Results for 'Quantum probability'

920 found
Order:
  1. On the Connection Between Quantum Probability and Geometry.Federico Holik - 2021 - Quanta 10 (1):1-14.
    We discuss the mathematical structures that underlie quantum probabilities. More specifically, we explore possible connections between logic, geometry and probability theory. We propose an interpretation that generalizes the method developed by R. T. Cox to the quantum logical approach to physical theories. We stress the relevance of developing a geometrical interpretation of quantum mechanics.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  2.  95
    Quantum Probability Amplitudes as Fractions of the Planck Frequency.Matheus P. Lobo - 2024 - Open Journal of Mathematics and Physics 6 (283).
    I conjecture that the probability amplitudes of a quantum state are fractions of the Planck frequency, stemming from the rich dynamics at the Planck scale. This offers a means to indirectly measure the fundamental properties of quantum spacetime and potentially resolves the measurement problem.
    Download  
     
    Export citation  
     
    Bookmark  
  3. Bell’s Theorem, Quantum Probabilities, and Superdeterminism.Eddy Keming Chen - 2022 - In Eleanor Knox & Alastair Wilson (eds.), The Routledge Companion to Philosophy of Physics. London, UK: Routledge.
    In this short survey article, I discuss Bell’s theorem and some strategies that attempt to avoid the conclusion of non-locality. I focus on two that intersect with the philosophy of probability: (1) quantum probabilities and (2) superdeterminism. The issues they raised not only apply to a wide class of no-go theorems about quantum mechanics but are also of general philosophical interest.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  4. On quantum probability (о квантовой вероятности).Francois-Igor Pris - 2022 - ФИЛОСОФИЯ НАУКИ 3 (94):46-65.
    Download  
     
    Export citation  
     
    Bookmark  
  5. (1 other version)Quantum mechanics over sets: a pedagogical model with non-commutative finite probability theory as its quantum probability calculus.David Ellerman - 2017 - Synthese (12).
    This paper shows how the classical finite probability theory (with equiprobable outcomes) can be reinterpreted and recast as the quantum probability calculus of a pedagogical or toy model of quantum mechanics over sets (QM/sets). There have been several previous attempts to develop a quantum-like model with the base field of ℂ replaced by ℤ₂. Since there are no inner products on vector spaces over finite fields, the problem is to define the Dirac brackets and the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  6. On classical finite probability theory as a quantum probability calculus.David Ellerman - manuscript
    This paper shows how the classical finite probability theory (with equiprobable outcomes) can be reinterpreted and recast as the quantum probability calculus of a pedagogical or "toy" model of quantum mechanics over sets (QM/sets). There are two parts. The notion of an "event" is reinterpreted from being an epistemological state of indefiniteness to being an objective state of indefiniteness. And the mathematical framework of finite probability theory is recast as the quantum probability calculus (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7. A discussion on the origin of quantum probabilities.Federico Holik, Manuel Sáenz & Angelo Plastino - 2014 - Annals of Physics 340 (1):293-310.
    We study the origin of quantum probabilities as arising from non-Boolean propositional-operational structures. We apply the method developed by Cox to non distributive lattices and develop an alternative formulation of non-Kolmogorovian probability measures for quantum mechanics. By generalizing the method presented in previous works, we outline a general framework for the deduction of probabilities in general propositional structures represented by lattices (including the non-distributive case).
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  8. Subjective probability and quantum certainty.Carlton M. Caves, Christopher A. Fuchs & Rüdiger Schack - 2007 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (2):255-274.
    In the Bayesian approach to quantum mechanics, probabilities—and thus quantum states—represent an agent’s degrees of belief, rather than corresponding to objective properties of physical systems. In this paper we investigate the concept of certainty in quantum mechanics. Particularly, we show how the probability-1 predictions derived from pure quantum states highlight a fundamental difference between our Bayesian approach, on the one hand, and Copenhagen and similar interpretations on the other. We first review the main arguments for (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  9. Quantum Mechanical EPRBA covariance and classical probability.Han Geurdes - manuscript
    Contrary to Bell’s theorem it is demonstrated that with the use of classical probability theory the quantum correlation can be approximated. Hence, one may not conclude from experiment that all local hidden variable theories are ruled out by a violation of inequality result.
    Download  
     
