Results for 'Remarks on the Foundations of Mathematics'

942 found
Order:
  1. Wittgenstein on Gödelian 'Incompleteness', Proofs and Mathematical Practice: Reading Remarks on the Foundations of Mathematics, Part I, Appendix III, Carefully.Wolfgang Kienzler & Sebastian Sunday Grève - 2016 - In Sebastian Sunday Grève & Jakub Mácha (eds.), Wittgenstein and the Creativity of Language. Palgrave Macmillan. pp. 76-116.
    We argue that Wittgenstein’s philosophical perspective on Gödel’s most famous theorem is even more radical than has commonly been assumed. Wittgenstein shows in detail that there is no way that the Gödelian construct of a string of signs could be assigned a useful function within (ordinary) mathematics. — The focus is on Appendix III to Part I of Remarks on the Foundations of Mathematics. The present reading highlights the exceptional importance of this particular set of (...) and, more specifically, emphasises its refined composition and rigorous internal structure. (shrink)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  2. (1 other version)Wittgenstein on the Foundations of Mathematics.Andrew McLean-Inglis - 1992 - Dissertation, Oxford University
    In Part I, an attempt is made to survey the original source material on which any detailed assessment of Wittgenstein's remarks on the foundations of mathematics from his middle and later periods ought to be based. This survey is presented within the context of a sketch of Wittgenstein's biography, which also mentions some of the major developments in his thinking. In addition, certain main themes are emphasized; these have to do primarily with the Kantian aspects of Wittgenstein's (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3. Wittgenstein and the Status of Contradictions.Louis Caruana - 2004 - In Annalisa Coliva & Eva Picardi (eds.), Wittgenstein Today. Il poligrafo. pp. 223-232.
    Ludwig Wittgenstein, in the "Remarks on the Foundation of Mathematics", often refers to contradictions as deserving special study. He is said to have predicted that there will be mathematical investigations of calculi containing contradictions and that people will pride themselves on having emancipated themselves from consistency. This paper examines a way of taking this prediction seriously. It starts by demonstrating that the easy way of understanding the role of contradictions in a discourse, namely in terms of pure convention (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  4. Contradictions and falling bridges: what was Wittgenstein’s reply to Turing?Ásgeir Berg Matthíasson - 2020 - British Journal for the History of Philosophy 29 (3).
    In this paper, I offer a close reading of Wittgenstein's remarks on inconsistency, mostly as they appear in the Lectures on the Foundations of Mathematics. I focus especially on an objection to Wittgenstein's view given by Alan Turing, who attended the lectures, the so-called ‘falling bridges’-objection. Wittgenstein's position is that if contradictions arise in some practice of language, they are not necessarily fatal to that practice nor necessitate a revision of that practice. If we then assume that (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  5. Rule-following and the objectivity of proof.Cesare Cozzo - 2004 - In Annalisa Coliva & Eva Picardi (eds.), Wittgenstein Today. Il poligrafo. pp. 185--200.
    Ideas on meaning, rules and mathematical proofs abound in Wittgenstein’s writings. The undeniable fact that they are present together, sometimes intertwined in the same passage of Philosophical Investigations or Remarks on the Foundations of Mathematics, does not show, however, that the connection between these ideas is necessary or inextricable. The possibility remains, and ought to be checked, that they can be plausibly and consistently separated. I am going to examine two views detectable in Wittgenstein’s works: one about (...)
    Download  
     
