In the paper we examine the method of axiomatic rejection used to describe the set of nonvalid formulae of Aristotle's syllogistic. First we show that the condition which the system of syllogistic has to fulfil to be ompletely axiomatised, is identical to the condition for any first order theory to be used as a logic program. Than we study the connection between models used or refutation in a first order theory and rejected axioms for that theory. We show that (...) any formula of syllogistic enriched with classical connectives is decidable using models in the domain with three members. (shrink)
Economic models describe individuals in terms of underlying characteristics, such as taste for some good, sympathy level for another player, time discount rate, risk attitude, and so on. In real life, such characteristics change through experiences: taste for Mozart changes through listening to it, sympathy for another player through observing his moves, and so on. Models typically ignore change, not just for simplicity but also because it is unclear how to incorporate change. I introduce a general axiomatic framework for (...) defining, analysing and comparing rival models of change. I show that seemingly basic postulates on modelling change together have strong implications, like irrelevance of the order in which someone has his experiences and ‘linearity’ of change. This is a step towards placing the modelling of change on solid axiomatic grounds and enabling non-arbitrary incorporation of change into economic models. (shrink)
This is part one of a two-part paper, in which we develop an axiomatic theory of the relation of partial ground. The main novelty of the paper is the of use of a binary ground predicate rather than an operator to formalize ground. This allows us to connect theories of partial ground with axiomatic theories of truth. In this part of the paper, we develop an axiomatization of the relation of partial ground over the truths of arithmetic and (...) show that the theory is a proof-theoretically conservative extension of the theory PT of positive truth. We construct models for the theory and draw some conclusions for the semantics of conceptualist ground. (shrink)
This is part two of a two-part paper in which we develop an axiomatic theory of the relation of partial ground. The main novelty of the paper is the of use of a binary ground predicate rather than an operator to formalize ground. In this part of the paper, we extend the base theory of the first part of the paper with hierarchically typed truth-predicates and principles about the interaction of partial ground and truth. We show that our theory (...) is a proof-theoretically conservative extension of the ramified theory of positive truth up to. (shrink)
The paper contains an overview of the most important results presented in the monograph of the author "Teorie Językow Syntaktycznie-Kategorialnych" ("Theories of Syntactically-Categorial Languages" (in Polish), PWN, Warszawa-Wrocław 1985. In the monograph four axiomatic systems of syntactically-categorial languages are presented. The ﬁrst two refer to languages of expression-tokens. The others also takes into consideration languages of expression-types. Generally, syntactically-categorial languages are languages built in accordance with principles of the theory of syntactic categories introduced by S. Leśniewski [1929,1930]; they are (...) connected with- the Ajdukiewicz’s work [1935] which was a continuation of Leśniewski’s idea and further developed and popularized in the research on categorial grammars, by Y. Bar-Hillel [1950,1953,1964]. To assign a suitable syntactic category to each word of the vocabulary is the main idea of syntactically-categorial approach to language. Compound expressions are built from the words of the vocabulary and then a suitable syntactic-category is assigned to each of them. A language built in this way should be decidable, which means that there should exist an algorithm for deciding about each expression of it, whether it is well-formed or is syntactically connected . The traditional, originating from Husserl, understanding of the syntactic category confronts some diﬃculties. This notion is deﬁned by abstraction using the concept of aﬃliation of two expressions to the same syntactic category. (shrink)
There has been much discussion on the two-envelope paradox. Clark and Shackel (2000) have proposed a solution to the paradox, which has been refuted by Meacham and Weisberg (2003). Surprisingly, however, the literature still contains no axiomatic justification for the claim that one should be indifferent between the two envelopes before opening one of them. According to Meacham and Weisberg, "decision theory does not rank swapping against sticking [before opening any envelope]" (p. 686). To fill this gap in the (...) literature, we present a simple axiomatic justification for indifference, avoiding any expectation reasoning, which is often considered problematic in infinite cases. Although the two-envelope paradox assumes an expectation-maximizing agent, we show that analogous paradoxes arise for agents using different decision principles such as maximin and maximax, and that our justification for indifference before opening applies here too. (shrink)
In this paper, I examine the decision-theoretic status of risk attitudes. I start by providing evidence showing that the risk attitude concepts do not play a major role in the axiomatic analysis of the classic models of decision-making under risk. This can be interpreted as reflecting the neutrality of these models between the possible risk attitudes. My central claim, however, is that such neutrality needs to be qualified and the axiomatic relevance of risk attitudes needs to be re-evaluated (...) accordingly. Specifically, I highlight the importance of the conditional variation and the strengthening of risk attitudes, and I explain why they establish the axiomatic significance of the risk attitude concepts. I also present several questions for future research regarding the strengthening of risk attitudes. (shrink)
The topic of this thesis is axiological uncertainty – the question of how you should evaluate your options if you are uncertain about which axiology is true. As an answer, I defend Expected Value Maximisation (EVM), the view that one option is better than another if and only if it has the greater expected value across axiologies. More precisely, I explore the axiomatic foundations of this view. I employ results from state-dependent utility theory, extend them in various ways and (...) interpret them accordingly, and thus provide axiomatisations of EVM as a theory of axiological uncertainty. (shrink)
