Results for 'LAWS OF MATHEMATICS'

959 found
Order:
  1. Mathematics and the Laws of Nature.Peter Caws - 1959 - Bulletin of the Kansas Association of Teachers of Mathematics 34 (2):11-12.
    Download  
     
    Export citation  
     
    Bookmark  
  2. (1 other version)Mathematical biology and the existence of biological laws.Mauro Dorato - 2012 - In D. Dieks, S. Hartmann, T. Uebel & M. Weber (eds.), Probabilities, Laws and Structure. Springer.
    An influential position in the philosophy of biology claims that there are no biological laws, since any apparently biological generalization is either too accidental, fact-like or contingent to be named a law, or is simply reducible to physical laws that regulate electrical and chemical interactions taking place between merely physical systems. In the following I will stress a neglected aspect of the debate that emerges directly from the growing importance of mathematical models of biological phenomena. My main aim (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  3. The Law of Conservation of Time and Its Applications.Ninh Khac Son - manuscript
    Time is a complex category not only in philosophy but also in mathematics and physics. In one thought about time, the author accidentally discovered a new way to explain and solve problems related to time dilation, such as solving the problem of Muon particle when moving from a height of 10 km to the earth’s surface, while the Muon’s lifespan is only 2.2 microseconds, or explaining Michelson-Morley experiment using the new method. In addition, the author also prove that the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  4. Laws of Thought and Laws of Logic after Kant.Lydia Patton - 2018 - In Sandra Lapointe (ed.), Logic from Kant to Russell. New York: Routledge. pp. 123-137.
    George Boole emerged from the British tradition of the “New Analytic”, known for the view that the laws of logic are laws of thought. Logicians in the New Analytic tradition were influenced by the work of Immanuel Kant, and by the German logicians Wilhelm Traugott Krug and Wilhelm Esser, among others. In his 1854 work An Investigation of the Laws of Thought on Which are Founded the Mathematical Theories of Logic and Probabilities, Boole argues that the (...) of thought acquire normative force when constrained to mathematical reasoning. Boole’s motivation is, first, to address issues in the foundations of mathematics, including the relationship between arithmetic and algebra, and the study and application of differential equations (Durand-Richard, van Evra, Panteki). Second, Boole intended to derive the laws of logic from the laws of the operation of the human mind, and to show that these laws were valid of algebra and of logic both, when applied to a restricted domain. Boole’s thorough and flexible work in these areas influenced the development of model theory (see Hodges, forthcoming), and has much in common with contemporary inferentialist approaches to logic (found in, e.g., Peregrin and Resnik). (shrink)
    Download  
     