    Export citation  
     
    Bookmark  
  10.  61
    The Ontic Probability Interpretation of Quantum Theory – Part IV: How to Complete Special Relativity and Merge it with Quantum Theory.Felix Alba-Juez - manuscript
    We have ignored for a century that the incompleteness of Quantum Theory (QT) is inseparable from the incompleteness of Special Relativity (RT). In this article, I claim that the latter has been gravely incomplete vis à vis the former from 1927 until today. But completing RT in the light of QT is not as simple as merely postulating nonlocality and stochasticity as “elements of reality” (which is de facto done by most physicists and pragmatic philosophers); otherwise, RT would not (...)
    Download  
     
    Export citation  
     
    Bookmark  
  11. Negative and complex probability in quantum information.Vasil Penchev - 2012 - Philosophical Alternatives 21 (1):63-77.
    “Negative probability” in practice. Quantum Communication: Very small phase space regions turn out to be thermodynamically analogical to those of superconductors. Macro-bodies or signals might exist in coherent or entangled state. Such physical objects having unusual properties could be the basis of quantum communication channels or even normal physical ones … Questions and a few answers about negative probability: Why does it appear in quantum mechanics? It appears in phase-space formulated quantum mechanics; next, in (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  12.  86
    Quantum Theory from Probability Conservation.Mehran Shaghaghi - manuscript
    In this work, we derive the standard formalism of quantum theory by analyzing the behavior of single-variable systems under measurements. These systems, with minimal information capacity, exhibit indeterministic behavior in independent measurements while yielding probabilistically predictable outcomes in dependent measurements. Enforcing probability conservation in the probability transformations leads to the derivation of the Born rule, which subsequently gives rise to the Hilbert space structure and the Schrödinger equation. Additionally, we show that preparing physical systems in coherent states (...)
    Download  
     
    Export citation  
     
    Bookmark  
  13. Imprecise Probabilities in Quantum Mechanics.Stephan Hartmann - 2015 - In Colleen E. Crangle, Adolfo García de la Sienra & Helen E. Longino (eds.), Foundations and Methods From Mathematics to Neuroscience: Essays Inspired by Patrick Suppes. Stanford Univ Center for the Study. pp. 77-82.
    In his entry on "Quantum Logic and Probability Theory" in the Stanford Encyclopedia of Philosophy, Alexander Wilce (2012) writes that "it is uncontroversial (though remarkable) the formal apparatus quantum mechanics reduces neatly to a generalization of classical probability in which the role played by a Boolean algebra of events in the latter is taken over the 'quantum logic' of projection operators on a Hilbert space." For a long time, Patrick Suppes has opposed this view (see, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  14. Time's Arrow in a Quantum Universe: On the Status of Statistical Mechanical Probabilities.Eddy Keming Chen - 2020 - In Valia Allori (ed.), Statistical Mechanics and Scientific Explanation: Determinism, Indeterminism and Laws of Nature. Singapore: World Scientific. pp. 479–515.
    In a quantum universe with a strong arrow of time, it is standard to postulate that the initial wave function started in a particular macrostate---the special low-entropy macrostate selected by the Past Hypothesis. Moreover, there is an additional postulate about statistical mechanical probabilities according to which the initial wave function is a ''typical'' choice in the macrostate. Together, they support a probabilistic version of the Second Law of Thermodynamics: typical initial wave functions will increase in entropy. Hence, there are (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  15. Probability and quantum foundation.Han Geurdes - manuscript
    A classical probabilistics explanation for a typical quantum effect in Hardy's paradox is demonstrated.
    Download  
     
