Results for 'Emmy Noether’s theorems of conservation'

977 found
Order:
  1. From The Principle Of Least Action To The Conservation Of Quantum Information In Chemistry: Can One Generalize The Periodic Table?Vasil Penchev - 2019 - Chemistry: Bulgarian Journal of Science Education 28 (4):525-539.
    The success of a few theories in statistical thermodynamics can be correlated with their selectivity to reality. These are the theories of Boltzmann, Gibbs, end Einstein. The starting point is Carnot’s theory, which defines implicitly the general selection of reality relevant to thermodynamics. The three other theories share this selection, but specify it further in detail. Each of them separates a few main aspects within the scope of the implicit thermodynamic reality. Their success grounds on that selection. Those aspects can (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  2. Physical Entity as Quantum Information.Vasil Penchev - 2020 - Philosophy of Science eJournal (Elsevier: SSRN) 13 (35):1-15.
    Quantum mechanics was reformulated as an information theory involving a generalized kind of information, namely quantum information, in the end of the last century. Quantum mechanics is the most fundamental physical theory referring to all claiming to be physical. Any physical entity turns out to be quantum information in the final analysis. A quantum bit is the unit of quantum information, and it is a generalization of the unit of classical information, a bit, as well as the quantum information itself (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3. How Dualists Should (Not) Respond to the Objection from Energy Conservation.Alin C. Cucu & J. Brian Pitts - 2019 - Mind and Matter 17 (1):95-121.
    The principle of energy conservation is widely taken to be a se- rious difficulty for interactionist dualism (whether property or sub- stance). Interactionists often have therefore tried to make it satisfy energy conservation. This paper examines several such attempts, especially including E. J. Lowe’s varying constants proposal, show- ing how they all miss their goal due to lack of engagement with the physico-mathematical roots of energy conservation physics: the first Noether theorem (that symmetries imply conservation laws), (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  4.  17
    The Connection Between Noether’s Theorem and the Universal Law of Balance in Decision-Making.Angelito Malicse - manuscript
    Download  
     
    Export citation  
     
    Bookmark  
  5. Hilbert Mathematics versus Gödel Mathematics. III. Hilbert Mathematics by Itself, and Gödel Mathematics versus the Physical World within It: both as Its Particular Cases.Vasil Penchev - 2023 - Philosophy of Science eJournal (Elsevier: SSRN) 16 (47):1-46.
    The paper discusses Hilbert mathematics, a kind of Pythagorean mathematics, to which the physical world is a particular case. The parameter of the “distance between finiteness and infinity” is crucial. Any nonzero finite value of it features the particular case in the frameworks of Hilbert mathematics where the physical world appears “ex nihilo” by virtue of an only mathematical necessity or quantum information conservation physically. One does not need the mythical Big Bang which serves to concentrate all the violations (...)
    Download  
     