    Export citation  
     
    Bookmark  
  5. Laws of nature and the reality of the wave function.Mauro Dorato - 2015 - Synthese 192 (10):3179-3201.
    In this paper I review three different positions on the wave function, namely: nomological realism, dispositionalism, and configuration space realism by regarding as essential their capacity to account for the world of our experience. I conclude that the first two positions are committed to regard the wave function as an abstract entity. The third position will be shown to be a merely speculative attempt to derive a primitive ontology from a reified mathematical space. Without entering any discussion about nominalism, I (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  6. Laws of Form and the Force of Function: Variations on the Turing Test.Hajo Greif - 2012 - In Vincent C. Müller & Aladdin Ayesh (eds.), Revisiting Turing and His Test: Comprehensiveness, Qualia, and the Real World. AISB. pp. 60-64.
    This paper commences from the critical observation that the Turing Test (TT) might not be best read as providing a definition or a genuine test of intelligence by proxy of a simulation of conversational behaviour. Firstly, the idea of a machine producing likenesses of this kind served a different purpose in Turing, namely providing a demonstrative simulation to elucidate the force and scope of his computational method, whose primary theoretical import lies within the realm of mathematics rather than cognitive (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7. Descartes on Necessity and the Laws of Nature.Nathan Rockwood - 2022 - Journal of Analytic Theology 10:277-292.
    This paper is on Descartes’ account of modality and, in particular, his account of the necessity of the laws of nature. He famously argues that the necessity of the “eternal truths” of logic and mathematics depends on God’s will. Here I suggest he has the same view about the necessity of the laws of nature. Further, I argue, this is a plausible theory of laws. For philosophers often talk about something being nomologically or physically necessary because (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  8. On the epistemological foundations of the law of the lever.Maarten Van Dyck - 2009 - Studies in History and Philosophy of Science Part A 40 (3):315-318.
    In this paper I challenge Paolo Palmieri’s reading of the Mach-Vailati debate on Archimedes’s proof of the law of the lever. I argue that the actual import of the debate concerns the possible epistemic (as opposed to merely pragmatic) role of mathematical arguments in empirical physics, and that construed in this light Vailati carries the upper hand. This claim is defended by showing that Archimedes’s proof of the law of the lever is not a way of appealing to a non-empirical (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  9. Russell's Paradox in Appendix B of the Principles of Mathematics : Was Frege's response adequate?Kevin C. Klement - 2001 - History and Philosophy of Logic 22 (1):13-28.
    In their correspondence in 1902 and 1903, after discussing the Russell paradox, Russell and Frege discussed the paradox of propositions considered informally in Appendix B of Russell’s Principles of Mathematics. It seems that the proposition, p, stating the logical product of the class w, namely, the class of all propositions stating the logical product of a class they are not in, is in w if and only if it is not. Frege believed that this paradox was avoided within his (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  10. (1 other version)Isaac Newton vs. Robert Hooke on the law of universal gravitation.Nicolae Sfetcu - manuscript
    One of the most disputed controversy over the priority of scientific discoveries is that of the law of universal gravitation, between Isaac Newton and Robert Hooke. Hooke accused Newton of plagiarism, of taking over his ideas expressed in previous works. In this paper I try to show, on the basis of previous analysis, that both scientists were wrong: Robert Hooke because his theory was basically only ideas that would never have materialized without Isaac Newton's mathematical support; and the latter was (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  11. Natural Cybernetics and Mathematical History: The Principle of Least Choice in History.Vasil Penchev - 2020 - Cultural Anthropology (Elsevier: SSRN) 5 (23):1-44.
    The paper follows the track of a previous paper “Natural cybernetics of time” in relation to history in a research of the ways to be mathematized regardless of being a descriptive humanitarian science withal investigating unique events and thus rejecting any repeatability. The pathway of classical experimental science to be mathematized gradually and smoothly by more and more relevant mathematical models seems to be inapplicable. Anyway quantum mechanics suggests another pathway for mathematization; considering the historical reality as dual or “complimentary” (...)
    Download  
     
    Export citation  
     
    Bookmark  
  12. The case of quantum mechanics mathematizing reality: the “superposition” of mathematically modelled and mathematical reality: Is there any room for gravity?Vasil Penchev - 2020 - Cosmology and Large-Scale Structure eJournal (Elsevier: SSRN) 2 (24):1-15.
    A case study of quantum mechanics is investigated in the framework of the philosophical opposition “mathematical model – reality”. All classical science obeys the postulate about the fundamental difference of model and reality, and thus distinguishing epistemology from ontology fundamentally. The theorems about the absence of hidden variables in quantum mechanics imply for it to be “complete” (versus Einstein’s opinion). That consistent completeness (unlike arithmetic to set theory in the foundations of mathematics in Gödel’s opinion) can be interpreted furthermore (...)
    Download  
     
