Results for 'prediction'

952 found
Order:
  1.  79
    PREDICTING THE NEEDS OF EMOTIONAL SUPPORT AMONG FAMILY CAREGIVERS BY ANALYZING THE DEMANDED HEALTHCARE INFORMATION: INSIGHTS FROM FEMALE CANCER CAREGIVING.Sari Ni Putu Wulan Purnama, Minh-Phuong Thi Duong, Agustina Chriswinda Bura Mare, Minh-Hoang Nguyen & Quan-Hoang Vuong - manuscript
    In the last decade, the cases of breast and cervical cancer have been positioned at the top rank of cancer statistics worldwide. Consequently, many husbands become family caregivers (FCGs) and get the burden of cancer caregiving. Being blind and incompetent, they need supportive care from healthcare professionals (HCPs). To support them, HCPs provide various healthcare information to meet their needs. Further, their demand for a specific type of healthcare information may reflect their need for emotional support from the HCPs to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  2. Predicting Students' end-of-term Performances using ML Techniques and Environmental Data.Ahmed Mohammed Husien, Osama Hussam Eljamala, Waleed Bahgat Alwadia & Samy S. Abu-Naser - 2023 - International Journal of Academic Information Systems Research (IJAISR) 7 (10):19-25.
    Abstract: This study introduces a machine learning-based model for predicting student performance using a comprehensive dataset derived from educational sources, encompassing 15 key features and comprising 62,631 student samples. Our five-layer neural network demonstrated remarkable performance, achieving an accuracy of 89.14% and an average error of 0.000715, underscoring its effectiveness in predicting student outcomes. Crucially, this research identifies pivotal determinants of student success, including factors such as socio-economic background, prior academic history, study habits, and attendance patterns, shedding light on the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  3. Predictive coding and representationalism.Paweł Gładziejewski - 2016 - Synthese 193 (2).
    According to the predictive coding theory of cognition , brains are predictive machines that use perception and action to minimize prediction error, i.e. the discrepancy between bottom–up, externally-generated sensory signals and top–down, internally-generated sensory predictions. Many consider PCT to have an explanatory scope that is unparalleled in contemporary cognitive science and see in it a framework that could potentially provide us with a unified account of cognition. It is also commonly assumed that PCT is a representational theory of sorts, (...)
    Download  
     