    Export citation  
     
    Bookmark  
  6. Von Neumann's Methodology of Science: From Incompleteness Theorems to Later foundational Reflections.Giambattista Formica - 2010 - Perspectives on Science 18 (4):480-499.
    In spite of the many efforts made to clarify von Neumann’s methodology of science, one crucial point seems to have been disregarded in recent literature: his closeness to Hilbert’s spirit. In this paper I shall claim that the scientific methodology adopted by von Neumann in his later foundational reflections originates in the attempt to revaluate Hilbert’s axiomatics in the light of Gödel’s incompleteness theorems. Indeed, axiomatics continues to be pursued by the Hungarian mathematician in the spirit of Hilbert’s school. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7. Two deductions: (1) from the totality to quantum information conservation; (2) from the latter to dark matter and dark energy.Vasil Penchev - 2020 - Information Theory and Research eJournal (Elsevier: SSRN) 1 (28):1-47.
    The paper discusses the origin of dark matter and dark energy from the concepts of time and the totality in the final analysis. Though both seem to be rather philosophical, nonetheless they are postulated axiomatically and interpreted physically, and the corresponding philosophical transcendentalism serves heuristically. The exposition of the article means to outline the “forest for the trees”, however, in an absolutely rigorous mathematical way, which to be explicated in detail in a future paper. The “two deductions” are two successive (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  8. The gauge argument: A Noether Reason.Henrique Gomes, Bryan W. Roberts & Jeremy Butterfield - 2022 - In James Read & Nicholas J. Teh (eds.), The physics and philosophy of Noether's theorems. Cambridge: Cambridge University Press. pp. 354-377.
    Why is gauge symmetry so important in modern physics, given that one must eliminate it when interpreting what the theory represents? In this paper we discuss the sense in which gauge symmetry can be fruitfully applied to constrain the space of possible dynamical models in such a way that forces and charges are appropriately coupled. We review the most well-known application of this kind, known as the 'gauge argument' or 'gauge principle', discuss its difficulties, and then reconstruct the gauge argument (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  9. Symmetry, Invariance and Ontology in Physics and Statistics.Julio Michael Stern - 2011 - Symmetry 3 (3):611-635.
    This paper has three main objectives: (a) Discuss the formal analogy between some important symmetry-invariance arguments used in physics, probability and statistics. Specifically, we will focus on Noether’s theorem in physics, the maximum entropy principle in probability theory, and de Finetti-type theorems in Bayesian statistics; (b) Discuss the epistemological and ontological implications of these theorems, as they are interpreted in physics and statistics. Specifically, we will focus on the positivist (in physics) or subjective (in statistics) interpretations vs. (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  10. Truth, Conservativeness, and Provability.Cezary Cieśliński - 2010 - Mind 119 (474):409-422.
    Conservativeness has been proposed as an important requirement for deflationary truth theories. This in turn gave rise to the so-called ‘conservativeness argument’ against deflationism: a theory of truth which is conservative over its base theory S cannot be adequate, because it cannot prove that all theorems of S are true. In this paper we show that the problems confronting the deflationist are in fact more basic: even the observation that logic is true is beyond his reach. This seems to (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  11. Epsilon theorems in intermediate logics.Matthias Baaz & Richard Zach - 2022 - Journal of Symbolic Logic 87 (2):682-720.
    Any intermediate propositional logic can be extended to a calculus with epsilon- and tau-operators and critical formulas. For classical logic, this results in Hilbert’s $\varepsilon $ -calculus. The first and second $\varepsilon $ -theorems for classical logic establish conservativity of the $\varepsilon $ -calculus over its classical base logic. It is well known that the second $\varepsilon $ -theorem fails for the intuitionistic $\varepsilon $ -calculus, as prenexation is impossible. The paper investigates the effect of adding critical $\varepsilon $ (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  12. (2 other versions)The Fundamental Interrelationships Model – An Alternative Approach to the Theory of Everything, Part 1.Gavin Huang - 2022 - In Huang Gavin (ed.), Behind Civilization: the fundamental rules in the universe. Sydney, Australia: Gavin Huang. pp. 400-.
    The quest for a unified “Theory of Everything” that explains the fundamental nature of the universe has long been a holy grail for scientists and philosophers. -/- “A theory of everything (TOE), final theory, ultimate theory, unified field theory, or master theory is a singular, all- encompassing, coherent theoretical framework of physics that fully explains and links together all aspects of the universe, finding a theory of everything is one of the major unsolved problems in physics". - Theory of Everything, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  13. Szemerédi’s theorem: An exploration of impurity, explanation, and content.Patrick J. Ryan - 2023 - Review of Symbolic Logic 16 (3):700-739.
    In this paper I argue for an association between impurity and explanatory power in contemporary mathematics. This proposal is defended against the ancient and influential idea that purity and explanation go hand-in-hand (Aristotle, Bolzano) and recent suggestions that purity/impurity ascriptions and explanatory power are more or less distinct (Section 1). This is done by analyzing a central and deep result of additive number theory, Szemerédi’s theorem, and various of its proofs (Section 2). In particular, I focus upon the radically impure (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  14. Quantum Field Theory: An Introduction.Ryan Reece - manuscript
    This document is a set of notes I took on QFT as a graduate student at the University of Pennsylvania, mainly inspired in lectures by Burt Ovrut, but also working through Peskin and Schroeder (1995), as well as David Tong’s lecture notes available online. They take a slow pedagogical approach to introducing classical field theory, Noether’s theorem, the principles of quantum mechanics, scattering theory, and culminating in the derivation of Feynman diagrams.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  15. Women in the History of Analytic Philosophy.Jeanne Peijnenburg & Sander Verhaegh (eds.) - 2022 - Cham: Springer.
    This book contains a selection of papers from the workshop *Women in the History of Analytic Philosophy* held in October 2019 in Tilburg, the Netherlands. It is the first volume devoted to the role of women in early analytic philosophy. It discusses the ideas of ten female philosophers and covers a period of over a hundred years, beginning with the contribution to the Significs Movement by Victoria, Lady Welby in the second half of the nineteenth century, and ending with Ruth (...)
    Download  
     