The idea of science being the best – or the only – way to reach the truth about our cosmos has been a major belief of modern civilization. Yet, science has grown tall on fragile legs of clay. Every scientific theory uses axioms and assumptions that by definition cannot be proved. This poses a serious limitation to the use of science as a tool to find the truth. The only way to search for the latter is to redefine the former (...) to its original glory. In the days well before Galileo and Newton, science and religion were not separated. They worked together to discover the truth and while the latter had God as its final destination, the former had God as its starting point. Science is based on the irrational (unproven) belief that the world is intelligible along many other assumptions. This poses a serious limitation to science that can only be overcome if we accept the irrationality of the cosmos. The motto “Credo quia absurdum” holds more truth than one can ever realize at first glance. There is nothing logical in logic, whereas there is deep wisdom in the irrational. For while the former tries to build castles on moving sand, the latter digs deep inside the depths of existence itself in order to build on the most concrete foundations that there can be: the cosmos itself. The only way forward is backwards. Backwards to a time when religion led the quest for knowledge by accepting what we cannot know, rather than trying to comprehend what we do not. Science was anyway based on that in the first place. (shrink)
A variation of Fitch’s paradox is given, where no special rules of inference are assumed, only axioms. These axioms follow from the familiar assumptions which involve rules of inference. We show (by constructing a model) that by allowing that possibly the knower doesn’t know his own soundness (while still requiring he be sound), Fitch’s paradox is avoided. Provided one is willing to admit that sound knowers may be ignorant of their own soundness, this might offer a way out of the (...) paradox. (shrink)
We present an axiomatization of non-relativistic Quantum Mechanics for a system with an arbitrary number of components. The interpretation of our system of axioms is realistic and objective. The EPR paradox and its relation with realism is discussed in this framework. It is shown that there is no contradiction between realism and recent experimental results.
We present a deductive theory of space-time which is realistic, objective, and relational. It is realistic because it assumes the existence of physical things endowed with concrete properties. It is objective because it can be formulated without any reference to cognoscent subjects or sensorial fields. Finally, it is relational because it assumes that space-time is not a thing but a complex of relations among things. In this way, the original program of Leibniz is consummated, in the sense that space is (...) ultimately an order of coexistents, and time is an order of succesives. In this context, we show that the metric and topological properties of Minkowskian space-time are reduced to relational properties of concrete things. We also sketch how our theory can be extended to encompass a Riemannian space-time. (shrink)
Distributive justice deals with allocations of goods and bads within a group. Different principles and results of distributions are seen as possible ideals. Often those normative approaches are solely framed verbally, which complicates the application to different concrete distribution situations that are supposed to be evaluated in regard to justice. One possibility in order to frame this precisely and to allow for a fine-grained evaluation of justice lies in formal modelling of these ideals by metrics. Choosing a metric that is (...) supposed to map a certain ideal has to be justified. Such justification might be given by demanding specific substantiated axioms, which have to be met by a metric. This paper introduces such axioms for metrics of distributive justice shown by the example of needs-based justice. Furthermore, some exemplary metrics of needs-based justice and a three dimensional method for visualisation of non-comparative justice axioms or evaluations are presented. Therewith, a base worth discussing for the evaluation and modelling of metrics of distributive justice is given. (shrink)
This chapter tries to answer the following question: How should we conceive of the method of mathematics, if we take a naturalist stance? The problem arises since mathematical knowledge is regarded as the paradigm of certain knowledge, because mathematics is based on the axiomatic method. Moreover, natural science is deeply mathematized, and science is crucial for any naturalist perspective. But mathematics seems to provide a counterexample both to methodological and ontological naturalism. To face this problem, some authors tried to (...) naturalize mathematics by relying on evolutionism. But several difficulties arise when we try to do this. This chapter suggests that, in order to naturalize mathematics, it is better to take the method of mathematics to be the analytic method, rather than the axiomatic method, and thus conceive of mathematical knowledge as plausible knowledge. (shrink)
The idea of rejection originated by Aristotle. The notion of rejection was introduced into formal logic by Łukasiewicz [20]. He applied it to complete syntactic characterization of deductive systems using an axiomatic method of rejection of propositions [22, 23]. The paper gives not only genesis, but also development and generalization of the notion of rejection. It also emphasizes the methodological approach to biaspectual axiomatic method of characterization of deductive systems as acceptance (asserted) systems and rejection (refutation) systems, introduced (...) by Łukasiewicz and developed by his student Słupecki, the pioneers of the method, which becomes relevant in modern approaches to logic. (shrink)
We survey main developments, results, and open problems on interval temporal logics and duration calculi. We present various formal systems studied in the literature and discuss their distinctive features, emphasizing on expressiveness, axiomatic systems, and (un)decidability results.