    Export citation  
     
    Bookmark  
  6. Normativity and Mathematics: A Wittgensteinian Approach to the Study of Number.J. Robert Loftis - 1999 - Dissertation, Northwestern University
    I argue for the Wittgensteinian thesis that mathematical statements are expressions of norms, rather than descriptions of the world. An expression of a norm is a statement like a promise or a New Year's resolution, which says that someone is committed or entitled to a certain line of action. A expression of a norm is not a mere description of a regularity of human behavior, nor is it merely a descriptive statement which happens to entail a norms. The view can (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7. The foundations of mathematics from a historical viewpoint.Antonino Drago - 2015 - Epistemologia 38 (1):133-151.
    A new hypothesis on the basic features characterising the Foundations of Mathematics is suggested. By means of them the entire historical development of Mathematics before the 20th Century is summarised through a table. Also the several programs, launched around the year 1900, on the Foundations of Mathematics are characterised by a corresponding table. The major difficulty that these programs met was to recognize an alternative to the basic feature of the deductive organization of a theory (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  8. From Pictures to Employments: Later Wittgenstein on 'the Infinite'.Philip Bold - forthcoming - Inquiry: An Interdisciplinary Journal of Philosophy.
    With respect to the metaphysics of infinity, the tendency of standard debates is to either endorse or to deny the reality of ‘the infinite’. But how should we understand the notion of ‘reality’ employed in stating these options? Wittgenstein’s critical strategy shows that the notion is grounded in a confusion: talk of infinity naturally takes hold of one’s imagination due to the sway of verbal pictures and analogies suggested by our words. This is the source of various philosophical pictures that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  9. Anti-Realism and Anti-Revisionism in Wittgenstein’s Philosophy of Mathematics.Anderson Nakano - 2020 - Grazer Philosophische Studien 97 (3):451-474.
    Since the publication of the Remarks on the Foundations of Mathematics, Wittgenstein’s interpreters have endeavored to reconcile his general constructivist/anti-realist attitude towards mathematics with his confessed anti-revisionary philosophy. In this article, the author revisits the issue and presents a solution. The basic idea consists in exploring the fact that the so-called “non-constructive results” could be interpreted so that they do not appear non-constructive at all. The author substantiates this solution by showing how the translation of mathematical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  10. Axioms, Definitions, and the Pragmatic a priori: Peirce and Dewey on the “Foundations” of Mathematical Science.Bradley C. Dart - 2024 - European Journal of Pragmatism and American Philosophy 16 (1).
    Peirce and Dewey were generally more concerned with the process of scientific activity than purely mathematical work. However, their accounts of knowledge production afford some insights into the epistemology of mathematical postulates, especially definition and axioms. Their rejection of rationalist metaphysics and their emphasis on continuity in inquiry provides the pretext for the pragmatic a priori – hypothetical and operational assumptions whose justification relies on their fruitfulness in the long run. This paper focuses on the application of this idea to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  11. Category theory and the foundations of mathematics: Philosophical excavations.Jean-Pierre Marquis - 1995 - Synthese 103 (3):421 - 447.
    The aim of this paper is to clarify the role of category theory in the foundations of mathematics. There is a good deal of confusion surrounding this issue. A standard philosophical strategy in the face of a situation of this kind is to draw various distinctions and in this way show that the confusion rests on divergent conceptions of what the foundations of mathematics ought to be. This is the strategy adopted in the present paper. It (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  12. Frege on the Foundation of Geometry in Intuition.Jeremy Shipley - 2015 - Journal for the History of Analytical Philosophy 3 (6).
    I investigate the role of geometric intuition in Frege’s early mathematical works and the significance of his view of the role of intuition in geometry to properly understanding the aims of his logicist project. I critically evaluate the interpretations of Mark Wilson, Jamie Tappenden, and Michael Dummett. The final analysis that I provide clarifies the relationship of Frege’s restricted logicist project to dominant trends in German mathematical research, in particular to Weierstrassian arithmetization and to the Riemannian conceptual/geometrical tradition at Göttingen. (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  13. “‘We Can Go No Further’: Meaning, Use, and the Limits of Language”.William Child - 2019 - In Hanne Appelqvist (ed.), Wittgenstein and the Limits of Language. New York: Routledge. pp. 93-114.
    A central theme in Wittgenstein’s post-Tractatus remarks on the limits of language is that we ‘cannot use language to get outside language’. One illustration of that idea is his comment that, once we have described the procedure of teaching and learning a rule, we have ‘said everything that can be said about acting correctly according to the rule’; ‘we can go no further’. That, it is argued, is an expression of anti-reductionism about meaning and rules. A framework is presented (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  14.  92
    Reversing the Consequence Argument.Mahmoud Jalloh - 2018 - In Gabriele Mras, Paul Weingartner & Bernhard Ritter (eds.), Philosophy of Logic and Mathematics, Contributions to the 41st International Wittgenstein Symposium. Berlin: Austrian Ludwig Wittgenstein Society.
    In this paper I present and evaluate van Inwagen’s famous Consequence Argument, as presented in An Essay on Free Will. The grounds for the incompatibility of freewill and determinism, as argued by van Inwagen, is dependent on our actions being logical consequences of events outside of our control. Particularly, his arguments depend upon, in one guise or another, the transference of the modal property of not being possibly rendered false through the logical consequence relation, i.e. the β-principle. I argue that, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15. Remarks on the origin and foundations of formalisation.Srećko Kovač - 2020 - In Marcin Będkowski, Anna Brożek, Alicja Chybińska, Stepan Ivanyk & Dominik Traczykowski (eds.), Formal and Informal Methods in Philosophy. Boston: Brill | Rodopi. pp. 163-179..
    The Aristotelian origins of formal systems are outlined, together with Aristotle's use of causal terms in describing syllogisms. The precision and exactness of a formalism, based on the projection of logical forms into perceptive signs, is contrasted with foundational, abstract concepts, independent of any formalism, which are presupposed for the understanding of a formal language. The definition of a formal system by means of a Turing machine is put in the context of Wittgenstein's general considerations of a machine understood as (...)
    Download  
     