    Export citation  
     
    Bookmark  
  16. Making Sense of Bell’s Theorem and Quantum Nonlocality.Stephen Boughn - 2017 - Foundations of Physics 47 (5):640-657.
    Bell’s theorem has fascinated physicists and philosophers since his 1964 paper, which was written in response to the 1935 paper of Einstein, Podolsky, and Rosen. Bell’s theorem and its many extensions have led to the claim that quantum mechanics and by inference nature herself are nonlocal in the sense that a measurement on a system by an observer at one location has an immediate effect on a distant entangled system. Einstein was repulsed by such “spooky action at a distance” and (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  17. Why there can be no mathematical or meta-mathematical proof of consistency for ZF.Bhupinder Singh Anand - manuscript
    In the first part of this investigation we highlight two, seemingly irreconcilable, beliefs that suggest an impending crisis in the teaching, research, and practice of—primarily state-supported—mathematics: (a) the belief, with increasing, essentially faith-based, conviction and authority amongst academics that first-order Set Theory can be treated as the lingua franca of mathematics, since its theorems—even if unfalsifiable—can be treated as ‘knowledge’ because they are finite proof sequences which are entailed finitarily by self-evidently Justified True Beliefs; and (b) the slowly emerging, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  18. Bell’s Theorem, Quantum Probabilities, and Superdeterminism.Eddy Keming Chen - 2022 - In Eleanor Knox & Alastair Wilson (eds.), The Routledge Companion to Philosophy of Physics. London, UK: Routledge.
    In this short survey article, I discuss Bell’s theorem and some strategies that attempt to avoid the conclusion of non-locality. I focus on two that intersect with the philosophy of probability: (1) quantum probabilities and (2) superdeterminism. The issues they raised not only apply to a wide class of no-go theorems about quantum mechanics but are also of general philosophical interest.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  19.  84
    A Layperson's Understanding of Bell's Theorem.Vaclav Skutil - manuscript
    Download  
     
    Export citation  
     
    Bookmark  
  20.  96
    Philosophical Implications of Gödel's Theorems.Khuzaymah Qureshi (ed.) - 2024
    This essay deals with Gödel's Theorems in relationship to Philosophy of Science; firstly, in outlining Ludwig Wittgenstein's position on the limits of philosophical truth that we can derive from Gödel (and how this in turn impacts modern-philosophical conceptions of science), and secondly, the deeper uncertainty about consciousness that Gödel's theorems point to, most notably elucidated by Sir Roger Penrose.
    Download  
     