The idea of rejection originated by Aristotle. The notion of rejection was introduced into formal logic by Łukasiewicz [20]. He applied it to complete syntactic characterization of deductive systems using an axiomatic method of rejection of propositions [22, 23]. The paper gives not only genesis, but also development and generalization of the notion of rejection. It also emphasizes the methodological approach to biaspectual axiomatic method of characterization of deductive systems as acceptance (asserted) systems and rejection (refutation) systems, introduced (...) by Łukasiewicz and developed by his student Słupecki, the pioneers of the method, which becomes relevant in modern approaches to logic. (shrink)
Corcoran’s 27 entries in the 1999 second edition of Robert Audi’s Cambridge Dictionary of Philosophy [Cambridge: Cambridge UP]. -/- ancestral, axiomatic method, borderline case, categoricity, Church (Alonzo), conditional, convention T, converse (outer and inner), corresponding conditional, degenerate case, domain, De Morgan, ellipsis, laws of thought, limiting case, logical form, logical subject, material adequacy, mathematical analysis, omega, proof by recursion, recursive function theory, scheme, scope, Tarski (Alfred), tautology, universe of discourse. -/- The entire work is available online free at more (...) than one website. Paste the whole URL. http://archive.org/stream/RobertiAudi_The.Cambridge.Dictionary.of.Philosophy/Robert.Audi_The.Cambrid ge.Dictionary.of.Philosophy -/- The 2015 third edition will be available soon. Before you think of buying it read some reviews on Amazon and read reviews of its competition: For example, my review of the 2008 Oxford Companion to Philosophy, History and Philosophy of Logic,29:3,291-292. URL: http://dx.doi.org/10.1080/01445340701300429 -/- Some of the entries have already been found to be flawed. For example, Tarski’s expression ‘materially adequate’ was misinterpreted in at least one article and it was misused in another where ‘materially correct’ should have been used. The discussion provides an opportunity to bring more flaws to light. -/- Acknowledgements: Each of these entries was presented at meetings of The Buffalo Logic Dictionary Project sponsored by The Buffalo Logic Colloquium. The members of the colloquium read drafts before the meetings and were generous with corrections, objections, and suggestions. Usually one 90-minute meeting was devoted to one entry although in some cases, for example, “axiomatic method”, took more than one meeting. Moreover, about half of the entries are rewrites of similarly named entries in the 1995 first edition. Besides the help received from people in Buffalo, help from elsewhere was received by email. We gratefully acknowledge the following: José Miguel Sagüillo, John Zeis, Stewart Shapiro, Davis Plache, Joseph Ernst, Richard Hull, Concha Martinez, Laura Arcila, James Gasser, Barry Smith, Randall Dipert, Stanley Ziewacz, Gerald Rising, Leonard Jacuzzo, George Boger, William Demopolous, David Hitchcock, John Dawson, Daniel Halpern, William Lawvere, John Kearns, Ky Herreid, Nicolas Goodman, William Parry, Charles Lambros, Harvey Friedman, George Weaver, Hughes Leblanc, James Munz, Herbert Bohnert, Robert Tragesser, David Levin, Sriram Nambiar, and others. -/- . (shrink)
This dissertation examines several of the problems that Hilbert discovered in the foundations of mathematics, from a metalogical perspective. The problems manifest themselves in four different aspects of Hilbert’s views: (i) Hilbert’s axiomatic approach to the foundations of mathematics; (ii) His response to criticisms of set theory; (iii) His response to intuitionist criticisms of classical mathematics; (iv) Hilbert’s contribution to the specification of the role of logical inference in mathematical reasoning. This dissertation argues that Hilbert’s axiomatic approach was (...) guided primarily by model theoretical concerns. Accordingly, the ultimate aim of his consistency program was to prove the model-theoretical consistency of mathematical theories. It turns out that for the purpose of carrying out such consistency proofs, a suitable modification of the ordinary first-order logic is needed. To effect this modification, independence-friendly logic is needed as the appropriate conceptual framework. It is then shown how the model theoretical consistency of arithmetic can be proved by using IF logic as its basic logic. Hilbert’s other problems, manifesting themselves as aspects (ii), (iii), and (iv)—most notably the problem of the status of the axiom of choice, the problem of the role of the law of excluded middle, and the problem of giving an elementary account of quantification—can likewise be approached by using the resources of IF logic. It is shown that by means of IF logic one can carry out Hilbertian solutions to all these problems. The two major results concerning aspects (ii), (iii) and (iv) are the following: (a) The axiom of choice is a logical principle; (b) The law of excluded middle divides metamathematical methods into elementary and non-elementary ones. It is argued that these results show that IF logic helps to vindicate Hilbert’s nominalist philosophy of mathematics. On the basis of an elementary approach to logic, which enriches the expressive resources of ordinary first-order logic, this dissertation shows how the different problems that Hilbert discovered in the foundations of mathematics can be solved. (shrink)