    Export citation  
     
    Bookmark  
  13. Mathematical Explanation by Law.Sam Baron - 2019 - British Journal for the Philosophy of Science 70 (3):683-717.
    Call an explanation in which a non-mathematical fact is explained—in part or in whole—by mathematical facts: an extra-mathematical explanation. Such explanations have attracted a great deal of interest recently in arguments over mathematical realism. In this article, a theory of extra-mathematical explanation is developed. The theory is modelled on a deductive-nomological theory of scientific explanation. A basic DN account of extra-mathematical explanation is proposed and then redeveloped in the light of two difficulties that the basic theory faces. The final view (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  14. Are Causal Laws a Relic of Bygone Age?Jan Faye - 2017 - Axiomathes 27 (6):653-666.
    Bertrand Russell once pointed out that modern science doesn’t deal with causal laws and that assuming otherwise is not only wrong but such thinking is erroneously thought to do no harm. However, looking into the scientific practice of simulation or experimentation reveals a general causal comprehension of physical processes. In this paper I trace causal experiences to the existence of innate causal capacity by which we organize sensory information. This capacity, I argue, is something we have got in virtue (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15.  39
    On the Quantum Law of Attraction.Matheus P. Lobo, Bruna Cristina Corcino Carneiro & Fernando Lessa Carneiro - 2024 - Open Journal of Mathematics and Physics 6:297.
    We propose that quantum frequencies generate gravitational interactions.
    Download  
     
    Export citation  
     
    Bookmark  
  16. Logic. of Descriptions. A New Approach to the Foundations of Mathematics and Science.Joanna Golińska-Pilarek & Taneli Huuskonen - 2012 - Studies in Logic, Grammar and Rhetoric 27 (40):63-94.
    We study a new formal logic LD introduced by Prof. Grzegorczyk. The logic is based on so-called descriptive equivalence, corresponding to the idea of shared meaning rather than shared truth value. We construct a semantics for LD based on a new type of algebras and prove its soundness and completeness. We further show several examples of classical laws that hold for LD as well as laws that fail. Finally, we list a number of open problems. -/- .
    Download  
     
    Export citation  
     
    Bookmark  
  17. Can mathematics explain the evolution of human language?Guenther Witzany - 2011 - Communicative and Integrative Biology 4 (5):516-520.
    Investigation into the sequence structure of the genetic code by means of an informatic approach is a real success story. The features of human language are also the object of investigation within the realm of formal language theories. They focus on the common rules of a universal grammar that lies behind all languages and determine generation of syntactic structures. This universal grammar is a depiction of material reality, i.e., the hidden logical order of things and its relations determined by natural (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  18.  28
    READINESS OF GRADE 10 STUDENTS ON THE PREREQUISITE SKILLS IN STEM MATHEMATICS: A BASIS FOR STRATEGIC INTERVENTION MATERIAL.Jan Angelo G. Morata - 2024 - Guild of Educators in Tesol International Research Journal 2 (4):36-47.
    The preparedness and performance of Grade 10 students in prerequisites of STEM mathematics was the subject discussed in this study. General findings pointed to the fact that most students exhibited "Satisfactory" performance scores in key areas, with some readiness gaps seen in certain areas such as the Law of Exponents and Logarithmic and Exponential Functions rated "Low" to "Moderate". Readiness was highly associated with performance on some of the specific competencies - namely quadratic equation techniques and formula manipulation, but (...)
    Download  
     