    Export citation  
     
    Bookmark  
  16. Remarks on the Geometry of Complex Systems and Self-Organization.Luciano Boi - 2012 - In Vincenzo Fano, Enrico Giannetto, Giulia Giannini & Pierluigi Graziani (eds.), Complessità e Riduzionismo. ISONOMIA - Epistemologica Series Editor. pp. 28-43.
    Let us start by some general definitions of the concept of complexity. We take a complex system to be one composed by a large number of parts, and whose properties are not fully explained by an understanding of its components parts. Studies of complex systems recognized the importance of “wholeness”, defined as problems of organization (and of regulation), phenomena non resolvable into local events, dynamics interactions in the difference of behaviour of parts when isolated or in higher configuration, etc., in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  17. Poincaré on the Foundation of Geometry in the Understanding.Jeremy Shipley - 2017 - In Maria Zack & Dirk Schlimm (eds.), Research in History and Philosophy of Mathematics: The CSHPM 2016 Annual Meeting in Calgary, Alberta. New York: Birkhäuser. pp. 19-37.
    This paper is about Poincaré’s view of the foundations of geometry. According to the established view, which has been inherited from the logical positivists, Poincaré, like Hilbert, held that axioms in geometry are schemata that provide implicit definitions of geometric terms, a view he expresses by stating that the axioms of geometry are “definitions in disguise.” I argue that this view does not accord well with Poincaré’s core commitment in the philosophy of geometry: the view that geometry is the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  18. Wittgenstein’s ‘notorious paragraph’ about the Gödel Theorem.Timm Lampert - 2006 - In Lampert Timm (ed.), Contributions of the Austrian Wittgenstein Societ. pp. 168-171.
    In §8 of Remarks on the Foundations of Mathematics (RFM), Appendix 3 Wittgenstein imagines what conclusions would have to be drawn if the Gödel formula P or ¬P would be derivable in PM. In this case, he says, one has to conclude that the interpretation of P as “P is unprovable” must be given up. This “notorious paragraph” has heated up a debate on whether the point Wittgenstein has to make is one of “great philosophical interest” revealing (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  19. ONE AND THE MULTIPLE ON THE PHILOSOPHY OF MATHEMATICS - ALEXIS KARPOUZOS.Alexis Karpouzos - 2025 - Comsic Spirit 1:6.
    The relationship between the One and the Multiple in mystic philosophy is a profound and central theme that explores the nature of existence, the cosmos, and the divine. This theme is present in various mystical traditions, including those of the East and West, and it addresses the paradoxical coexistence of the unity and multiplicity of all things. -/- In mystic philosophy, the **One** often represents the ultimate reality, the source from which all things emanate and to which all things return. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  20. Frege, Carnap, and Explication: ‘Our Concern Here Is to Arrive at a Concept of Number Usable for the Purpose of Science’.Gregory Lavers - 2013 - History and Philosophy of Logic 34 (3):225-41.
    This paper argues that Carnap both did not view and should not have viewed Frege's project in the foundations of mathematics as misguided metaphysics. The reason for this is that Frege's project was to give an explication of number in a very Carnapian sense — something that was not lost on Carnap. Furthermore, Frege gives pragmatic justification for the basic features of his system, especially where there are ontological considerations. It will be argued that even on the question (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  21. Logic. of Descriptions. A New Approach to the Foundations of Mathematics and Science.Joanna Golińska-Pilarek & Taneli Huuskonen - 2012 - Studies in Logic, Grammar and Rhetoric 27 (40):63-94.
    We study a new formal logic LD introduced by Prof. Grzegorczyk. The logic is based on so-called descriptive equivalence, corresponding to the idea of shared meaning rather than shared truth value. We construct a semantics for LD based on a new type of algebras and prove its soundness and completeness. We further show several examples of classical laws that hold for LD as well as laws that fail. Finally, we list a number of open problems. -/- .
    Download  
     