Introduction to mathematical logic, part 2.Textbook for students in mathematical logic and foundations of mathematics. Platonism, Intuition, Formalism. Axiomatic set theory. Around the Continuum Problem. Axiom of Determinacy. Large Cardinal Axioms. Ackermann's Set Theory. First order arithmetic. Hilbert's 10th problem. Incompleteness theorems. Consequences. Connected results: double incompleteness theorem, unsolvability of reasoning, theorem on the size of proofs, diophantine incompleteness, Loeb's theorem, consistent universal statements are provable, Berry's paradox, incompleteness and Chaitin's theorem. Around Ramsey's theorem.
Process philosophies tend to emphasise the value of continuous creation as the core of their discourse. For Bergson, Whitehead, Deleuze, and others the real is ultimately a creative becoming. Critics have argued that there is an irreducible element of (almost religious) belief in this re-evaluation of immanent creation. While I don’t think belief is necessarily a sign of philosophical and existential weakness, in this paper I will examine the possibility for the concept of universal creation to be a political and (...) ethical axiom, the result of a global social contract rather than of a new spirituality. I argue here that a coherent way to fight against potentially totalitarian absolutes is to replace them with a virtual absolute that cannot territorialise without deterritorialising at the same time: the Creal principle. (shrink)
By pure calculus of names we mean a quantifier-free theory, based on the classical propositional calculus, which defines predicates known from Aristotle’s syllogistic and Leśniewski’s Ontology. For a large fragment of the theory decision procedures, defined by a combination of simple syntactic operations and models in two-membered domains, can be used. We compare the system which employs `ε’ as the only specific term with the system enriched with functors of Syllogistic. In the former, we do not need an empty name (...) in the model, so we are able to construct a 3-valued matrix, while for the latter, for which an empty name is necessary, the respective matrices are 4-valued. (shrink)
I uncover here a conflict in Kant’s natural philosophy. His matter theory and laws of mechanics are in tension. Kant’s laws are fit for particles but are too narrow to handle continuous bodies, which his doctrine of matter demands. To fix this defect, Kant ultimately must ground the Torque Law; that is, the impressed torque equals the change in angular momentum. But that grounding requires a premise—the symmetry of the stress tensor—that Kant denies himself. I argue that his problem would (...) not arise if he had kept his early theory of matter as made of mass points, or “physical monads.”. (shrink)
The Cell Ontology (CL) is designed to provide a standardized representation of cell types for data annotation. Currently, the CL employs multiple is_a relations, defining cell types in terms of histological, functional, and lineage properties, and the majority of definitions are written with sufficient generality to hold across multiple species. This approach limits the CL’s utility for cross-species data integration. To address this problem, we developed a method for the ontological representation of cells and applied this method to develop a (...) dendritic cell ontology (DC-CL). DC-CL subtypes are delineated on the basis of surface protein expression, systematically including both species-general and species-specific types and optimizing DC-CL for the analysis of flow cytometry data. This approach brings benefits in the form of increased accuracy, support for reasoning, and interoperability with other ontology resources. 104. Barry Smith, “Toward a Realistic Science of Environments”, Ecological Psychology, 2009, 21 (2), April-June, 121-130. Abstract: The perceptual psychologist J. J. Gibson embraces a radically externalistic view of mind and action. We have, for Gibson, not a Cartesian mind or soul, with its interior theater of contents and the consequent problem of explaining how this mind or soul and its psychological environment can succeed in grasping physical objects external to itself. Rather, we have a perceiving, acting organism, whose perceptions and actions are always already tuned to the parts and moments, the things and surfaces, of its external environment. We describe how on this basis Gibson sought to develop a realist science of environments which will be ‘consistent with physics, mechanics, optics, acoustics, and chemistry’. (shrink)