    Export citation  
     
    Bookmark  
  19. The Mathematical Representation of the Arrow of Time.Meir Hemmo & Orly Shenker - 2012 - Iyyun 61:167-192.
    This paper distinguishes between 3 meanings of reversal, all of which are mathematically equivalent in classical mechanics: velocity reversal, retrodiction, and time reversal. It then concludes that in order to have well defined velocities a primitive arrow of time must be included in every time slice. The paper briefly mentions that this arrow cannot come from the Second Law of thermodynamics, but this point is developed in more details elsewhere.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  20. (1 other version)The Significance of Evidence-based Reasoning for Mathematics, Mathematics Education, Philosophy and the Natural Sciences.Bhupinder Singh Anand - forthcoming
    In this multi-disciplinary investigation we show how an evidence-based perspective of quantification---in terms of algorithmic verifiability and algorithmic computability---admits evidence-based definitions of well-definedness and effective computability, which yield two unarguably constructive interpretations of the first-order Peano Arithmetic PA---over the structure N of the natural numbers---that are complementary, not contradictory. The first yields the weak, standard, interpretation of PA over N, which is well-defined with respect to assignments of algorithmically verifiable Tarskian truth values to the formulas of PA under the interpretation. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  21. No entailing laws, but enablement in the evolution of the biosphere.G. Longo, M. Montévil & S. Kauffman - 2012 - In G. Longo, M. Montévil & S. Kauffman (eds.), Genetic and Evolutionary Computation Conference. Acm. pp. 1379 -1392.
    Biological evolution is a complex blend of ever changing structural stability, variability and emergence of new phe- notypes, niches, ecosystems. We wish to argue that the evo- lution of life marks the end of a physics world view of law entailed dynamics. Our considerations depend upon dis- cussing the variability of the very ”contexts of life”: the in- teractions between organisms, biological niches and ecosys- tems. These are ever changing, intrinsically indeterminate and even unprestatable: we do not know ahead of (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  22. Invariance as a basis for necessity and laws.Gila Sher - 2021 - Philosophical Studies 178 (12):3945-3974.
    Many philosophers are baffled by necessity. Humeans, in particular, are deeply disturbed by the idea of necessary laws of nature. In this paper I offer a systematic yet down to earth explanation of necessity and laws in terms of invariance. The type of invariance I employ for this purpose generalizes an invariance used in meta-logic. The main idea is that properties and relations in general have certain degrees of invariance, and some properties/relations have a stronger degree of invariance (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  23. Hilbert Mathematics versus Gödel Mathematics. III. Hilbert Mathematics by Itself, and Gödel Mathematics versus the Physical World within It: both as Its Particular Cases.Vasil Penchev - 2023 - Philosophy of Science eJournal (Elsevier: SSRN) 16 (47):1-46.
    The paper discusses Hilbert mathematics, a kind of Pythagorean mathematics, to which the physical world is a particular case. The parameter of the “distance between finiteness and infinity” is crucial. Any nonzero finite value of it features the particular case in the frameworks of Hilbert mathematics where the physical world appears “ex nihilo” by virtue of an only mathematical necessity or quantum information conservation physically. One does not need the mythical Big Bang which serves to concentrate all (...)
    Download  
     
    Export citation  
     
    Bookmark  
  24. Are mathematical explanations causal explanations in disguise?A. Jha, Douglas Campbell, Clemency Montelle & Phillip L. Wilson - 2024 - Philosophy of Science 91 (4):887-905.
    There is a major debate as to whether there are non-causal mathematical explanations of physical facts that show how the facts under question arise from a degree of mathematical necessity considered stronger than that of contingent causal laws. We focus on Marc Lange’s account of distinctively mathematical explanations to argue that purported mathematical explanations are essentially causal explanations in disguise and are no different from ordinary applications of mathematics. This is because these explanations work not by appealing to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25. Mechanism: Mathematical Laws.Tzuchien Tho - 2020 - Encyclopedia of Early Modern Philosophy and the Sciences.
    Download  
     
