Results for 'Frieda Heyting'

25 found
Order:
  1. Heyting Mereology as a Framework for Spatial Reasoning.Thomas Mormann - 2013 - Axiomathes 23 (1):137- 164.
    In this paper it is shown that Heyting and Co-Heyting mereological systems provide a convenient conceptual framework for spatial reasoning, in which spatial concepts such as connectedness, interior parts, (exterior) contact, and boundary can be defined in a natural and intuitively appealing way. This fact refutes the wide-spread contention that mereology cannot deal with the more advanced aspects of spatial reasoning and therefore has to be enhanced by further non-mereological concepts to overcome its congenital limitations. The allegedly unmereological (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  2. Connecting the revolutionary with the conventional: Rethinking the differences between the works of Brouwer, Heyting, and Weyl.Kati Kish Bar-On - 2023 - Philosophy of Science 90 (3):580–602.
    Brouwer’s intuitionism was a far-reaching attempt to reform the foundations of mathematics. While the mathematical community was reluctant to accept Brouwer’s work, its response to later-developed brands of intuitionism, such as those presented by Hermann Weyl and Arend Heyting, was different. The paper accounts for this difference by analyzing the intuitionistic versions of Brouwer, Weyl, and Heyting in light of a two-tiered model of the body and image of mathematical knowledge. Such a perspective provides a richer account of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3. G'3 as the logic of modal 3-valued Heyting algebras.Marcelo E. Coniglio, Aldo Figallo-Orellano, Alejandro Hernández-Tello & Miguel Perez-Gaspar - 2022 - IfCoLog Journal of Logics and Their Applications 9 (1):175-197.
    In 2001, W. Carnielli and Marcos considered a 3-valued logic in order to prove that the schema ϕ ∨ (ϕ → ψ) is not a theorem of da Costa’s logic Cω. In 2006, this logic was studied (and baptized) as G'3 by Osorio et al. as a tool to define semantics of logic programming. It is known that the truth-tables of G'3 have the same expressive power than the one of Łukasiewicz 3-valued logic as well as the one of Gödel (...)
    Download  
     
    Export citation  
     
    Bookmark  
  4. Modal-Epistemic Arithmetic and the problem of quantifying in.Jan Heylen - 2013 - Synthese 190 (1):89-111.
    The subject of this article is Modal-Epistemic Arithmetic (MEA), a theory introduced by Horsten to interpret Epistemic Arithmetic (EA), which in turn was introduced by Shapiro to interpret Heyting Arithmetic. I will show how to interpret MEA in EA such that one can prove that the interpretation of EA is MEA is faithful. Moreover, I will show that one can get rid of a particular Platonist assumption. Then I will discuss models for MEA in light of the problems of (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  5. Propositions as Intentions.Bruno Bentzen - 2023 - Husserl Studies 39 (2):143-160.
    I argue against the interpretation of propositions as intentions and proof-objects as fulfillments proposed by Heyting and defended by Tieszen and van Atten. The idea is already a frequent target of criticisms regarding the incompatibility of Brouwer’s and Husserl’s positions, mainly by Rosado Haddock and Hill. I raise a stronger objection in this paper. My claim is that even if we grant that the incompatibility can be properly dealt with, as van Atten believes it can, two fundamental issues indicate (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  6. Completeness and Doxastic Plurality for Topological Operators of Knowledge and Belief.Thomas Mormann - 2023 - Erkenntnis: 1 - 34, ONLINE.
    The first aim of this paper is to prove a topological completeness theorem for a weak version of Stalnaker’s logic KB of knowledge and belief. The weak version of KB is characterized by the assumption that the axioms and rules of KB have to be satisfied with the exception of the axiom (NI) of negative introspection. The proof of a topological completeness theorem for weak KB is based on the fact that nuclei (as defined in the framework of point-free topology) (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  7. Extensions of Priest-da Costa Logic.Thomas Macaulay Ferguson - 2014 - Studia Logica 102 (1):145-174.
    In this paper, we look at applying the techniques from analyzing superintuitionistic logics to extensions of the cointuitionistic Priest-da Costa logic daC (introduced by Graham Priest as “da Costa logic”). The relationship between the superintuitionistic axioms- definable in daC- and extensions of Priest-da Costa logic (sdc-logics) is analyzed and applied to exploring the gap between the maximal si-logic SmL and classical logic in the class of sdc-logics. A sequence of strengthenings of Priest-da Costa logic is examined and employed to pinpoint (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  8. The Quantum Strategy of Completeness: On the Self-Foundation of Mathematics.Vasil Penchev - 2020 - Cultural Anthropology eJournal (Elsevier: SSRN) 5 (136):1-12.
    Gentzen’s approach by transfinite induction and that of intuitionist Heyting arithmetic to completeness and the self-foundation of mathematics are compared and opposed to the Gödel incompleteness results as to Peano arithmetic. Quantum mechanics involves infinity by Hilbert space, but it is finitist as any experimental science. The absence of hidden variables in it interpretable as its completeness should resurrect Hilbert’s finitism at the cost of relevant modification of the latter already hinted by intuitionism and Gentzen’s approaches for completeness. This (...)
    Download  
     