The author attempts to show how mereology, taken together with certain topological notions, can yield the foundations for future investigations in formal ontology. He also attempts to show how the mereological framework allows for the direct and natural formulation of a series of theses - for example pertaining to the concept of a boundary - which can be only indirectly formulated (if at all) in set-theoretic terms. The far-reaching ain of the present framework is to serve as a basis for (...) a formal ontology of the common-sense world. The author is interested in producing formally precise theories of structures of certain sorts in such a way that it is the structures themselves that intrest him and not formal machinery that has been set up to describe them. Hence the axioms are chosen primarily for the sake of the light they throw on the intended subject-matters (and not for their logical independence). The world itself - or its picture given in ordinary experience - is the only model the paper concentrates upon. Thus for example the presented system allows to prove that every boundary is the boundary of something, and that in particular no point exists in isolation from a large extended whole that is its boundary. (shrink)
Detlefsen (1986) reads Hilbert's program as a sophisticated defense of instrumentalism, but Feferman (1998) has it that Hilbert's program leaves significant ontological questions unanswered. One such question is of the reference of individual number terms. Hilbert's use of admittedly "meaningless" signs for numbers and formulae appears to impair his ability to establish the reference of mathematical terms and the content of mathematical propositions (Weyl (1949); Kitcher (1976)). The paper traces the history and context of Hilbert's reasoning about signs, which illuminates (...) Hilbert's account of mathematical objectivity, axiomatics, idealization, and consistency. (shrink)
This note is based on a lecture delivered at the Conference on the Scien- tic Research of the Mathematical Center of Opole, Turawa, May 10-11th, 1980. A somewhat extended version will be published in the Proceedings of the Conference. At the same time it is an abstract of a part of a planned larger paper, which will involve the theory of label-tokens. The theory is included into the author's monograph in Polish "Teorie Językow Syntaktycznie Kategorialnych", PWN, Warszawa-Wrocław 1985 and into (...) its English version: Theory of Language Syntax. Categorial Approach, Kluwer Academic Publishers, Boston-London-Dordrecht 1991. (shrink)
This review places this translation and commentary on Book A of Prior Analytics in historical, logical, and philosophical perspective. In particular, it details the author’s positions on current controversies. The author of this translation and commentary is a prolific and respected scholar, a leading figure in a large and still rapidly growing area of scholarship: Prior Analytics studies PAS. PAS treats many aspects of Aristotle’s Prior Analytics: historical context, previous writings that influenced it, preservation and transmission of its manuscripts, editions (...) of its manuscripts, interpretations, commentaries, translations, and its influence on subsequent logic, philosophy, and mathematics. All this attention is warranted because Prior Analytics marks the origin of logic: the field that, among other things, asks of a given proposition whether it follows from a given set of propositions; and, if it follows, how we determine that it follows; and, if it does not follow, how we determine that it does not follow. This translation and commentary is not suitable for use in an undergraduate course. It has too many quirks that the teacher would want to warn against. A copy editor should have dealt with these things and with other matters such as incorrect punctuation and improper end-of-line divisions. The prose is heavily laden with glaring clichés. The one-page preface contains “longer than I care to remember”, “more than I can possibly list here”, “first and foremost”, and “last and by no means least”—a sentence later is devoted to thanking the “incredibly meticulous and helpful copy-editor”. A few pages later the translator reveals the need “to find a path between the Scylla … and the Charybdis …”. Moreover, the index is far from meeting the needs of undergraduate students. The attention to scholarly detail is not what one hoped for from Oxford University Press. At 26b10-15, this translation reads “let swan and white be chosen as white things” for what Smith correctly translates “let swan and snow be selected from among those white things”. At 41b16, “angles AB and CD” should read “angles AC and BD”. Despite this book’s flaws, it will be found useful if not indispensable for those currently engaged in Prior Analytics studies. The alternatives suggested to Robin Smith’s translation choices are often worth consideration. It is to be emphasized, however, that this book is unsuitable for those entering Prior Analytics studies. (shrink)