    Export citation  
     
    Bookmark  
  16. Self-locating Uncertainty and the Origin of Probability in Everettian Quantum Mechanics.Charles T. Sebens & Sean M. Carroll - 2016 - British Journal for the Philosophy of Science (1):axw004.
    A longstanding issue in attempts to understand the Everett (Many-Worlds) approach to quantum mechanics is the origin of the Born rule: why is the probability given by the square of the amplitude? Following Vaidman, we note that observers are in a position of self-locating uncertainty during the period between the branches of the wave function splitting via decoherence and the observer registering the outcome of the measurement. In this period it is tempting to regard each branch as equiprobable, (...)
    Download  
     
    Export citation  
     
    Bookmark   54 citations  
  17. The Ontic Probability Interpretation of Quantum Theory - Part I: The Meaning of Einstein's Incompleteness Claim (2nd edition).Felix Alba-Juez - manuscript
    Ignited by Einstein and Bohr a century ago, the philosophical struggle about Reality is yet unfinished, with no signs of a swift resolution. Despite vast technological progress fueled by the iconic Einstein/Podolsky/Rosen paper (EPR) [1] [2] [3], the intricate link between ontic and epistemic aspects of Quantum Theory (QT) has greatly hindered our grip on Reality and further progress in physical theory. Fallacies concealed by tortuous logical negations made EPR comprehension much harder than it could have been had Einstein (...)
    Download  
     
    Export citation  
     
    Bookmark  
  18. Non-Kolmogorovian Probabilities and Quantum Technologies.Federico Holik - 2023 - Entropy 24 (11):1666.
    In this work, we focus on the philosophical aspects and technical challenges that underlie the axiomatization of the non-Kolmogorovian probability framework, in connection with the problem of quantum contextuality. This fundamental feature of quantum theory has received a lot of attention recently, given that it might be connected to the speed-up of quantum computers—a phenomenon that is not fully understood. Although this problem has been extensively studied in the physics community, there are still many philosophical questions (...)
    Download  
     
    Export citation  
     
    Bookmark  
  19. The Ontic Probability Interpretation of Quantum Theory - Part II: Einstein's Incompleteness/Nonlocality Dilemma (2nd edition).Felix Alba-Juez - manuscript
    After identifying in Part I [1] a conceptual confusion (TCC), a Reality preconception (TRP1), and a fallacious dichotomy (TFD), the famous EPR/EPRB [2] [3] [4] [5] [6] argument for correlated ‘particles’ is now studied in the light of the Ontic Probability Interpretation of Quantum Theory (QT/TOPI). Another Reality preconception (TRP2) is found, showing that EPR used and ignored QT predictions in a single paralogism. Employing TFD and TRP2, EPR unveiled a contradiction veiled in its premises. By removing nonlocality (...)
    Download  
     
    Export citation  
     
    Bookmark  
  20. Probability Theory with Superposition Events.David Ellerman - manuscript
    In finite probability theory, events are subsets S⊆U of the outcome set. Subsets can be represented by 1-dimensional column vectors. By extending the representation of events to two dimensional matrices, we can introduce "superposition events." Probabilities are introduced for classical events, superposition events, and their mixtures by using density matrices. Then probabilities for experiments or `measurements' of all these events can be determined in a manner exactly like in quantum mechanics (QM) using density matrices. Moreover the transformation of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  21. The Ontic Probability Interpretation of Quantum Theory - Part III: Schrödinger’s Cat and the ‘Basis’ and ‘Measurement’ Pseudo-Problems (2nd edition).Felix Alba-Juez - manuscript
    Most of us are either philosophically naïve scientists or scientifically naïve philosophers, so we misjudged Schrödinger’s “very burlesque” portrait of Quantum Theory (QT) as a profound conundrum. The clear signs of a strawman argument were ignored. The Ontic Probability Interpretation (TOPI) is a metatheory: a theory about the meaning of QT. Ironically, equating Reality with Actuality cannot explain actual data, justifying the century-long philosophical struggle. The actual is real but not everything real is actual. The ontic character of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  22. Logic, Geometry And Probability Theory.Federico Holik - 2013 - SOP Transactions On Theoretical Physics 1:128 - 137.
    We discuss the relationship between logic, geometry and probability theory under the light of a novel approach to quantum probabilities which generalizes the method developed by R. T. Cox to the quantum logical approach to physical theories.
    Download  
     