    Export citation  
     
    Bookmark  
  22. Remarks on the Biology, Psychology and Politics of Religion.Michael Richard Starks - 2019 - Las Vegas, NV USA: Reality Press.
    In my view all behavior is an expression of our evolved psychology and so intimately connected to religion, morals and ethics, if one knows how to look at them. -/- Many will find it strange that I spend little time discussing the topics common to most discussions of religion, but in my view it is essential to first understand the generalities of behavior and this necessitates a good understanding of biology and psychology which are mostly noticeable by their absence in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  23. Descriptive Complexity, Computational Tractability, and the Logical and Cognitive Foundations of Mathematics.Markus Pantsar - 2021 - Minds and Machines 31 (1):75-98.
    In computational complexity theory, decision problems are divided into complexity classes based on the amount of computational resources it takes for algorithms to solve them. In theoretical computer science, it is commonly accepted that only functions for solving problems in the complexity class P, solvable by a deterministic Turing machine in polynomial time, are considered to be tractable. In cognitive science and philosophy, this tractability result has been used to argue that only functions in P can feasibly work as computational (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  24. Wittgenstein Didn’t Agree with Gödel - A.P. Bird - Cantor’s Paradise.A. P. Bird - 2021 - Cantor's Paradise (00):00.
    In 1956, a few writings of Wittgenstein that he didn't publish in his lifetime were revealed to the public. These writings were gathered in the book Remarks on the Foundations of Mathematics (1956). There, we can see that Wittgenstein had some discontentment with the way philosophers, logicians, and mathematicians were thinking about paradoxes, and he even registered a few polemic reasons to not accept Gödel’s incompleteness theorems.
    Download  
     
    Export citation  
     
    Bookmark  
  25. Remarks on Santayana's Influence on the Development of the Barnes Foundation's Aesthetics Theories.Laura Elizia Haubert & Claudio M. Viale - 2022 - Limbo: Boletín Internacional de Estudios Sobre Santayana 42:63-81.
    Although recent work has been done on the Barnes Foundation and its philosophical and pedagogical background, almost all the research effort has been focused on the friendship and intellectual link between John Dewey and Albert C. Barnes. Unfortunately, to the best of our knowledge, the impact of George Santayana’s philosophy on the Foundation has not been systematically examined. The hypothesis that we present and develop in this article is that Santayana’s thought is essential for the aesthetic theories elaborated within the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  26. The Quantum Strategy of Completeness: On the Self-Foundation of Mathematics.Vasil Penchev - 2020 - Cultural Anthropology eJournal (Elsevier: SSRN) 5 (136):1-12.
    Gentzen’s approach by transfinite induction and that of intuitionist Heyting arithmetic to completeness and the self-foundation of mathematics are compared and opposed to the Gödel incompleteness results as to Peano arithmetic. Quantum mechanics involves infinity by Hilbert space, but it is finitist as any experimental science. The absence of hidden variables in it interpretable as its completeness should resurrect Hilbert’s finitism at the cost of relevant modification of the latter already hinted by intuitionism and Gentzen’s approaches for completeness. This (...)
    Download  
     