In "La science et l’hypothèse" Henri Poincaré scrive: «Compito dello scienziato è ordinare; si fa la scienza con i fatti, come si fa una casa con le pietre; ma un cumulo di fatti non è una scienza, proprio come un mucchio di pietre non è una casa» . Oltre a richiamare qualcosa che a molti potrebbe persino apparire ovvio – cioè che la scienza non possa in alcun modo ridursi ad un mero agglomerato di fatti che il ricercatore registra in (...) ambito osservativo, ma richieda piuttosto un attento processo di elaborazione razionale sia in fase preventiva rispetto al contesto dell’esperienza, sia in fase di valutazione dei dati sperimentali raccolti – questa affermazione ha il merito di ricordarci qualcosa che spesso viene passato sotto silenzio, vale a dire il fatto che durante il nostro tentativo di comprendere il mondo si dia alla conoscenza una materia, un complesso di "oggetti", tale da risultare determinante nella costruzione e nella formulazione delle nostre teorie. Se questo è vero, si può quindi parlare di una materia, e di una forma da essa distinta, della conoscenza scientifica, sebbene con alcune precisazioni. Nel contributo si preciserà questa distinzione facendo riferimento alle assiomatizzazioni di alcune discipline scientifiche condotte nella prima metà del secolo scorso. (shrink)
Imagine a group that faces a decision problem but does not agree on which decision procedure is appropriate. In that case, can a decision be reached that respects the procedural concerns of the group? There is a sense in which legitimate decisions are possible even if people disagree on which procedure to use. I propose to decide in favour of an option which maximizes the number of persons whose judged-right procedure happens to entail this decision given the profile. This decision (...) rule is based not only ona profile in the standard sense, but in addition on a profile of judged-right procedures. To justify this decision rule, I present a set of simple axioms leading to it as the only solution. (shrink)
This is the PhD dissertation, written under supervision of Professor Jerzy Słupecki, published in the book: U.Wybraniec-Skardowska i Grzegorz Bryll "Z badań nad teorią zdań odrzuconych" ( "Studies of theory of rejected sentences"), Zeszyty Naukowe Wyższej Szkoły Pedagogicznej w Opolu, Seria B: Studia i Monografie nr 22, pp. 5-131. It is the first, original publication on the theory of rejected sentences on which are based, among other, papers: "Theory of rejected propositions. I"and "Theory of rejected propositions II" with Jerzy Słupecki (...) and Grzegorz Bryll. -/- -/- . (shrink)
The present text provides a logical theory which originated in the unification of a number of well-known philosophical logics as well as the introduction and study of new operators. Further M-logic contains an object theory. With both the logical part and the object part we achieve a formal calculus that is able to express many metaphysical dogmas.
The original purpose of the present study, 2011, started with a preprint «On the Probable Failure of the Uncountable Power Set Axiom», 1988, is to save from the transfinite deadlock of higher set theory the jewel of mathematical Continuum — this genuine, even if mostly forgotten today raison d’être of all traditional set-theoretical enterprises to Infinity and beyond, from Georg Cantor to David Hilbert to Kurt Gödel to W. Hugh Woodin to Buzz Lightyear.
In his proof of the first incompleteness theorem, Kurt Gödel provided a method of showing the truth of specific arithmetical statements on the condition that all the axioms of a certain formal theory of arithmetic are true. Furthermore, the statement whose truth is shown in this way cannot be proved in the theory in question. Thus it may seem that the relation of logical consequence is wider than the relation of derivability by a pre-defined set of rules. The aim of (...) this paper is to explore under which assumptions the Gödelian statement can rightly be considered a logical consequence of the axioms of the theory in question. It is argued that this is the case only when the all the theorems of the theory in question are understood as statements of the same kind as statements of arithmetic and statements about provability in the theory, and only if the language of the theory contains logical expressions allowing to include certain predicates of meta-language in the language of the theory. (shrink)
This article informally presents a solution to the paradoxes of truth and shows how the solution solves classical paradoxes (such as the original Liar) as well as paradoxes that were invented as counter-arguments for various proposed solutions to the paradoxes of truth (``revenges of the Liar''). Also, one erroneous critique of Kripke-Feferman axiomatic theory of truth, which is present in contemporary literature, is pointed out.