    Export citation  
     
    Bookmark  
  26. Hobbes’s model of refraction and derivation of the sine law.Hao Dong - 2021 - Archive for History of Exact Sciences 75 (3):323-348.
    This paper aims both to tackle the technical issue of deciphering Hobbes’s derivation of the sine law of refraction and to throw some light to the broader issue of Hobbes’s mechanical philosophy. I start by recapitulating the polemics between Hobbes and Descartes concerning Descartes’ optics. I argue that, first, Hobbes’s criticisms do expose certain shortcomings of Descartes’ optics which presupposes a twofold distinction between real motion and inclination to motion, and between motion itself and determination of motion; second, Hobbes’s optical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  27. Leibniz, Mathematics and the Monad.Simon Duffy - 2010 - In Sjoerd van Tuinen & Niamh McDonnell (eds.), Deleuze and The fold: a critical reader. New York: Palgrave-Macmillan. pp. 89--111.
    The reconstruction of Leibniz’s metaphysics that Deleuze undertakes in The Fold provides a systematic account of the structure of Leibniz’s metaphysics in terms of its mathematical foundations. However, in doing so, Deleuze draws not only upon the mathematics developed by Leibniz—including the law of continuity as reflected in the calculus of infinite series and the infinitesimal calculus—but also upon developments in mathematics made by a number of Leibniz’s contemporaries—including Newton’s method of fluxions. He also draws upon a number (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  28. Bayesian Perspectives on Mathematical Practice.James Franklin - 2024 - In Bharath Sriraman (ed.), Handbook of the History and Philosophy of Mathematical Practice. Cham: Springer. pp. 2711-2726.
    Mathematicians often speak of conjectures as being confirmed by evidence that falls short of proof. For their own conjectures, evidence justifies further work in looking for a proof. Those conjectures of mathematics that have long resisted proof, such as the Riemann hypothesis, have had to be considered in terms of the evidence for and against them. In recent decades, massive increases in computer power have permitted the gathering of huge amounts of numerical evidence, both for conjectures in pure (...) and for the behavior of complex applied mathematical models and statistical algorithms. Mathematics has therefore become (among other things) an experimental science (though that has not diminished the importance of proof in the traditional style). We examine how the evaluation of evidence for conjectures works in mathematical practice. We explain the (objective) Bayesian view of probability, which gives a theoretical framework for unifying evidence evaluation in science and law as well as in mathematics. Numerical evidence in mathematics is related to the problem of induction; the occurrence of straightforward inductive reasoning in the purely logical material of pure mathematics casts light on the nature of induction as well as of mathematical reasoning. (shrink)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  29.  63
    The Sphere of Realization: The Mathematical Path of Harmonious Balance.Parker Emmerson - 2023 - Zenodo.
    From The Cone of Perception, volume one of my collected works, you will remember that one of the main topics in that work was V-Curvature, also called, "phenomenological velocity." In that work, although a solution to the v - curvature variable was provided as well as many graphs that yielded numerous jewels of spiral formulations in exquisite 3D color formations, that method by which the solution was found was not iterated. This chapter begins by showing how it is possible to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  30. ¿ES LA MATEMÁTICA LA NOMOGONÍA DE LA CONCIENCIA? REFLEXIONES ACERCA DEL ORIGEN DE LA CONCIENCIA Y EL PLATONISMO MATEMÁTICO DE ROGER PENROSE / Is Mathematics the “nomogony” of Consciousness? Reflections on the origin of consciousness and mathematical Platonism of Roger Penrose.Miguel Acosta - 2016 - Naturaleza y Libertad. Revista de Estudios Interdisciplinares 7:15-39.
    Al final de su libro “La conciencia inexplicada”, Juan Arana señala que la nomología, explicación según las leyes de la naturaleza, requiere de una nomogonía, una consideración del origen de las leyes. Es decir, que el orden que observamos en el mundo natural requiere una instancia previa que ponga ese orden específico. Sabemos que desde la revolución científica la mejor manera de explicar dicha nomología ha sido mediante las matemáticas. Sin embargo, en las últimas décadas se han presentado algunas propuestas (...)
    Download  
     
    Export citation  
     
    Bookmark  
  31. Three Dogmas of First-Order Logic and some Evidence-based Consequences for Constructive Mathematics of differentiating between Hilbertian Theism, Brouwerian Atheism and Finitary Agnosticism.Bhupinder Singh Anand - manuscript
    We show how removing faith-based beliefs in current philosophies of classical and constructive mathematics admits formal, evidence-based, definitions of constructive mathematics; of a constructively well-defined logic of a formal mathematical language; and of a constructively well-defined model of such a language. -/- We argue that, from an evidence-based perspective, classical approaches which follow Hilbert's formal definitions of quantification can be labelled `theistic'; whilst constructive approaches based on Brouwer's philosophy of Intuitionism can be labelled `atheistic'. -/- We then adopt (...)
    Download  
     