    Export citation  
     
    Bookmark  
  21. Left Populism and Foreign Policy: Bernie Sanders and Podemos.Emmy Eklundh, Frank A. Stengel & Thorsten Wojczewski - forthcoming - International Affairs.
    This article analyzes how populism is conceptualized and studied in International Relations (IR) and argues that it should be seen as a political logic instead of a political ideology. It does so by demonstrating that ‘populist foreign policy’ looks radically different when analyzing the populist left, refuting the possibility of any distinctly ‘populist’ foreign policy positions. We argue that large parts of IR scholarship practice a form of concept-stretching that undermines the quality of analysis as well as the ability to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  22. Arrow's theorem, ultrafilters, and reverse mathematics.Benedict Eastaugh - forthcoming - Review of Symbolic Logic.
    This paper initiates the reverse mathematics of social choice theory, studying Arrow's impossibility theorem and related results including Fishburn's possibility theorem and the Kirman–Sondermann theorem within the framework of reverse mathematics. We formalise fundamental notions of social choice theory in second-order arithmetic, yielding a definition of countable society which is tractable in RCA0. We then show that the Kirman–Sondermann analysis of social welfare functions can be carried out in RCA0. This approach yields a proof of Arrow's theorem in RCA0, and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  23. The case of quantum mechanics mathematizing reality: the “superposition” of mathematically modelled and mathematical reality: Is there any room for gravity?Vasil Penchev - 2020 - Cosmology and Large-Scale Structure eJournal (Elsevier: SSRN) 2 (24):1-15.
    A case study of quantum mechanics is investigated in the framework of the philosophical opposition “mathematical model – reality”. All classical science obeys the postulate about the fundamental difference of model and reality, and thus distinguishing epistemology from ontology fundamentally. The theorems about the absence of hidden variables in quantum mechanics imply for it to be “complete” (versus Einstein’s opinion). That consistent completeness (unlike arithmetic to set theory in the foundations of mathematics in Gödel’s opinion) can be interpreted furthermore (...)
    Download  
     
    Export citation  
     
    Bookmark  
  24. Bell's Theorem Begs the Question.Joy Christian - manuscript
    I demonstrate that Bell's theorem is based on circular reasoning and thus a fundamentally flawed argument. It unjustifiably assumes the additivity of expectation values for dispersion-free states of contextual hidden variable theories for non-commuting observables involved in Bell-test experiments, which is tautologous to assuming the bounds of ±2 on the Bell-CHSH sum of expectation values. Its premises thus assume in a different guise the bounds of ±2 it sets out to prove. Once this oversight is ameliorated from Bell's argument by (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25. Comment on the GHZ variant of Bell's theorem without inequalities.Joy Christian - 2024 - Arxiv.
    I point out a sign mistake in the GHZ variant of Bell's theorem, invalidating the GHZ's claim that the premisses of the EPR argument are inconsistent for systems of more than two particles in entangled quantum states.
    Download  
     
    Export citation  
     
    Bookmark  
  26. Arrow's theorem in judgment aggregation.Franz Dietrich & Christian List - 2007 - Social Choice and Welfare 29 (1):19-33.
    In response to recent work on the aggregation of individual judgments on logically connected propositions into collective judgments, it is often asked whether judgment aggregation is a special case of Arrowian preference aggregation. We argue for the converse claim. After proving two impossibility theorems on judgment aggregation (using "systematicity" and "independence" conditions, respectively), we construct an embedding of preference aggregation into judgment aggregation and prove Arrow’s theorem (stated for strict preferences) as a corollary of our second result. Although we (...)
    Download  
     
    Export citation  
     
    Bookmark   88 citations  
  27. Frege's Theorem in Plural Logic.Simon Hewitt - manuscript
    We note that a plural version of logicism about arithmetic is suggested by the standard reading of Hume's Principle in terms of `the number of Fs/Gs'. We lay out the resources needed to prove a version of Frege's principle in plural, rather than second-order, logic. We sketch a proof of the theorem and comment philosophically on the result, which sits well with a metaphysics of natural numbers as plural properties.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  28. Arrow’s impossibility theorem and the national security state.S. M. Amadae - 2005 - Studies in History and Philosophy of Science Part A 36 (4):734-743.
    This paper critically engages Philip Mirowki's essay, "The scientific dimensions of social knowledge and their distant echoes in 20th-century American philosophy of science." It argues that although the cold war context of anti-democratic elitism best suited for making decisions about engaging in nuclear war may seem to be politically and ideologically motivated, in fact we need to carefully consider the arguments underlying the new rational choice based political philosophies of the post-WWII era typified by Arrow's impossibility theorem. A distrust of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  29. Fermat’s last theorem proved in Hilbert arithmetic. III. The quantum-information unification of Fermat’s last theorem and Gleason’s theorem.Vasil Penchev - 2022 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 14 (12):1-30.
    The previous two parts of the paper demonstrate that the interpretation of Fermat’s last theorem (FLT) in Hilbert arithmetic meant both in a narrow sense and in a wide sense can suggest a proof by induction in Part I and by means of the Kochen - Specker theorem in Part II. The same interpretation can serve also for a proof FLT based on Gleason’s theorem and partly similar to that in Part II. The concept of (probabilistic) measure of a subspace (...)
    Download  
     