Suppose several individuals (e.g., experts on a panel) each assign probabilities to some events. How can these individual probability assignments be aggregated into a single collective probability assignment? This article reviews several proposed solutions to this problem. We focus on three salient proposals: linear pooling (the weighted or unweighted linear averaging of probabilities), geometric pooling (the weighted or unweighted geometric averaging of probabilities), and multiplicative pooling (where probabilities are multiplied rather than averaged). We present axiomatic characterisations of each class (...) of pooling functions (most of them classic, but one new) and argue that linear pooling can be justified procedurally, but not epistemically, while the other two pooling methods can be justified epistemically. The choice between them, in turn, depends on whether the individuals' probability assignments are based on shared information or on private information. We conclude by mentioning a number of other pooling methods. (shrink)
Many authors in ethics, economics, and political science endorse the Lottery Requirement, that is, the following thesis: where different parties have equal moral claims to one indivisible good, it is morally obligatory to let a fair lottery decide which party is to receive the good. This article defends skepticism about the Lottery Requirement. It distinguishes three broad strategies of defending such a requirement: the surrogate satisfaction account, the procedural account, and the ideal consent account, and argues that none of these (...) strategies succeed. The article then discusses and discharges some remaining grounds for resistance to these skeptical conclusions, as well as the possibility of defending a weaker version of a normative lottery principle. The conclusion is that we have no reason to believe that where equal claims conflict, we are morally required to hold a lottery, as opposed to simply picking one of the parties on more subjective grounds or out of pure whim. In addition to the practical consequences of this skeptical view, the article sketches some theoretical implications for debates about saving the greater number and about axiomatic utilitarianism. (shrink)
The paper discusses Weyl's early view on axiomatics, then focuses on his remarks on Noether's work, and argues against assimilating her use of the axiomatic method in algebra to his late view on axiomatics, on the ground of Weyl's resistance to Noether's principle of detachment.
In this paper the logic of broad necessity is explored. Definitions of what it means for one modality to be broader than another are formulated, and it is proven, in the context of higher-order logic, that there is a broadest necessity, settling one of the central questions of this investigation. It is shown, moreover, that it is possible to give a reductive analysis of this necessity in extensional language. This relates more generally to a conjecture that it is not possible (...) to define intensional connectives from extensional notions. This conjecture is formulated precisely in higher-order logic, and concrete cases in which it fails are examined. The paper ends with a discussion of the logic of broad necessity. It is shown that the logic of broad necessity is a normal modal logic between S4 and Triv, and that it is consistent with a natural axiomatic system of higher-order logic that it is exactly S4. Some philosophical reasons to think that the logic of broad necessity does not include the S5 principle are given. (shrink)
We describe a prototype ontology-driven information system (ODIS) that exploits what we call Portion of Reality (POR) representations. The system takes both sensor data and natural language text as inputs and composes on this basis logically structured POR assertions. The goal of our prototype is to represent both natural language and sensor data within a single framework that is able to support both axiomatic reasoning and computation. In addition, the framework should be capable of discovering and representing new kinds (...) of situations and thematic roles, (e.g., roles such as agent, patient and instrument), based on new compositions of existing representations. We applied our prototype in an intelligence analysis use case to test the hypothesis that a framework of this sort can produce usefully structured information from combined natural language and sensor data inputs. We further tested our hypothesis by adding an enhanced US Air Force ontology framework to our ODIS in order to (1) process a collection of sensor data, intel reports, and mission plans; (2) build composite POR representations from these data; and (3) machine analyze the fused results to infer mission threats. (shrink)
Sentences containing definite descriptions, expressions of the form ‘The F’, can be formalised using a binary quantifier ι that forms a formula out of two predicates, where ιx[F, G] is read as ‘The F is G’. This is an innovation over the usual formalisation of definite descriptions with a term forming operator. The present paper compares the two approaches. After a brief overview of the system INFι of intuitionist negative free logic extended by such a quantifier, which was presented in (...) (Kürbis 2019), INFι is first compared to a system of Tennant’s and an axiomatic treatment of a term forming ι operator within intuitionist negative free logic. Both systems are shown to be equivalent to the subsystem of INFι in which the G of ιx[F, G] is restricted to identity. INFι is then compared to an intuitionist version of a system of Lambert’s which in addition to the term forming operator has an operator for predicate abstraction for indicating scope distinctions. The two systems will be shown to be equivalent through a translation between their respective languages. Advantages of the present approach over the alternatives are indicated in the discussion. (shrink)