    Export citation  
     
    Bookmark  
  9. A Transformative Intuitionist Logic for Examining Negation in Identity-Thinking.Rebecca Kosten - forthcoming - Australasian Journal of Logic.
    Negation often reinforces problematic habits of othering, but rethinking negation can make good on feminist hopes for logic as a transformative space for inclusion. As Plumwood argues in her 1993 paper, not all uses of negation in the context of social identity are inherently problematic, but the widespread implicit use of classical negation has limited our options with respect to representing difference, ultimately reinforcing dualisms that essentialize social differences in problematic ways. In response to these limitations, I take inspiration from (...)
    Download  
     
    Export citation  
     
    Bookmark  
  10. Intuitionistic Modal Algebras.Sergio A. Celani & Umberto Rivieccio - 2024 - Studia Logica 112 (3):611-660.
    Recent research on algebraic models of _quasi-Nelson logic_ has brought new attention to a number of classes of algebras which result from enriching (subreducts of) Heyting algebras with a special modal operator, known in the literature as a _nucleus_. Among these various algebraic structures, for which we employ the umbrella term _intuitionistic modal algebras_, some have been studied since at least the 1970s, usually within the framework of topology and sheaf theory. Others may seem more exotic, for their primitive (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  11. Intermediate Logics and the de Jongh property.Dick Jongh, Rineke Verbrugge & Albert Visser - 2011 - Archive for Mathematical Logic 50 (1-2):197-213.
    We prove that all extensions of Heyting Arithmetic with a logic that has the finite frame property possess the de Jongh property.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  12. Intermediate Logics and the de Jongh property.Dick de Jongh, Rineke Verbrugge & Albert Visser - 2011 - Archive for Mathematical Logic 50 (1-2):197-213.
    We prove that all extensions of Heyting Arithmetic with a logic that has the finite frame property possess the de Jongh property.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  13. À Maneira de Um Colar de Pérolas?André Porto - 2017 - Revista Portuguesa de Filosofia 73 (3-4):1381-1404.
    This paper offers an overview of various alternative formulations for Analysis, the theory of Integral and Differential Calculus, and its diverging conceptions of the topological structure of the continuum. We pay particularly attention to Smooth Analysis, a proposal created by William Lawvere and Anders Kock based on Grothendieck’s work on a categorical algebraic geometry. The role of Heyting’s logic, common to all these alternatives is emphasized.
    Download  
     
    Export citation  
     
    Bookmark  
  14. Choice, Infinity, and Negation: Both Set-Theory and Quantum-Information Viewpoints to Negation.Vasil Penchev - 2020 - Logic and Philosophy of Mathematics eJournal 12 (14):1-3.
    The concepts of choice, negation, and infinity are considered jointly. The link is the quantity of information interpreted as the quantity of choices measured in units of elementary choice: a bit is an elementary choice between two equally probable alternatives. “Negation” supposes a choice between it and confirmation. Thus quantity of information can be also interpreted as quantity of negations. The disjunctive choice between confirmation and negation as to infinity can be chosen or not in turn: This corresponds to set-theory (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15. Fitch's Paradox and the Problem of Shared Content.Thorsten Sander - 2006 - Abstracta 3 (1):74-86.
    According to the “paradox of knowability”, the moderate thesis that all truths are knowable – ... – implies the seemingly preposterous claim that all truths are actually known – ... –, i.e. that we are omniscient. If Fitch’s argument were successful, it would amount to a knockdown rebuttal of anti-realism by reductio. In the paper I defend the nowadays rather neglected strategy of intuitionistic revisionism. Employing only intuitionistically acceptable rules of inference, the conclusion of the argument is, firstly, not ..., (...)
    Download  
     
    Export citation  
     
    Bookmark  
  16. B-frame duality.Guillaume Massas - 2023 - Annals of Pure and Applied Logic 174 (5):103245.
    This paper introduces the category of b-frames as a new tool in the study of complete lattices. B-frames can be seen as a generalization of posets, which play an important role in the representation theory of Heyting algebras, but also in the study of complete Boolean algebras in forcing. This paper combines ideas from the two traditions in order to generalize some techniques and results to the wider context of complete lattices. In particular, we lift a representation theorem of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  17. Revisiting Constructive Mingle: Algebraic and Operational Semantics.Yale Weiss - 2022 - In Katalin Bimbo (ed.), Essays in Honor of J. Michael Dunn. College Publications. pp. 435-455.
    Among Dunn’s many important contributions to relevance logic was his work on the system RM (R-mingle). Although RM is an interesting system in its own right, it is widely considered to be too strong. In this chapter, I revisit a closely related system, RM0 (sometimes known as ‘constructive mingle’), which includes the mingle axiom while not degenerating in the way that RM itself does. My main interest will be in examining this logic from two related semantical perspectives. First, I give (...)
    Download  
     