    Export citation  
     
    Bookmark  
  23. Quantum Mechanics in a Time-Asymmetric Universe: On the Nature of the Initial Quantum State.Eddy Keming Chen - 2021 - British Journal for the Philosophy of Science 72 (4):1155–1183.
    In a quantum universe with a strong arrow of time, we postulate a low-entropy boundary condition to account for the temporal asymmetry. In this paper, I show that the Past Hypothesis also contains enough information to simplify the quantum ontology and define a unique initial condition in such a world. First, I introduce Density Matrix Realism, the thesis that the quantum universe is described by a fundamental density matrix that represents something objective. This stands in sharp contrast (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  24. Does chance hide necessity ? A reevaluation of the debate ‘determinism - indeterminism’ in the light of quantum mechanics and probability theory.Louis Vervoort - 2013 - Dissertation, University of Montreal
    In this text the ancient philosophical question of determinism (“Does every event have a cause ?”) will be re-examined. In the philosophy of science and physics communities the orthodox position states that the physical world is indeterministic: quantum events would have no causes but happen by irreducible chance. Arguably the clearest theorem that leads to this conclusion is Bell’s theorem. The commonly accepted ‘solution’ to the theorem is ‘indeterminism’, in agreement with the Copenhagen interpretation. Here it is recalled that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25. Quantum propensities in the brain cortex and free will.Danko D. Georgiev - 2021 - Biosystems 208:104474.
    Capacity of conscious agents to perform genuine choices among future alternatives is a prerequisite for moral responsibility. Determinism that pervades classical physics, however, forbids free will, undermines the foundations of ethics, and precludes meaningful quantification of personal biases. To resolve that impasse, we utilize the characteristic indeterminism of quantum physics and derive a quantitative measure for the amount of free will manifested by the brain cortical network. The interaction between the central nervous system and the surrounding environment is shown (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  26. How Quantum Theory Helps Us Explain.Richard Healey - 2012 - British Journal for the Philosophy of Science (1):axt031.
    I offer an account of how the quantum theory we have helps us explain so much. The account depends on a pragmatist interpretation of the theory: this takes a quantum state to serve as a source of sound advice to physically situated agents on the content and appropriate degree of belief about matters concerning which they are currently inevitably ignorant. The general account of how to use quantum states and probabilities to explain otherwise puzzling regularities is then (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  27. Probability in deterministic physics.J. T. Ismael - 2009 - Journal of Philosophy 106 (2):89-108.
    The role of probability is one of the most contested issues in the interpretation of contemporary physics. In this paper, I’ll be reevaluating some widely held assumptions about where and how probabilities arise. Larry Sklar voices the conventional wisdom about probability in classical physics in a piece in the Stanford Online Encyclopedia of Philosophy, when he writes that “Statistical mechanics was the first foundational physical theory in which probabilistic concepts and probabilistic explanation played a fundamental role.” And the (...)
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  28. A Quantum-Bayesian Route to Quantum-State Space.Christopher A. Fuchs & Rüdiger Schack - 2011 - Foundations of Physics 41 (3):345-356.
    In the quantum-Bayesian approach to quantum foundations, a quantum state is viewed as an expression of an agent’s personalist Bayesian degrees of belief, or probabilities, concerning the results of measurements. These probabilities obey the usual probability rules as required by Dutch-book coherence, but quantum mechanics imposes additional constraints upon them. In this paper, we explore the question of deriving the structure of quantum-state space from a set of assumptions in the spirit of quantum (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  29. Quantum mechanics in terms of realism.Arthur Jabs - 2017 - arXiv.Org.
    We expound an alternative to the Copenhagen interpretation of the formalism of nonrelativistic quantum mechanics. The basic difference is that the new interpretation is formulated in the language of epistemological realism. It involves a change in some basic physical concepts. The ψ function is no longer interpreted as a probability amplitude of the observed behaviour of elementary particles but as an objective physical field representing the particles themselves. The particles are thus extended objects whose extension varies in time (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  30. Information, physics, quantum: the search for links.John Archibald Wheeler - 1989 - In Wheeler John Archibald (ed.), Proceedings III International Symposium on Foundations of Quantum Mechanics. pp. 354-358.
    This report reviews what quantum physics and information theory have to tell us about the age-old question, How come existence? No escape is evident from four conclusions: (1) The world cannot be a giant machine, ruled by any preestablished continuum physical law. (2) There is no such thing at the microscopic level as space or time or spacetime continuum. (3) The familiar probability function or functional, and wave equation or functional wave equation, of standard quantum theory provide (...)
    Download  
     