The logics of formal inconsistency (LFIs, for short) are paraconsistent logics (that is, logics containing contradictory but non-trivial theories) having a consistency connective which allows to recover the ex falso quodlibet principle in a controlled way. The aim of this paper is considering a novel semantical approach to first-order LFIs based on Tarskian structures defined over swap structures, a special class of multialgebras. The proposed semantical framework generalizes previous aproaches to quantified LFIs presented in the literature. The case of QmbC, (...) the simpler quantified LFI expanding classical logic, will be analyzed in detail. An axiomatic extension of QmbC called QLFI1o is also studied, which is equivalent to the quantified version of da Costa and D'Ottaviano 3-valued logic J3. The semantical structures for this logic turn out to be Tarkian structures based on twist structures. The expansion of QmbC and QLFI1o with a standard equality predicate is also considered. (shrink)
One of the most expected properties of a logical system is that it can be algebraizable, in the sense that an algebraic counterpart of the deductive machinery could be found. Since the inception of da Costa's paraconsistent calculi, an algebraic equivalent for such systems have been searched. It is known that these systems are non self-extensional (i.e., they do not satisfy the replacement property). More than this, they are not algebraizable in the sense of Blok-Pigozzi. The same negative results hold (...) for several systems of the hierarchy of paraconsistent logics known as Logics of Formal Inconsistency (LFIs). Because of this, these logics are uniquely characterized by semantics of non-deterministic kind. This paper offers a solution for two open problems in the domain of paraconsistency, in particular connected to algebraization of LFIs, by obtaining several LFIs weaker than C1, each of one is algebraizable in the standard Lindenbaum-Tarski's sense by a suitable variety of Boolean algebras extended with operators. This means that such LFIs satisfy the replacement property. The weakest LFI satisfying replacement presented here is called RmbC, which is obtained from the basic LFI called mbC. Some axiomatic extensions of RmbC are also studied, and in addition a neighborhood semantics is defined for such systems. It is shown that RmbC can be defined within the minimal bimodal non-normal logic E+E defined by the fusion of the non-normal modal logic E with itself. Finally, the framework is extended to first-order languages. RQmbC, the quantified extension of RmbC, is shown to be sound and complete w.r.t. BALFI semantics. (shrink)
A number of authors have objected to the application of non-classical logic to problems in philosophy on the basis that these non-classical logics are usually characterised by a classical metatheory. In many cases the problem amounts to more than just a discrepancy; the very phenomena responsible for non-classicality occur in the field of semantics as much as they do elsewhere. The phenomena of higher order vagueness and the revenge liar are just two such examples. The aim of this paper is (...) to show that a large class of non-classical logics are strong enough to formulate their own model theory in a corresponding non-classical set theory. Specifically I show that adequate definitions of validity can be given for the propositional calculus in such a way that the metatheory proves, in the specified logic, that every theorem of the propositional fragment of that logic is validated. It is shown that in some cases it may fail to be a classical matter whether a given sentence is valid or not. One surprising conclusion for non-classical accounts of vagueness is drawn: there can be no axiomatic, and therefore precise, system which is determinately sound and complete. (shrink)
A moderately risk averse person may turn down a 50/50 gamble that either results in her winning $200 or losing $100. Such behaviour seems rational if, for instance, the pain of losing $100 is felt more strongly than the joy of winning $200. The aim of this paper is to examine an influential argument that some have interpreted as showing that such moderate risk aversion is irrational. After presenting an axiomatic argument that I take to be the strongest case (...) for the claim that moderate risk aversion is irrational, I show that it essentially depends on an assumption that those who think that risk aversion can be rational should be skeptical of. Hence, I conclude that risk aversion need not be irrational. (shrink)
Create an account to enable off-campus access through your institution's proxy server.
Monitor this page
Be alerted of all new items appearing on this page. Choose how you want to monitor it:
Email
RSS feed
About us
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.