    Export citation  
     
    Bookmark  
  27. (1 other version)Artificial evil and the foundation of computer ethics.L. Floridi & J. Sanders - 2000 - Etica E Politica 2 (2).
    Moral reasoning traditionally distinguishes two types of evil: moral and natural. The standard view is that ME is the product of human agency and so includes phenomena such as war, torture and psychological cruelty; that NE is the product of nonhuman agency, and so includes natural disasters such as earthquakes, floods, disease and famine; and finally, that more complex cases are appropriately analysed as a combination of ME and NE. Recently, as a result of developments in autonomous agents in cyberspace, (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  28. On the limits of quantitative genetics for the study of phenotypic evolution.Massimo Pigliucci & Carl D. Schlichting - 1997 - Acta Biotheoretica 45 (2):143-160.
    During the last two decades the role of quantitative genetics in evolutionary theory has expanded considerably. Quantitative genetic-based models addressing long term phenotypic evolution, evolution in multiple environments (phenotypic plasticity) and evolution of ontogenies (developmental trajectories) have been proposed. Yet, the mathematical foundations of quantitative genetics were laid with a very different set of problems in mind (mostly the prediction of short term responses to artificial selection), and at a time in which any details of the genetic machinery were (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  29. Remarks on Wittgenstein, Gödel, Chaitin, Incompleteness, Impossiblity and the Psychological Basis of Science and Mathematics.Michael Richard Starks - 2019 - In Remarks on Impossibility, Incompleteness, Paraconsistency, Undecidability, Randomness, Computability, Paradox, Uncertainty and the Limits of Reason in Chaitin, Wittgenstein, Hofstadter, Wolpert, Doria, da Costa, Godel, Searle, Rodych, Berto, Floyd, Moyal. Reality Press. pp. 24-38.
    It is commonly thought that such topics as Impossibility, Incompleteness, Paraconsistency, Undecidability, Randomness, Computability, Paradox, Uncertainty and the Limits of Reason are disparate scientific physical or mathematical issues having little or nothing in common. I suggest that they are largely standard philosophical problems (i.e., language games) which were resolved by Wittgenstein over 80 years ago. -/- Wittgenstein also demonstrated the fatal error in regarding mathematics or language or our behavior in general as a unitary coherent logical ‘system,’ rather than (...)
    Download  
     
    Export citation  
     
    Bookmark  
  30. Models, Mathematics and Deleuze's Philosophy: Some Remarks on Simon Duffy's Deleuze and the History of Mathematics: In Defence of the New.James Williams - 2017 - Deleuze and Guatarri Studies 11 (3):475-481.
    Download  
     
    Export citation  
     
    Bookmark  
  31.  98
    On the Metaphysics of Implementation.Massimiliano Badino - manuscript
    Although implementation is ubiquitous in computer science, there is no systematic philosophical analysis of its metaphysical structure. In this article, I argue that the conceptual resources of analytical metaphysics can be very helpful in laying the foundations for a metaphysics of implementation and, by extension, of computer science. More specifically, I hold that implementation is a form of metaphysical grounding, and I show that, by combining the properties of grounding with the specific constraints of computer science, one can clarify (...)
    Download  
     