    Export citation  
     
    Bookmark  
  32. A Critique of Humean and Anti-Humean Metaphysics of Cause and Law - final version.Benjamin Smart - manuscript
    Metaphysicians play an important role in our understanding of the universe. In recent years, physicists have focussed on finding accurate mathematical formalisms of the evolution of our physical system - if a metaphysician can uncover the metaphysical underpinnings of these formalisms; that is, why these formalisms seem to consistently map the universe, then our understanding of the world and the things in it is greatly enhanced. Science, then, plays a very important role in our project, as the best scientific formalisms (...)
    Download  
     
    Export citation  
     
    Bookmark  
  33. Mathematization in Synthetic Biology: Analogies, Templates, and Fictions.Andrea Loettgers & Tarja Knuuttila - 2017 - In Martin Carrier & Johannes Lenhard (eds.), Mathematics as a Tool: Tracing New Roles of Mathematics in the Sciences. Springer Verlag.
    In his famous article “The Unreasonable Effectiveness of Mathematics in the Natural Sciences” Eugen Wigner argues for a unique tie between mathematics and physics, invoking even religious language: “The miracle of the appropriateness of the language of mathematics for the formulation of the laws of physics is a wonderful gift which we neither understand nor deserve”. The possible existence of such a unique match between mathematics and physics has been extensively discussed by philosophers and historians (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  34. The Conceptions of Self-Evidence in the Finnis Reconstruction of Natural Law.Kevin Lee - 2020 - St. Mary's Law Journal 51 (2):414-470.
    Finnis claims that his theory proceeds from seven basic principles of practical reason that are self-evidently true. While much has been written about the claim of self-evidence, this article considers it in relation to the rigorous claims of logic and mathematics. It argues that when considered in this light, Finnis equivocates in his use of the concept of self-evidence between the realist Thomistic conception and a purely formal, modern symbolic conception. Given his respect for the modern positivist separation of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  35. Space, Pure Intuition, and Laws in the Metaphysical Foundations.James Messina - manuscript
    I am interested in the use Kant makes of the pure intuition of space, and of properties and principles of space and spaces (i.e. figures, like spheres and lines), in the special metaphysical project of MAN. This is a large topic, so I will focus here on an aspect of it: the role of these things in his treatment of some of the laws of matter treated in the Dynamics and Mechanics Chapters. In MAN and other texts, Kant speaks (...)
    Download  
     
    Export citation  
     
    Bookmark  
  36. Frege meets Belnap: Basic Law V in a Relevant Logic.Shay Logan & Francesca Boccuni - 2024 - In Andrew Tedder, Shawn Standefer & Igor Sedlar (eds.), New Directions in Relevant Logic. Springer. pp. 381-404.
    Abstractionism in the philosophy of mathematics aims at deriving large fragments of mathematics by combining abstraction principles (i.e. the abstract objects $\S e_1, \S e_2$, are identical if, and only if, an equivalence relation $Eq_\S$ holds between the entities $e_1, e_2$) with logic. Still, as highlighted in work on the semantics for relevant logics, there are different ways theories might be combined. In exactly what ways must logic and abstraction be combined in order to get interesting mathematics? (...)
    Download  
     
    Export citation  
     
    Bookmark  
  37. Probability of immortality and God’s existence. A mathematical perspective.Jesús Sánchez - manuscript
    What are the probabilities that this universe is repeated exactly the same with you in it again? Is God invented by human imagination or is the result of human intuition? The intuition that the same laws/mechanisms (evolution, stability winning probability) that have created something like the human being capable of self-awareness and controlling its surroundings, could create a being capable of controlling all what it exists? Will be the characteristics of the next universes random or tend to something? All (...)
    Download  
     