    Export citation  
     
    Bookmark   85 citations  
  4.  73
    Predicting urban Heat Island in European cities: A comparative study of GRU, DNN, and ANN models using urban morphological variables.Alireza Attarhay Tehrani, Omid Veisi, Kambiz Kia, Yasin Delavar, Sasan Bahrami, Saeideh Sobhaninia & Asma Mehan - 2024 - Urban Climate 56 (102061):1-27.
    Continued urbanization, along with anthropogenic global warming, has and will increase land surface temperature and air temperature anomalies in urban areas when compared to their rural surroundings, leading to Urban Heat Islands (UHI). UHI poses environmental and health risks, affecting both psychological and physiological aspects of human health. Thus, using a deep learning approach that considers morphological variables, this study predicts UHI intensity in 69 European cities from 2007 to 2021 and projects UHI impacts for 2050 and 2080. The research (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5. Prediction versus accommodation in economics.Robert Northcott - 2019 - Journal of Economic Methodology 26 (1):59-69.
    Should we insist on prediction, i.e. on correctly forecasting the future? Or can we rest content with accommodation, i.e. empirical success only with respect to the past? I apply general considerations about this issue to the case of economics. In particular, I examine various ways in which mere accommodation can be sufficient, in order to see whether those ways apply to economics. Two conclusions result. First, an entanglement thesis: the need for prediction is entangled with the methodological role (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  6. Predictive Analysis of Lottery Outcomes Using Deep Learning and Time Series Analysis.Asil Mustafa Alghoul & Samy S. Abu-Naser - 2023 - International Journal of Engineering and Information Systems (IJEAIS) 7 (10):1-6.
    Abstract: Lotteries have long been a source of fascination and intrigue, offering the tantalizing prospect of unexpected fortunes. In this research paper, we delve into the world of lottery predictions, employing cutting-edge AI techniques to unlock the secrets of lottery outcomes. Our dataset, obtained from Kaggle, comprises historical lottery draws, and our goal is to develop predictive models that can anticipate future winning numbers. This study explores the use of deep learning and time series analysis to achieve this elusive feat. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  7. Unlocking Literary Insights: Predicting Book Ratings with Neural Networks.Mahmoud Harara & Samy S. Abu-Naser - 2023 - International Journal of Engineering and Information Systems (IJEAIS) 7 (10):22-27.
    Abstract: This research delves into the utilization of Artificial Neural Networks (ANNs) as a powerful tool for predicting the overall ratings of books by leveraging a diverse set of attributes. To achieve this, we employ a comprehensive dataset sourced from Goodreads, enabling us to thoroughly examine the intricate connections between the different attributes of books and the ratings they receive from readers. In our investigation, we meticulously scrutinize how attributes such as genre, author, page count, publication year, and reader reviews (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  8. Predicting Birth Weight Using Artificial Neural Network.Mohammed Al-Shawwa & Samy S. Abu-Naser - 2019 - International Journal of Academic Health and Medical Research (IJAHMR) 3 (1):9-14.
    In this research, an Artificial Neural Network (ANN) model was developed and tested to predict Birth Weight. A number of factors were identified that may affect birth weight. Factors such as smoke, race, age, weight (lbs) at last menstrual period, hypertension, uterine irritability, number of physician visits in 1st trimester, among others, as input variables for the ANN model. A model based on multi-layer concept topology was developed and trained using the data from some birth cases in hospitals. The evaluation (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  9. Does Predictive Sentencing Make Sense?Clinton Castro, Alan Rubel & Lindsey Schwartz - forthcoming - Inquiry: An Interdisciplinary Journal of Philosophy.
    This paper examines the practice of using predictive systems to lengthen the prison sentences of convicted persons when the systems forecast a higher likelihood of re-offense or re-arrest. There has been much critical discussion of technologies used for sentencing, including questions of bias and opacity. However, there hasn’t been a discussion of whether this use of predictive systems makes sense in the first place. We argue that it does not by showing that there is no plausible theory of punishment that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  10. Gender Prediction from Retinal Fundus Using Deep Learning.Ashraf M. Taha, Qasem M. M. Zarandah, Bassem S. Abu-Nasser, Zakaria K. D. AlKayyali & Samy S. Abu-Naser - 2022 - International Journal of Academic Information Systems Research (IJAISR) 6 (5):57-63.
    Deep learning may transform health care, but model development has largely been dependent on availability of advanced technical expertise. The aim of this study is to develop a deep learning model to predict the gender from retinal fundus images. The proposed model was based on the Xception pre-trained model. The proposed model was trained on 20,000 retinal fundus images from Kaggle depository. The dataset was preprocessed them split into three datasets (training, validation, Testing). After training and cross-validating the proposed model, (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  11. Predictive Policing and the Ethics of Preemption.Daniel Susser - 2021 - In Ben Jones & Eduardo Mendieta (eds.), The Ethics of Policing: New Perspectives on Law Enforcement. New York: NYU Press.
    The American justice system, from police departments to the courts, is increasingly turning to information technology for help identifying potential offenders, determining where, geographically, to allocate enforcement resources, assessing flight risk and the potential for recidivism amongst arrestees, and making other judgments about when, where, and how to manage crime. In particular, there is a focus on machine learning and other data analytics tools, which promise to accurately predict where crime will occur and who will perpetrate it. Activists and academics (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  12. Prediction and Topological Models in Neuroscience.Bryce Gessell, Matthew Stanley, Benjamin Geib & Felipe De Brigard - 2020 - In Fabrizio Calzavarini & Marco Viola (eds.), Neural Mechanisms: New Challenges in the Philosophy of Neuroscience. Springer.