    Export citation  
     
    Bookmark   126 citations  
  31. Interpretive analogies between quantum and statistical mechanics.C. D. McCoy - 2020 - European Journal for Philosophy of Science 10 (1):9.
    The conspicuous similarities between interpretive strategies in classical statistical mechanics and in quantum mechanics may be grounded on their employment of common implementations of probability. The objective probabilities which represent the underlying stochasticity of these theories can be naturally associated with three of their common formal features: initial conditions, dynamics, and observables. Various well-known interpretations of the two theories line up with particular choices among these three ways of implementing probability. This perspective has significant application to debates (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  32. Quantum mechanics unscrambled.Jean-Michel Delhotel - 2014
    Is quantum mechanics about ‘states’? Or is it basically another kind of probability theory? It is argued that the elementary formalism of quantum mechanics operates as a well-justified alternative to ‘classical’ instantiations of a probability calculus. Its providing a general framework for prediction accounts for its distinctive traits, which one should be careful not to mistake for reflections of any strange ontology. The suggestion is also made that quantum theory unwittingly emerged, in Schrödinger’s formulation, as (...)
    Download  
     
    Export citation  
     
    Bookmark  
  33. Quantum-like non-separability of concept combinations, emergent associates and abduction.P. Bruza, K. Kitto, B. Ramm, L. Sitbon & D. Song - 2012 - Logic Journal of the IGPL 20 (2):445-457.
    Consider the concept combination ‘pet human’. In word association experiments, human subjects produce the associate ‘slave’ in relation to this combination. The striking aspect of this associate is that it is not produced as an associate of ‘pet’, or ‘human’ in isolation. In other words, the associate ‘slave’ seems to be emergent. Such emergent associations sometimes have a creative character and cognitive science is largely silent about how we produce them. Departing from a dimensional model of human conceptual space, this (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  34. Standard Quantum Theory Derived from First Physical Principles.Mehran Shaghaghi - manuscript
    The mathematical formalism of quantum theory has been established for nearly a century, yet its physical foundations remain elusive. In recent decades, connections between quantum theory and information theory have garnered increasing attention. This study presents a physical derivation of the mathematical formalism quantum theory based on information-theoretic considerations in physical systems. We postulate that quantum systems are characterized by single independent adjustable variables. Utilizing this physical postulate along with the conservation of total probability, we (...)
    Download  
     
    Export citation  
     
    Bookmark  
  35. The Quantum Revolution in Philosophy. [REVIEW]Eddy Keming Chen - 2020 - Philosophical Review 129 (2):302-308.
    In this thought-provoking book, Richard Healey proposes a new interpretation of quantum theory inspired by pragmatist philosophy. Healey puts forward the interpretation as an alternative to realist quantum theories on the one hand such as Bohmian mechanics, spontaneous collapse theories, and many-worlds interpretations, which are different proposals for describing what the quantum world is like and what the basic laws of physics are, and non-realist interpretations on the other hand such as quantum Bayesianism, which proposes to (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  36. Many- Worlds Interpretation and Quantum Entanglement.Michele Caponigro - manuscript
    We argue from conceptual point of view the relationship between quantum entanglement and many-worlds interpretation of quantum mechanics, the debate is still open, but we retain the objective Bayesian interpretation of quantum probability could be an interesting approach to solve this fundamental question.
    Download  
     