    Export citation  
     
    Bookmark  
  32. On the Mathematics and Metaphysics of the Hole Argument.Oliver Pooley & James Read - forthcoming - The British Journal for the Philosophy of Science.
    We make some remarks on the mathematics and metaphysics of the hole argument, in response to a recent article in this journal by Weatherall ([2018]). Broadly speaking, we defend the mainstream philosophical literature from the claim that correct usage of the mathematics of general relativity `blocks' the argument.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  33. On the parallel between mathematics and morals.James Franklin - 2004 - Philosophy 79 (1):97-119.
    The imperviousness of mathematical truth to anti-objectivist attacks has always heartened those who defend objectivism in other areas, such as ethics. It is argued that the parallel between mathematics and ethics is close and does support objectivist theories of ethics. The parallel depends on the foundational role of equality in both disciplines. Despite obvious differences in their subject matter, mathematics and ethics share a status as pure forms of knowledge, distinct from empirical sciences. A pure understanding of principles (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  34. Reconstructing the Unity of Mathematics circa 1900.David J. Stump - 1997 - Perspectives on Science 5 (3):383-417.
    Standard histories of mathematics and of analytic philosophy contend that work on the foundations of mathematics was motivated by a crisis such as the discovery of paradoxes in set theory or the discovery of non-Euclidean geometries. Recent scholarship, however, casts doubt on the standard histories, opening the way for consideration of an alternative motive for the study of the foundations of mathematics—unification. Work on foundations has shown that diverse mathematical practices could be integrated into (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  35. Some Remarks on Wittgenstein’s Philosophy of Mathematics.Richard Startup - 2020 - Open Journal of Philosophy 10 (1):45-65.
    Drawing mainly from the Tractatus Logico-Philosophicus and his middle period writings, strategic issues and problems arising from Wittgenstein’s philosophy of mathematics are discussed. Topics have been so chosen as to assist mediation between the perspective of philosophers and that of mathematicians on their developing discipline. There is consideration of rules within arithmetic and geometry and Wittgenstein’s distinctive approach to number systems whether elementary or transfinite. Examples are presented to illuminate the relation between the meaning of an arithmetical generalisation or (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  36. A Pluralist Foundation of the Mathematics of the First Half of the Twentieth Century.Antonino Drago - 2017 - Journal of the Indian Council of Philosophical Research 34 (2):343-363.
    MethodologyA new hypothesis on the basic features characterizing the Foundations of Mathematics is suggested.Application of the methodBy means of it, the several proposals, launched around the year 1900, for discovering the FoM are characterized. It is well known that the historical evolution of these proposals was marked by some notorious failures and conflicts. Particular attention is given to Cantor's programme and its improvements. Its merits and insufficiencies are characterized in the light of the new conception of the FoM. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  37. Computability. Computable functions, logic, and the foundations of mathematics[REVIEW]R. Zach - 2002 - History and Philosophy of Logic 23 (1):67-69.
    Epstein and Carnielli's fine textbook on logic and computability is now in its second edition. The readers of this journal might be particularly interested in the timeline `Computability and Undecidability' added in this edition, and the included wall-poster of the same title. The text itself, however, has some aspects which are worth commenting on.
    Download  
     
    Export citation  
     
    Bookmark  
  38. Copernicus and Axiomatics.Alberto Bardi - 2024 - In Bharath Sriraman (ed.), Handbook of the History and Philosophy of Mathematical Practice. Cham: Springer. pp. 1789-1805.
    The debate about the foundations of mathematical sciences traces back to Greek antiquity, with Euclid and the foundations of geometry. Through the flux of history, the debate has appeared in several shapes, places, and cultural contexts. Remarkably, it is a locus where logic, philosophy, and mathematics meet. In mathematical astronomy, Nicolaus Copernicus’s axiomatic approach toward a heliocentric theory of the universe has prompted questions about foundations among historians who have studied Copernican axioms in their terminological and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  39.  75
    Wittgenstein x Gödel: reflexões sobre o Teorema da Incompletude.Rafael Ongaratto - 2024 - Dissertation, Unicamp
    In the Appendix I of his "Remarks on the Foundations of Mathematics", Wittgenstein elaborates a different interpretation of Gödel’s First Incompleteness Theorem, which we have come to refer to as "Gödel’s Theorem" or "Incompleteness Theorem". This nomenclature arises from the recognition that the so-called "Second Incompleteness Theorem" is essentially a corollary of the primary theorem. Wittgenstein aims to reassess Gödel’s conclusion that there exist true formulas not demonstrable within formal systems capable of representing a sufficient amount of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  40. Sztuka a prawda. Problem sztuki w dyskusji między Gorgiaszem a Platonem (Techne and Truth. The problem of techne in the dispute between Gorgias and Plato).Zbigniew Nerczuk - 2002 - Wydawnictwo Uniwersytetu Wrocławskiego.
    Techne and Truth. The problem of techne in the dispute between Gorgias and Plato -/- The source of the problem matter of the book is the Plato’s dialogue „Gorgias”. One of the main subjects of the discussion carried out in this multi-aspect work is the issue of the art of rhetoric. In the dialogue the contemporary form of the art of rhetoric, represented by Gorgias, Polos and Callicles, is confronted with Plato’s proposal of rhetoric and concept of art (techne). The (...)
    Download  
     