    Export citation  
     
    Bookmark  
  30. The Philosophical Significance of Tennenbaum’s Theorem.T. Button & P. Smith - 2012 - Philosophia Mathematica 20 (1):114-121.
    Tennenbaum's Theorem yields an elegant characterisation of the standard model of arithmetic. Several authors have recently claimed that this result has important philosophical consequences: in particular, it offers us a way of responding to model-theoretic worries about how we manage to grasp the standard model. We disagree. If there ever was such a problem about how we come to grasp the standard model, then Tennenbaum's Theorem does not help. We show this by examining a parallel argument, from a simpler model-theoretic (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  31. Bell's theorem: A bridge between the measurement and the mind/body problems.Badis Ydri - manuscript
    In this essay a quantum-dualistic, perspectival and synchronistic interpretation of quantum mechanics is further developed in which the classical world-from-decoherence which is perceived (decoherence) and the perceived world-in-consciousness which is classical (collapse) are not necessarily identified. Thus, Quantum Reality or "{\it unus mundus}" is seen as both i) a physical non-perspectival causal Reality where the quantum-to-classical transition is operated by decoherence, and as ii) a quantum linear superposition of all classical psycho-physical perspectival Realities which are governed by synchronicity as well (...)
    Download  
     
    Export citation  
     
    Bookmark  
  32. Oversights in the Respective Theorems of von Neumann and Bell are Homologous.Joy Christian - manuscript
    We show that the respective oversights in the von Neumann's general theorem against all hidden variable theories and Bell's theorem against their local-realistic counterparts are homologous. When latter oversight is rectified, the bounds on the CHSH correlator work out to be ±2√2 instead of ±2.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  33. Generalized Löb’s Theorem. Strong Reflection Principles and Large Cardinal Axioms.Jaykov Foukzon - 2013 - Advances in Pure Mathematics (3):368-373.
    In this article, a possible generalization of the Löb’s theorem is considered. Main result is: let κ be an inaccessible cardinal, then ¬Con( ZFC +∃κ) .
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  34. Mathematical instrumentalism, Gödel’s theorem, and inductive evidence.Alexander Paseau - 2011 - Studies in History and Philosophy of Science Part A 42 (1):140-149.
    Mathematical instrumentalism construes some parts of mathematics, typically the abstract ones, as an instrument for establishing statements in other parts of mathematics, typically the elementary ones. Gödel’s second incompleteness theorem seems to show that one cannot prove the consistency of all of mathematics from within elementary mathematics. It is therefore generally thought to defeat instrumentalisms that insist on a proof of the consistency of abstract mathematics from within the elementary portion. This article argues that though some versions of mathematical instrumentalism (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  35. Infinity, Choice, and Hume’s Principle.Stephen Mackereth - 2024 - Journal of Philosophical Logic 53 (5):1413-1439.
    It has long been known that in the context of axiomatic second-order logic (SOL), Hume’s Principle (HP) is mutually interpretable with “the universe is Dedekind infinite” (DI). In this paper, we offer a more fine-grained analysis of the logical strength of HP, measured by deductive implications rather than interpretability. Our main result is that HP is not deductively conservative over SOL + DI. That is, SOL + HP proves additional theorems in the language of pure second-order logic that are (...)
    Download  
     