    Export citation  
     
    Bookmark  
  38. (1 other version)Not so distinctively mathematical explanations: topology and dynamical systems.Aditya Jha, Douglas Campbell, Clemency Montelle & Phillip L. Wilson - 2022 - Synthese 200 (3):1-40.
    So-called ‘distinctively mathematical explanations’ (DMEs) are said to explain physical phenomena, not in terms of contingent causal laws, but rather in terms of mathematical necessities that constrain the physical system in question. Lange argues that the existence of four or more equilibrium positions of any double pendulum has a DME. Here we refute both Lange’s claim itself and a strengthened and extended version of the claim that would pertain to any n-tuple pendulum system on the ground that such explanations (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  39. Fundamentality, Effectiveness, and Objectivity of Gauge Symmetries.Aldo Filomeno - 2016 - International Studies in the Philosophy of Science 30 (1):19-37.
    Much recent philosophy of physics has investigated the process of symmetry breaking. Here, I critically assess the alleged symmetry restoration at the fundamental scale. I draw attention to the contingency that gauge symmetries exhibit, that is, the fact that they have been chosen from an infinite space of possibilities. I appeal to this feature of group theory to argue that any metaphysical account of fundamental laws that expects symmetry restoration up to the fundamental level is not fully satisfactory. This (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  40. Hume’s Fork and Mixed Mathematics.Matias Slavov - 2017 - Archiv für Geschichte der Philosophie 99 (1):102-119.
    Given the sharp distinction that follows from Hume’s Fork, the proper epistemic status of propositions of mixed mathematics seems to be a mystery. On the one hand, mathematical propositions concern the relation of ideas. They are intuitive and demonstratively certain. On the other hand, propositions of mixed mathematics, such as in Hume’s own example, the law of conservation of momentum, are also matter of fact propositions. They concern causal relations between species of objects, and, in this sense, they (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  41. Halfway Up To the Mathematical Infinity I: On the Ontological & Epistemic Sustainability of Georg Cantor’s Transfinite Design.Edward G. Belaga - manuscript
    Georg Cantor was the genuine discoverer of the Mathematical Infinity, and whatever he claimed, suggested, or even surmised should be taken seriously -- albeit not necessary at its face value. Because alongside his exquisite in beauty ordinal construction and his fundamental powerset description of the continuum, Cantor has also left to us his obsessive presumption that the universe of sets should be subjected to laws similar to those governing the set of natural numbers, including the universal principles of cardinal (...)
    Download  
     
    Export citation  
     
    Bookmark  
  42. Natural law ethics in disciplines abstract to applied.James Franklin - manuscript
    Language suggestive of natural law ethics, similar to the Catholic understanding of ethical foundations, is prevalent in a number of disciplines. But it does not always issue in a full-blooded commitment to objective ethics, being undermined by relativist ethical currents. In law and politics, there is a robust conception of "human rights", but it has become somewhat detached from both the worth of persons in themselves and from duties. In education, talk of "values" imports ethical considerations but hints at a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  43. Existence, consciousness, and ethics: Extending the Mathematical Universe Hypothesis.Mads J. Damgaard - manuscript
    We give some arguments for why the Mathematical Universe Hypothesis (MUH) might be too restrictive in its assertions of what can exist, and that the universe/multiverse might be formed by more than what can be expressed mathematically. In particular, we show a thought experiment which indicates that the principle of materialism in general is an inadequate hypothesis of how consciousness appears. Instead we propose a novel approach to solving the problem of consciousness, which is to hypothesize that each universe might (...)
    Download  
     