    Export citation  
     
    Bookmark  
  41. Tools, Objects, and Chimeras: Connes on the Role of Hyperreals in Mathematics.Vladimir Kanovei, Mikhail G. Katz & Thomas Mormann - 2013 - Foundations of Science 18 (2):259-296.
    We examine some of Connes’ criticisms of Robinson’s infinitesimals starting in 1995. Connes sought to exploit the Solovay model S as ammunition against non-standard analysis, but the model tends to boomerang, undercutting Connes’ own earlier work in functional analysis. Connes described the hyperreals as both a “virtual theory” and a “chimera”, yet acknowledged that his argument relies on the transfer principle. We analyze Connes’ “dart-throwing” thought experiment, but reach an opposite conclusion. In S , all definable sets of reals are (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  42. Aptitude (Ἐπιτηδειότης) and the Foundations of Participation in the Philosophy of Dionysius the Areopagite.Panagiotis Pavlos - 2017 - In Markus Vinzent (ed.), Studia Patristica VOL. XCVI Papers presented at the Seventeenth International Conference on Patristic Studies held in Oxford 2015, Volume 22: The Second Half of the Fourth Century From the Fifth Century Onwards (Greek Writers) Gregory Palamas’ Epistula II. PEETERS. pp. 377-396.
    That a certain principle pervades the whole of the Dionysian corpus has been commonly acknowledged by readers of the works of this intriguing author. The principle is that of participation, which frames the structure of Dionysian thinking in all its aspects, the Christological, the liturgical and ecclesiological as well as the ontological. Most schol- arly studies of this Christian, nonetheless Neoplatonic, figure mostly recognize the participatory character of his thinking. In his participatory metaphysical system there is a feature that seems (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  43. Artificial Evil and the Foundation of Computer Ethics.Luciano Floridi & J. W. Sanders - 2001 - Springer Netherlands. Edited by Luciano Floridi & J. W. Sanders.
    Moral reasoning traditionally distinguishes two types of evil:moral (ME) and natural (NE). The standard view is that ME is the product of human agency and so includes phenomena such as war,torture and psychological cruelty; that NE is the product of nonhuman agency, and so includes natural disasters such as earthquakes, floods, disease and famine; and finally, that more complex cases are appropriately analysed as a combination of ME and NE. Recently, as a result of developments in autonomous agents in cyberspace, (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  44. Remarks on the Argument from Design.Joseph S. Fulda - manuscript
    Gives two pared-down versions of the argument from design, which may prove more persuasive as to a Creator, discusses briefly the mathematics underpinning disbelief and nonbelief and its misuse and some proper uses, moves to why the full argument is needed anyway, viz., to demonstrate Providence, offers a theory as to how miracles (open and hidden) occur, viz. the replacement of any particular mathematics underlying a natural law (save logic) by its most appropriate nonstandard variant. -/- Note: This (...)
    Download  
     
    Export citation  
     
    Bookmark  
  45. (1 other version)Time and Information in the Foundations of Physics.Vasil Penchev - 2020 - Information Theory and Research eJournal (Elsevier: SSRN) 1 (25):1-12.
    The paper justifies the following theses: The totality can found time if the latter is axiomatically represented by its “arrow” as a well-ordering. Time can found choice and thus information in turn. Quantum information and its units, the quantum bits, can be interpreted as their generalization as to infinity and underlying the physical world as well as the ultimate substance of the world both subjective and objective. Thus a pathway of interpretation between the totality via time, order, choice, and information (...)
    Download  
     
    Export citation  
     
    Bookmark  
  46. Bishop's Mathematics: a Philosophical Perspective.Laura Crosilla - forthcoming - In Handbook of Bishop's Mathematics. CUP.
    Errett Bishop's work in constructive mathematics is overwhelmingly regarded as a turning point for mathematics based on intuitionistic logic. It brought new life to this form of mathematics and prompted the development of new areas of research that witness today's depth and breadth of constructive mathematics. Surprisingly, notwithstanding the extensive mathematical progress since the publication in 1967 of Errett Bishop's Foundations of Constructive Analysis, there has been no corresponding advances in the philosophy of constructive (...) Bishop style. The aim of this paper is to foster the philosophical debate about this form of mathematics. I begin by considering key elements of philosophical remarks by Bishop, especially focusing on Bishop's assessment of Brouwer. I then compare these remarks with ``traditional'' philosophical arguments for intuitionistic logic and argue that the latter are in tension with Bishop's views. ``Traditional'' arguments for intuitionistic logic turn out to be also in conflict with significant recent developments in constructive mathematics. This rises pressing questions for the philosopher of mathematics, especially with regard to the possibility of offering alternative philosophical arguments for constructive mathematics. I conclude with the suggestion to look anew at Bishop's own remarks for inspiration. (shrink)
    Download  
     