    Export citation  
     
    Bookmark  
  37. The Quantum Complexity behind Quantum Reality.Graeme Robertson - manuscript
    The talk is called ‘The QUANTUM COMPLEXITY behind Quantum Reality’. It is divided into 3 parts: an outline of the essentials of quantum theory, a discussion of some glaring problems of interpretation, and my shocking philosophical conclusions.
    Download  
     
    Export citation  
     
    Bookmark  
  38. Quantum Indeterminacy and Libertarian Panpsychism.M. Masi - 2024 - Mind and Matter 22 (1):31-50.
    The “consequence argument”, together with the “luck objection”, which are summed up by the “standard argument against free will”, state that if our volition were dependent on physical causally indeterministic processes, our actions would lack control and, thereby, result in random behavior that would be a mere matter of luck and chance. In particular, quantum indeterminacy is supposed to be of no use in support of libertarian agent-causation theories because any volitional act interfering with the probability distributions de (...)
    Download  
     
    Export citation  
     
    Bookmark  
  39. Quantum Set Theory Extending the Standard Probabilistic Interpretation of Quantum Theory.Masanao Ozawa - 2016 - New Generation Computing 34 (1):125-152.
    The notion of equality between two observables will play many important roles in foundations of quantum theory. However, the standard probabilistic interpretation based on the conventional Born formula does not give the probability of equality between two arbitrary observables, since the Born formula gives the probability distribution only for a commuting family of observables. In this paper, quantum set theory developed by Takeuti and the present author is used to systematically extend the standard probabilistic interpretation of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  40. (1 other version)Quantum Physics: an overview of a weird world: A primer on the conceptual foundations of quantum physics.Marco Masi - 2019 - Indy Edition.
    This is the first book in a two-volume series. The present volume introduces the basics of the conceptual foundations of quantum physics. It appeared first as a series of video lectures on the online learning platform Udemy.]There is probably no science that is as confusing as quantum theory. There's so much misleading information on the subject that for most people it is very difficult to separate science facts from pseudoscience. The goal of this book is to make you (...)
    Download  
     
    Export citation  
     
    Bookmark  
  41. Quantum Mechanical Reality: Entanglement and Decoherence.Avijit Lahiri - manuscript
    We look into the ontology of quantum theory as distinct from that of the classical theory in the sciences. Theories carry with them their own ontology while the metaphysics may remain the same in the background. We follow a broadly Kantian tradition, distinguishing between the noumenal and phenomenal realities where the former is independent of our perception while the latter is assembled from the former by means of fragmentary bits of interpretation. Theories do not tell us how the noumenal (...)
    Download  
     
