theory of concepts and combines it with the heterogeneity approach to concept representations, according to which concepts do not constitute a unitary phenomenon. The contribution of the paper is twofold: on one hand, it aims at providing a novel theoretical hypothesis for the debate about concepts in cognitive sciences by providing (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  49. European Computing and Philosophy.Gordana Dodig-Crnkovic - 2009 - The Reasoner 3 (9):18-19.
    European Computing and Philosophy conference, 2–4 July Barcelona The Seventh ECAP (European Computing and Philosophy) conference was organized by Jordi Vallverdu at Autonomous University of Barcelona. The conference started with the IACAP (The International Association for CAP) presidential address by Luciano Floridi, focusing on mechanisms of knowledge production in informational networks. The first keynote delivered by Klaus Mainzer made a frame for the rest of the conference, by elucidating the fundamental role of complexity of informational structures that can be analyzed (...)
    Download  
     
    Export citation  
     
    Bookmark  
  50. Computation and Functionalism: Syntactic Theory of Mind Revisited.Murat Aydede - 2005 - In Gurol Irzik & Guven Guzeldere (eds.), Boston Studies in the History and Philosophy of Science. Springer.
    I argue that Stich's Syntactic Theory of Mind (STM) and a naturalistic narrow content functionalism run on a Language of Though story have the same exact structure. I elaborate on the argument that narrow content functionalism is either irremediably holistic in a rather destructive sense, or else doesn't have the resources for individuating contents interpersonally. So I show that, contrary to his own advertisement, Stich's STM has exactly the same problems (like holism, vagueness, observer-relativity, etc.) that he claims plague content-based (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
1 — 50 / 999