    Export citation  
     
    Bookmark  
  18. A Note on Paradoxical Propositions from an Inferential Point of View.Ivo Pezlar - 2021 - In Martin Blicha & Igor Sedlár (eds.), The Logica Yearbook 2020. College Publications. pp. 183-199.
    In a recent paper by Tranchini (Topoi, 2019), an introduction rule for the paradoxical proposition ρ∗ that can be simultaneously proven and disproven is discussed. This rule is formalized in Martin-Löf’s constructive type theory (CTT) and supplemented with an inferential explanation in the style of Brouwer-Heyting-Kolmogorov semantics. I will, however, argue that the provided formalization is problematic because what is paradoxical about ρ∗ from the viewpoint of CTT is not its provability, but whether it is a proposition at all.
    Download  
     
    Export citation  
     
    Bookmark  
  19. Belief Modalities Defined by Nuclei.Thomas Mormann - manuscript
    Abstract. The aim of this paper is to show that the topological interpretation of knowledge as an interior kernel operator K of a topological space (X, OX) comes along with a partially ordered family of belief modalities B that fit K in the sense that the pairs (K, B) satisfy all axioms of Stalnaker’s KB logic of knowledge and belief with the exception of the contentious axiom of negative introspection (NI). The new belief modalities B introduced in this paper are (...)
    Download  
     
    Export citation  
     
    Bookmark  
  20. Kripke Semantics for Fuzzy Logics.Saeed Salehi - 2018 - Soft Computing 22 (3):839–844.
    Kripke frames (and models) provide a suitable semantics for sub-classical logics; for example, intuitionistic logic (of Brouwer and Heyting) axiomatizes the reflexive and transitive Kripke frames (with persistent satisfaction relations), and the basic logic (of Visser) axiomatizes transitive Kripke frames (with persistent satisfaction relations). Here, we investigate whether Kripke frames/models could provide a semantics for fuzzy logics. For each axiom of the basic fuzzy logic, necessary and sufficient conditions are sought for Kripke frames/models which satisfy them. It turns out (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  21. From the History of Physics to the Discovery of the Foundations of Physics,.Antonino Drago - manuscript
    FROM THE HISTORY OF PHYSICS TO THE DISCOVERY OF THE FOUNDATIONS OF PHYSICS By Antonino Drago, formerly at Naples University “Federico II”, Italy – drago@unina,.it (Size : 391.800 bytes 75,400 words) The book summarizes a half a century author’s work on the foundations of physics. For the forst time is established a level of discourse on theoretical physics which at the same time is philosophical in nature (kinds of infinity, kinds of organization) and formal (kinds of mathematics, kinds of logic). (...)
    Download  
     
    Export citation  
     
    Bookmark  
  22. Intuitionistic logic versus paraconsistent logic. Categorical approach.Mariusz Kajetan Stopa - 2023 - Dissertation, Jagiellonian University
    The main research goal of the work is to study the notion of co-topos, its correctness, properties and relations with toposes. In particular, the dualization process proposed by proponents of co-toposes has been analyzed, which transforms certain Heyting algebras of toposes into co-Heyting ones, by which a kind of paraconsistent logic may appear in place of intuitionistic logic. It has been shown that if certain two definitions of topos are to be equivalent, then in one of them, in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  23. A Two-Part Defense of Institutional Mathematics.Eliott Samuel - 2021 - Stance 14:26-40.
    The classical interpretation of mathematical statements can be seen as comprising two separate but related aspects: a domain and a truth-schema. L. E. J. Brouwer’s intuitionistic project lays the groundwork for an alternative conception of the objects in this domain, as well as an accompanying intuitionistic truth-schema. Drawing on the work of Arend Heyting and Michael Dummett, I present two objections to classical mathematical semantics, with the aim of creating an opening for an alternative interpretation. With this accomplished, I (...)
    Download  
     
    Export citation  
     
    Bookmark  
  24. Weak Arithmetics and Kripke Models.Morteza Moniri - 2002 - Mathematical Logic Quarterly 48 (1):157-160.
    In the first section of this paper we show that i Π1 ≡ W⌝⌝lΠ1 and that a Kripke model which decides bounded formulas forces iΠ1 if and only if the union of the worlds in any path in it satisflies IΠ1. In particular, the union of the worlds in any path of a Kripke model of HA models IΠ1. In the second section of the paper, we show that for equivalence of forcing and satisfaction of Πm-formulas in a linear Kripke (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25. Provability logics for relative interpretability.Frank Veltman & Dick De Jongh - 1990 - In Petio Petrov Petkov (ed.), Mathematical Logic. Proceedings of the Heyting '88 Summer School. Springer. pp. 31-42.
    In this paper the system IL for relative interpretability is studied.
    Download  
     
    Export citation  
     
    Bookmark   16 citations