    Export citation  
     
    Bookmark  
  44. Thoughts on Artificial Intelligence and the Origin of Life Resulting from General Relativity, with Neo-Darwinist Reference to Human Evolution and Mathematical Reference to Cosmology.Rodney Bartlett - manuscript
    When this article was first planned, writing was going to be exclusively about two things - the origin of life and human evolution. But it turned out to be out of the question for the author to restrict himself to these biological and anthropological topics. A proper understanding of them required answering questions like “What is the nature of the universe – the home of life – and how did it originate?”, “How can time travel be removed from fantasy and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  45. Gödel's incompleteness theorems, free will and mathematical thought.Solomon Feferman - 2011 - In Richard Swinburne (ed.), Free Will and Modern Science. New York: OUP/British Academy.
    The determinism-free will debate is perhaps as old as philosophy itself and has been engaged in from a great variety of points of view including those of scientific, theological, and logical character. This chapter focuses on two arguments from logic. First, there is an argument in support of determinism that dates back to Aristotle, if not farther. It rests on acceptance of the Law of Excluded Middle, according to which every proposition is either true or false, no matter whether the (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  46. Modality and constitution in distinctively mathematical explanations.Mark Povich - 2020 - European Journal for Philosophy of Science 10 (3):1-10.
    Lange argues that some natural phenomena can be explained by appeal to mathematical, rather than natural, facts. In these “distinctively mathematical” explanations, the core explanatory facts are either modally stronger than facts about ordinary causal law or understood to be constitutive of the physical task or arrangement at issue. Craver and Povich argue that Lange’s account of DME fails to exclude certain “reversals”. Lange has replied that his account can avoid these directionality charges. Specifically, Lange argues that in legitimate DMEs, (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  47. Fundamental Nomic Vagueness.Eddy Keming Chen - 2022 - Philosophical Review 131 (1):1-49.
    If there are fundamental laws of nature, can they fail to be exact? In this paper, I consider the possibility that some fundamental laws are vague. I call this phenomenon 'fundamental nomic vagueness.' I characterize fundamental nomic vagueness as the existence of borderline lawful worlds and the presence of several other accompanying features. Under certain assumptions, such vagueness prevents the fundamental physical theory from being completely expressible in the mathematical language. Moreover, I suggest that such vagueness can be (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  48. From successful measurement to the birth of a law: Disentangling coordination in Ohm's scientific practice.Michele Luchetti - 2020 - Studies in History and Philosophy of Science Part A 84 (C):119-131.
    In this paper, I argue for a distinction between two scales of coordination in scientific inquiry, through which I reassess Georg Simon Ohm’s work on conductivity and resistance. Firstly, I propose to distinguish between measurement coordination, which refers to the specific problem of how to justify the attribution of values to a quantity by using a certain measurement procedure, and general coordination, which refers to the broader issue of justifying the representation of an empirical regularity by means of abstract mathematical (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  49. Buying Logical Principles with Ontological Coin: The Metaphysical Lessons of Adding epsilon to Intuitionistic Logic.David DeVidi & Corey Mulvihill - 2017 - IfCoLog Journal of Logics and Their Applications 4 (2):287-312.
    We discuss the philosophical implications of formal results showing the con- sequences of adding the epsilon operator to intuitionistic predicate logic. These results are related to Diaconescu’s theorem, a result originating in topos theory that, translated to constructive set theory, says that the axiom of choice (an “existence principle”) implies the law of excluded middle (which purports to be a logical principle). As a logical choice principle, epsilon allows us to translate that result to a logical setting, where one can (...)
    Download  
     
    Export citation  
     
    Bookmark  
  50. The Physics of God and the Quantum Gravity Theory of Everything.James Redford - 2021 - In The Physics of God and the Quantum Gravity Theory of Everything: And Other Selected Works. Chișinău, Moldova: Eliva Press. pp. 1-186.
    Analysis is given of the Omega Point cosmology, an extensively peer-reviewed proof (i.e., mathematical theorem) published in leading physics journals by professor of physics and mathematics Frank J. Tipler, which demonstrates that in order for the known laws of physics to be mutually consistent, the universe must diverge to infinite computational power as it collapses into a final cosmological singularity, termed the Omega Point. The theorem is an intrinsic component of the Feynman-DeWitt-Weinberg quantum gravity/Standard Model Theory of Everything (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
1 — 50 / 959