    In the last two decades, philosophy of neuroscience has predominantly focused on explanation. Indeed, it has been argued that mechanistic models are the standards of explanatory success in neuroscience over, among other things, topological models. However, explanatory power is only one virtue of a scientific model. Another is its predictive power. Unfortunately, the notion of prediction has received comparatively little attention in the philosophy of neuroscience, in part because predictions seem disconnected from interventions. In contrast, we argue that topological (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  13. Predicting Fire Alarms in Smoke Detection using Neural Networks.Maher Wissam Attia, Baraa Akram Abu Zaher, Nidal Hassan Nasser, Ruba Raed Al-Hour, Aya Haider Asfour & Samy S. Abu-Naser - 2023 - International Journal of Academic Information Systems Research (IJAISR) 7 (10):26-33.
    Abstract: This research paper presents the development and evaluation of a neural network-based model for predicting fire alarms in smoke detection systems. Using a dataset from Kaggle containing 15 features and 3487 samples, we trained and validated a neural network with a three-layer architecture. The model achieved an accuracy of 100% and an average error of 0.0000003. Additionally, we identified the most influential features in predicting fire alarms.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  14. Diabetes Prediction Using Artificial Neural Network.Nesreen Samer El_Jerjawi & Samy S. Abu-Naser - 2018 - International Journal of Advanced Science and Technology 121:54-64.
    Diabetes is one of the most common diseases worldwide where a cure is not found for it yet. Annually it cost a lot of money to care for people with diabetes. Thus the most important issue is the prediction to be very accurate and to use a reliable method for that. One of these methods is using artificial intelligence systems and in particular is the use of Artificial Neural Networks (ANN). So in this paper, we used artificial neural networks (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  15. Predicting Carbon Dioxide Emissions in the Oil and Gas Industry.Yousef Mohammed Meqdad & Samy S. Abu-Naser - 2023 - International Journal of Academic Information Systems Research (IJAISR) 7 (10):34-40.
    Abstract: This study has effectively tackled the critical challenge of accurate calorie prediction in dishes by employing a robust neural network-based model. With an outstanding accuracy rate of 99.32% and a remarkably low average error of 0.009, our model has showcased its proficiency in delivering precise calorie estimations. This achievement equips individuals, healthcare practitioners, and the food industry with a powerful tool to promote healthier dietary choices and elevate awareness of nutrition. Furthermore, our in-depth feature importance analysis has shed (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  16. On Predicting.Fabrizio Cariani - forthcoming - Ergo: An Open Access Journal of Philosophy.
    I propose an account of the speech act of prediction that denies that the contents of prediction must be about the future and illuminates the relation between prediction and assertion. My account is a synthesis of two ideas: (i) that what is in the future in prediction is the time of discovery and (ii) that, as Benton and Turri recently argued, prediction is best characterized in terms of its constitutive norms.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  17. Is predictive processing a theory of perceptual consciousness?Tomas Marvan & Marek Havlík - 2021 - New Ideas in Psychology 61 (21).
    Predictive Processing theory, hotly debated in neuroscience, psychology and philosophy, promises to explain a number of perceptual and cognitive phenomena in a simple and elegant manner. In some of its versions, the theory is ambitiously advertised as a new theory of conscious perception. The task of this paper is to assess whether this claim is realistic. We will be arguing that the Predictive Processing theory cannot explain the transition from unconscious to conscious perception in its proprietary terms. The explanations offer (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  18.  96
    Teleosemantics, Structural Resemblance and Predictive Processing.Ross Alexander Pain & Stephen Francis Mann - 2024 - Erkenntnis:1-25.
    We propose a pluralist account of content for predictive processing systems. Our pluralism combines Millikan's teleosemantics with existing structural resemblance accounts. The paper has two goals. First, we outline how a teleosemantic treatment of signal passing in predictive processing systems would work, and how it integrates with structural resemblance accounts. We show that the core explanatory motivations and conceptual machinery of teleosemantics and predictive processing mesh together well. Second, we argue this pluralist approach expands the range of empirical cases to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  19. Predictive processing and perception: What does imagining have to do with it?Dan Cavedon-Taylor - 2022 - Consciousness and Cognition 106 (C):103419.
    Predictive processing (PP) accounts of perception are unique not merely in that they postulate a unity between perception and imagination. Rather, they are unique in claiming that perception should be conceptualised in terms of imagination and that the two involve an identity of neural implementation. This paper argues against this postulated unity, on both conceptual and empirical grounds. Conceptually, the manner in which PP theorists link perception and imagination belies an impoverished account of imagery as cloistered from the external world (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  20. Predicting Player Power In Fortnite Using Just Nueral Network.Al Fleet Muhannad Jamal Farhan & Samy S. Abu-Naser - 2023 - International Journal of Engineering and Information Systems (IJEAIS) 7 (9):29-37.
    Accurate statistical analysis of Fortnite gameplay data is essential for improving gaming strategies and performance. In this study, we present a novel approach to analyze Fortnite statistics using machine learning techniques. Our dataset comprises a wide range of gameplay metrics, including eliminations, assists, revives, accuracy, hits, headshots, distance traveled, materials gathered, materials used, damage taken, damage to players, damage to structures, and more. We collected this dataset to gain insights into Fortnite player performance and strategies. The proposed model employs advanced (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  21. Prediction in General Relativity.C. D. McCoy - 2017 - Synthese 194 (2):491-509.
    Several authors have claimed that prediction is essentially impossible in the general theory of relativity, the case being particularly strong, it is said, when one fully considers the epistemic predicament of the observer. Each of these claims rests on the support of an underdetermination argument and a particular interpretation of the concept of prediction. I argue that these underdetermination arguments fail and depend on an implausible explication of prediction in the theory. The technical results adduced in these (...)
    Download  
     