    Export citation  
     
    Bookmark  
  36. On the Depth of Szemeredi's Theorem.Andrew Arana - 2015 - Philosophia Mathematica 23 (2):163-176.
    Many mathematicians have cited depth as an important value in their research. However, there is no single widely accepted account of mathematical depth. This article is an attempt to bridge this gap. The strategy is to begin with a discussion of Szemerédi's theorem, which says that each subset of the natural numbers that is sufficiently dense contains an arithmetical progression of arbitrary length. This theorem has been judged deep by many mathematicians, and so makes for a good case on which (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  37. Leibniz's Calculus Proof of Snell's Laws Violates Ptolemy's Theorem. Radhakrishanamurty - manuscript
    Leibniz proposed the ‘Most Determined Path Principle’ in seventeenth century. According to it, ‘ease’ of travel is the end purpose of motion. Using this principle and his calculus method he demonstrated Snell’s Laws of reflection and refraction. This method shows that light follows extremal (local minimum or maximum) time path in going from one point to another, either directly along a straight line path or along a broken line path when it undergoes reflection or refraction at plane or spherical (concave (...)
    Download  
     
    Export citation  
     
    Bookmark  
  38. Quantum theology, or: “Theologie als strenge Wissenschaft”.Vasil Penchev - 2024 - Metaphilosophy eJournal (Elsevier: SSRN) 16 (15):1-66.
    The main idea consists in researching the existence of certain characteristics of nature similar to human reasonability and purposeful actions, originating and rigorously inferable from the postulates of quantum mechanics as well as from those of special and general relativity. The pathway of the “free-will theorems” proved by Conway and Kochen in 2006 and 2009 is followed and pioneered further. Those natural reasonability and teleology are identified as a special subject called “God” and studyable by “quantum theology”, a scientific (...)
    Download  
     
    Export citation  
     
    Bookmark  
  39. A Welfarist Version of Harsanyi's Theorem.Claude D'Aspremont & Philippe Mongin - 2008 - In M. Fleurbaey M. Salles and J. Weymark (ed.), Justice, Political Liberalism, and Utilitarianism. Cambridge University Press. pp. Ch. 11.
    This is a chapter of a collective volume of Rawls's and Harsanyi's theories of distributive justice. It focuses on Harsanyi's important Social Aggregation Theorem and technically reconstructs it as a theorem in welfarist social choice.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  40. Why Arrow's Theorem Matters for Political Theory Even If Preference Cycles Never Occur.Sean Ingham - forthcoming - Public Choice.
    Riker (1982) famously argued that Arrow’s impossibility theorem undermined the logical foundations of “populism”, the view that in a democracy, laws and policies ought to express “the will of the people”. In response, his critics have questioned the use of Arrow’s theorem on the grounds that not all configurations of preferences are likely to occur in practice; the critics allege, in particular, that majority preference cycles, whose possibility the theorem exploits, rarely happen. In this essay, I argue that the critics’ (...)
    Download  
     