    Export citation  
     
    Bookmark  
  47. On the epistemological foundations of the law of the lever.Maarten Van Dyck - 2009 - Studies in History and Philosophy of Science Part A 40 (3):315-318.
    In this paper I challenge Paolo Palmieri’s reading of the Mach-Vailati debate on Archimedes’s proof of the law of the lever. I argue that the actual import of the debate concerns the possible epistemic (as opposed to merely pragmatic) role of mathematical arguments in empirical physics, and that construed in this light Vailati carries the upper hand. This claim is defended by showing that Archimedes’s proof of the law of the lever is not a way of appealing to a non-empirical (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  48. Re-reading Wilczek’s remark on “Lost in Math”: The perils of postempirical science and their resolution.Victor Christianto & Florentin Smarandache - manuscript
    Sabine Hossenfelder’s recent book “Lost in Math” has attracted numerous responses, including by notable physicists such as Frank Wilczek. In this article we focus on Wilczek’s remark on that book, in particular on the perils of postempirical science. We also discuss shortly multiverse hypothesis from philosophical perspective. In last section, we offer a resolution from the perspective of Neutrosophic Logic on this problem of classical tension between mathematics and experience approach to physics, which seems to cause the stagnation of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  49. Connecting the revolutionary with the conventional: Rethinking the differences between the works of Brouwer, Heyting, and Weyl.Kati Kish Bar-On - 2023 - Philosophy of Science 90 (3):580–602.
    Brouwer’s intuitionism was a far-reaching attempt to reform the foundations of mathematics. While the mathematical community was reluctant to accept Brouwer’s work, its response to later-developed brands of intuitionism, such as those presented by Hermann Weyl and Arend Heyting, was different. The paper accounts for this difference by analyzing the intuitionistic versions of Brouwer, Weyl, and Heyting in light of a two-tiered model of the body and image of mathematical knowledge. Such a perspective provides a richer account of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  50. On the practice of integrated STEM education as “poiesis”.Sarıtaş Davut, Özcan Hasan & Adúriz-Bravo Agustín - 2023 - Stem Education Review 1:1-15.
    The value of science partly lies on the development of useful products for humanity’s needs, but basic sciences cannot be said the “protagonists” of their obtention. Human history shows that these processes occur as a result of interactions between science and technology, mathematics, and engineering, as well as ethics and aesthetics. This network of disciplinary relationships facilitating the impact of scientific knowledge on human lives is at the center of discussions in the field of Science, Technology, Engineering, and (...) (STEM) education, and will be the focus of this article. Since the problems encountered in people’s everyday activities cannot be solved with the knowledge and skill of a single discipline, there emerges an aim for general education to attain more holistic understandings required by human needs. Our conceptualization of STEM education, based on classical Greek philosophy, addresses this issue. We acknowledge that the traditional paradigm of monodisciplinary education, formed as a result of the separation of sciences over history, has been challenged in the last two decades with the rise of integrating approaches in science and technology education. STEM is consistently mentioned as a way for gaining the integrated knowledge and skills deemed important for the near future, but theoretical searches towards solving its basic problems are still ongoing and we take this as our general research problem. In this argumentative study, the philosophical approach proposed to shed light on STEM education practices is structured along two conceptual axes: integration of disciplines and inclusion of humanistic goals. Suitable foundations for our proposal are sought in Aristotelian philosophy: We use Aristotle’s conception of a particular kind of human activity—poiesis, that aims to create “useful” and “aesthetic” products in order to propose an engineering “center” or “core” in the design of STEM school practices. Our model, labeled as “poietic” STEM, incorporates key elements of the nature of engineering; under the light of such a model, some aspects of what is called the “nature of STEM” are discussed. We conclude that, in an education envisaging more holistic approaches towards citizen literacy, it is necessary to connect the performance of STEM with responsible human interaction. In accordance with this requirement, our approximation to STEM centered on an epistemologically sophisticated conception of engineering makes room for fostering shared awareness in students. (shrink)
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 942