    Export citation  
     
    Bookmark  
  22. Predictive Processing and Object Recognition.Berit Brogaard & Thomas Alrik Sørensen - 2024 - In Tony Cheng, Ryoji Sato & Jakob Hohwy (eds.), Expected Experiences: The Predictive Mind in an Uncertain World. Routledge. pp. 112–139.
    Predictive processing models of perception take issue with standard models of perception as hierarchical bottom-up processing modulated by memory and attention. The predictive framework posits that the brain generates predictions about stimuli, which are matched to the incoming signal. Mismatches between predictions and the incoming signal – so-called prediction errors – are then used to generate new and better predictions until the prediction errors have been minimized, at which point a perception arises. Predictive models hold that all bottom-up (...)
    Download  
     
    Export citation  
     
    Bookmark  
  23. Predictive Processing and Body Representation.Stephen Gadsby & Jakob Hohwy - 2022 - In Colin Chamberlain (ed.), Routledge Handbook of Bodily Awareness. London: Routledge.
    We introduce the predictive processing account of body representation, according to which body representation emerges via a domain-general scheme of (long-term) prediction error minimisation. We contrast this account against one where body representation is underpinned by domain-specific systems, whose exclusive function is to track the body. We illustrate how the predictive processing account offers considerable advantages in explaining various empirical findings, and we draw out some implications for body representation research.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  24. Predicting the Number of Calories in a Dish Using Just Neural Network.Sulafa Yhaya Abu Qamar, Shahed Nahed Alajjouri, Shurooq Hesham Abu Okal & Samy S. Abu-Naser - 2023 - International Journal of Academic Information Systems Research (IJAISR) 7 (10):1-9.
    Abstract: Heart attacks, or myocardial infarctions, are a leading cause of mortality worldwide. Early prediction and accurate analysis of potential risk factors play a crucial role in preventing heart attacks and improving patient outcomes. In this study, we conduct a comprehensive review of datasets related to heart attack analysis and prediction. We begin by examining the various types of datasets available for heart attack research, encompassing clinical, demographic, and physiological data. These datasets originate from diverse sources, including hospitals, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25. Predicting and Preferring.Nathaniel Sharadin - forthcoming - Inquiry: An Interdisciplinary Journal of Philosophy.
    The use of machine learning, or “artificial intelligence” (AI) in medicine is widespread and growing. In this paper, I focus on a specific proposed clinical application of AI: using models to predict incapacitated patients’ treatment preferences. Drawing on results from machine learning, I argue this proposal faces a special moral problem. Machine learning researchers owe us assurance on this front before experimental research can proceed. In my conclusion I connect this concern to broader issues in AI safety.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  26. (1 other version)Prediction of Heart Disease Using a Collection of Machine and Deep Learning Algorithms.Ali M. A. Barhoom, Abdelbaset Almasri, Bassem S. Abu-Nasser & Samy S. Abu-Naser - 2022 - International Journal of Engineering and Information Systems (IJEAIS) 6 (4):1-13.
    Abstract: Heart diseases are increasing daily at a rapid rate and it is alarming and vital to predict heart diseases early. The diagnosis of heart diseases is a challenging task i.e. it must be done accurately and proficiently. The aim of this study is to determine which patient is more likely to have heart disease based on a number of medical features. We organized a heart disease prediction model to identify whether the person is likely to be diagnosed with (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  27. Predicting Audit Risk Using Neural Networks: An In-depth Analysis.Dana O. Abu-Mehsen, Mohammed S. Abu Nasser, Mohammed A. Hasaballah & Samy S. Abu-Naser - 2023 - International Journal of Academic Information Systems Research (IJAISR) 7 (10):48-56.
    Abstract: This research paper presents a novel approach to predict audit risks using a neural network model. The dataset used for this study was obtained from Kaggle and comprises 774 samples with 18 features, including Sector_score, PARA_A, SCORE_A, PARA_B, SCORE_B, TOTAL, numbers, marks, Money_Value, District, Loss, Loss_SCORE, History, History_score, score, and Risk. The proposed neural network architecture consists of three layers, including one input layer, one hidden layer, and one output layer. The neural network model was trained and validated, achieving (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  28. The prediction of future behavior: The empty promises of expert clinical and actuarial testimony.Andrés Páez - 2016 - Teoria Jurídica Contemporânea 1 (1):75-101.
    Testimony about the future dangerousness of a person has become a central staple of many judicial processes. In settings such as bail, sentencing, and parole decisions, in rulings about the civil confinement of the mentally ill, and in custody decisions in a context of domestic violence, the assessment of a person’s propensity towards physical or sexual violence is regarded as a deciding factor. These assessments can be based on two forms of expert testimony: actuarial or clinical. The purpose of this (...)
    Download  
     