    Export citation  
     
    Bookmark  
  41. An account of conserved functions and how biologists use them to integrate cell and evolutionary biology.Jeremy G. Wideman, Steve Elliott & Beckett Sterner - 2023 - Biology and Philosophy 38 (5):1-23.
    We characterize a type of functional explanation that addresses why a homologous trait originating deep in the evolutionary history of a group remains widespread and largely unchanged across the group’s lineages. We argue that biologists regularly provide this type of explanation when they attribute conserved functions to phenotypic and genetic traits. The concept of conserved function applies broadly to many biological domains, and we illustrate its importance using examples of molecular sequence alignments at the intersection of evolution and cell biology. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  42. Application of "A Thing Exists If It's A Grouping" to Russell's Paradox and Godel's First Incompletness Theorem.Roger Granet - manuscript
    A resolution to the Russell Paradox is presented that is similar to Russell's “theory of types” method but is instead based on the definition of why a thing exists as described in previous work by this author. In that work, it was proposed that a thing exists if it is a grouping tying "stuff" together into a new unit whole. In tying stuff together, this grouping defines what is contained within the new existent entity. A corollary is that a thing, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  43. Erratum to “The Ricean Objection: An Analogue of Rice's Theorem for First-Order Theories” Logic Journal of the IGPL, 16: 585–590. [REVIEW]Igor Oliveira & Walter Carnielli - 2009 - Logic Journal of the IGPL 17 (6):803-804.
    This note clarifies an error in the proof of the main theorem of “The Ricean Objection: An Analogue of Rice’s Theorem for First-Order Theories”, Logic Journal of the IGPL, 16(6): 585–590(2008).
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  44. Escaping Arrow's Theorem: The Advantage-Standard Model.Wesley Holliday & Mikayla Kelley - forthcoming - Theory and Decision.
    There is an extensive literature in social choice theory studying the consequences of weakening the assumptions of Arrow's Impossibility Theorem. Much of this literature suggests that there is no escape from Arrow-style impossibility theorems unless one drastically violates the Independence of Irrelevant Alternatives (IIA). In this paper, we present a more positive outlook. We propose a model of comparing candidates in elections, which we call the Advantage-Standard (AS) model. The requirement that a collective choice rule (CCR) be rationalizable by (...)
    Download  
     
    Export citation  
     
    Bookmark  
  45. A Logic for Frege's Theorem.Richard Heck - 1999 - In Richard G. Heck (ed.), Frege’s Theorem: An Introduction. The Harvard Review of Philosophy.
    It has been known for a few years that no more than Pi-1-1 comprehension is needed for the proof of "Frege's Theorem". One can at least imagine a view that would regard Pi-1-1 comprehension axioms as logical truths but deny that status to any that are more complex—a view that would, in particular, deny that full second-order logic deserves the name. Such a view would serve the purposes of neo-logicists. It is, in fact, no part of my view that, say, (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  46. Religious Conservatives and Safe Sex: Reconciliation by Nonpublic Reason.Robert S. Taylor - 2014 - American Political Thought 3 (2):322-340.
    Religious conservatives in the U.S. have frequently opposed public-health measures designed to combat STDs among minors, such as sex education, condom distribution, and HPV vaccination. Using Rawls’s method of conjecture, I will clear up what I take to be a misunderstanding on the part of religious conservatives: even if we grant their premises regarding the nature and source of sexual norms, the wide-ranging authority of parents to enforce these norms against their minor children, and the potential sexual-disinhibition effects of the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  47. Bayes's theorem. [REVIEW]Massimo Pigliucci - 2005 - Quarterly Review of Biology 80 (1):93-95.
    About a British Academy collection of papers on Bayes' famous theorem.
    Download  
     
    Export citation  
     
    Bookmark  
  48. The part of Fermat's theorem.Run Jiang - manuscript
    Download  
     
    Export citation  
     
    Bookmark  
  49. What is Mathematics: Gödel's Theorem and Around (Edition 2015).Karlis Podnieks - manuscript
    Introduction to mathematical logic. Part 2.Textbook for students in mathematical logic and foundations of mathematics. Platonism, Intuition, Formalism. Axiomatic set theory. Around the Continuum Problem. Axiom of Determinacy. Large Cardinal Axioms. Ackermann's Set Theory. First order arithmetic. Hilbert's 10th problem. Incompleteness theorems. Consequences. Connected results: double incompleteness theorem, unsolvability of reasoning, theorem on the size of proofs, diophantine incompleteness, Loeb's theorem, consistent universal statements are provable, Berry's paradox, incompleteness and Chaitin's theorem. Around Ramsey's theorem.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  50. Fermat's Least Time Principle Violates Ptolemy's Theorem.Radhakrishnamurty Padyala - manuscript
    Fermat’s Least Time Principle has a long history. World’s foremost academies of the day championed by their most prestigious philosophers competed for the glory and prestige that went with the solution of the refraction problem of light. The controversy, known as Descartes - Fermat controversy was due to the contradictory views held by Descartes and Fermat regarding the relative speeds of light in different media. Descartes with his mechanical philosophy insisted that every natural phenomenon must be explained by mechanical principles. (...)
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 977