    Export citation  
     
    Bookmark  
  42.  58
    In Defense of Quantum Dualism.John David McAlpin & Michael D. Cook - manuscript
    This paper explores the theoretical compatibility of substance dualism with a physicalist framework, challenging the notion that physicalism inherently precludes dualism. Acknowledging foundational physicalist principles like reductionism, weakly-emergent consciousness, conservation laws, and the limited impact of quantum indeterminacy, we challenge the conclusion that the universe is thus causally closed. Instead, we propose a speculative model where an extra-physical entity (akin to a “soul”) might intentionally influence quantum outcomes, and examine it as a possible mechanism for libertarian free will. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  43. Origin of Quantum Mechanical Results and Life: A Clue from Quantum Biology.Biswaranjan Dikshit - 2018 - Neuroquantology 16 (4):26-33.
    Although quantum mechanics can accurately predict the probability distribution of outcomes in an ensemble of identical systems, it cannot predict the result of an individual system. All the local and global hidden variable theories attempting to explain individual behavior have been proved invalid by experiments (violation of Bell’s inequality) and theory. As an alternative, Schrodinger and others have hypothesized existence of free will in every particle which causes randomness in individual results. However, these free will theories have failed (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  44. Quantum mechanics as a deterministic theory of a continuum of worlds.Kim Joris Boström - 2015 - Quantum Studies: Mathematics and Foundations 2 (3):315-347.
    A non-relativistic quantum mechanical theory is proposed that describes the universe as a continuum of worlds whose mutual interference gives rise to quantum phenomena. A logical framework is introduced to properly deal with propositions about objects in a multiplicity of worlds. In this logical framework, the continuum of worlds is treated in analogy to the continuum of time points; both “time” and “world” are considered as mutually independent modes of existence. The theory combines elements of Bohmian mechanics and (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  45. The 'Noncausal Causality' of Quantum Information.Vasil Penchev - 2021 - Philosophy of Science eJournal (Elsevier: SSRN) 14 (45):1-7.
    The paper is concentrated on the special changes of the conception of causality from quantum mechanics to quantum information meaning as a background the revolution implemented by the former to classical physics and science after Max Born’s probabilistic reinterpretation of wave function. Those changes can be enumerated so: (1) quantum information describes the general case of the relation of two wave functions, and particularly, the causal amendment of a single one; (2) it keeps the physical description to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  46. Quantity in Quantum Mechanics and the Quantity of Quantum Information.Vasil Penchev - 2021 - Philosophy of Science eJournal (Elsevier: SSRN) 14 (47):1-10.
    The paper interprets the concept “operator in the separable complex Hilbert space” (particalry, “Hermitian operator” as “quantity” is defined in the “classical” quantum mechanics) by that of “quantum information”. As far as wave function is the characteristic function of the probability (density) distribution for all possible values of a certain quantity to be measured, the definition of quantity in quantum mechanics means any unitary change of the probability (density) distribution. It can be represented as a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  47. Measurement and Quantum Dynamics in the Minimal Modal Interpretation of Quantum Theory.Jacob A. Barandes & David Kagan - 2020 - Foundations of Physics 50 (10):1189-1218.
    Any realist interpretation of quantum theory must grapple with the measurement problem and the status of state-vector collapse. In a no-collapse approach, measurement is typically modeled as a dynamical process involving decoherence. We describe how the minimal modal interpretation closes a gap in this dynamical description, leading to a complete and consistent resolution to the measurement problem and an effective form of state collapse. Our interpretation also provides insight into the indivisible nature of measurement—the fact that you can't stop (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  48. Quantum-like models cannot account for the conjunction fallacy.Thomas Boyer-Kassem, Sébastien Duchêne & Eric Guerci - 2016 - Theory and Decision 81 (4):479-510.
    Human agents happen to judge that a conjunction of two terms is more probable than one of the terms, in contradiction with the rules of classical probabilities—this is the conjunction fallacy. One of the most discussed accounts of this fallacy is currently the quantum-like explanation, which relies on models exploiting the mathematics of quantum mechanics. The aim of this paper is to investigate the empirical adequacy of major quantum-like models which represent beliefs with quantum states. We (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  49. Heisenberg quantum mechanics, numeral set-theory and.Han Geurdes - manuscript
    In the paper we will employ set theory to study the formal aspects of quantum mechanics without explicitly making use of space-time. It is demonstrated that von Neuman and Zermelo numeral sets, previously efectively used in the explanation of Hardy’s paradox, follow a Heisenberg quantum form. Here monadic union plays the role of time derivative. The logical counterpart of monadic union plays the part of the Hamiltonian in the commutator. The use of numerals and monadic union in the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  50. Bimodal Quantum Theory.Saurav Dwivedi - manuscript
    Some variants of quantum theory theorize dogmatic "unimodal" states-of-being, and are based on hodge-podge classical-quantum language. They are based on ontic syntax, but pragmatic semantics. This error was termed semantic inconsistency [1]. Measurement seems to be central problem of these theories, and widely discussed in their interpretation. Copenhagen theory deviates from this prescription, which is modeled on experience. A complete quantum experiment is "bimodal". An experimenter creates the system-under-study in initial mode of experiment, and annihilates it in (...)
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 920