    Export citation  
     
    Bookmark  
  29. Predicting Kidney Stone Presence from Urine Analysis: A Neural Network Approach using JNN.Amira Jarghon & Samy S. Abu-Naser - 2023 - International Journal of Academic Information Systems Research (IJAISR) 7 (9):32-39.
    Kidney stones pose a significant health concern, and early detection can lead to timely intervention and improved patient outcomes. This research endeavours to predict the presence of kidney stones based on urine analysis, utilizing a neural network model. A dataset of 552 urine specimens, comprising six essential physical characteristics (specific gravity, pH, osmolarity, conductivity, urea concentration, and calcium concentration), was collected and prepared. Our proposed neural network architecture, featuring three layers (input, hidden, output), was trained and validated, achieving an impressive (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  30. Social Prediction and the "Allegiance Bias".Keith Markman & Edward Hirt - 2002 - Social Cognition 20 (1):58-86.
    Two studies examined the allegiance bias – the rendering of biased predictions by individuals who are psychologically invested in a desired outcome. In Study 1, fans of either Notre Dame or University of Miami college football read information about an upcoming game between the two teams and then explained a hypothetical victory either by Notre Dame or Miami. Although explaining a hypothetical victory biased the judgments of controls (i.e., fans of neither team) in the direction of the team explained, the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  31. The Cost of Prediction.Johannes Lenhard, Simon Stephan & Hans Hasse - manuscript
    This paper examines a looming reproducibility crisis in the core of the hard sciences. Namely, it concentrates on molecular modeling and simulation (MMS), a family of methods that predict properties of substances through computing interactions on a molecular level and that is widely popular in physics, chemistry, materials science, and engineering. The paper argues that in order to make quantitative predictions, sophisticated models are needed which have to be evaluated with complex simulation procedures that amalgamate theoretical, technological, and social factors (...)
    Download  
     
    Export citation  
     
    Bookmark  
  32. Prediction in Social Science - The Case of Research on the Human Resource Management-Organisational Performance Link.SteveAnthony FleetwoodHesketh - 2006 - Journal of Critical Realism 5 (2):228-250.
    _ Source: _Volume 5, Issue 2, pp 228 - 250 Despite inroads made by critical realism against the ‘scientific method’ in social science, the latter remains strong in subject-areas like human resource management. One argument for the alleged superiority of the scientific method lies in the taken-for-granted belief that it alone can formulate empirically testable predictions. Many of those who employ the scientific method are, however, confused about the way they understand and practice prediction. This paper takes as a (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  33. Predicting Life Expectancy in Diverse Countries Using Neural Networks: Insights and Implications.Alaa Mohammed Dawoud & Samy S. Abu-Naser - 2023 - International Journal of Academic Engineering Research (IJAER) 7 (9):45-54.
    Life expectancy prediction, a pivotal facet of public health and policy formulation, has witnessed remarkable advancements owing to the integration of neural network models and comprehensive datasets. In this research, we present an innovative approach to forecasting life expectancy in diverse countries. Leveraging a neural network architecture, our model was trained on a dataset comprising 22 distinct features, acquired from Kaggle, and encompassing key health indicators, socioeconomic metrics, and cultural attributes. The model demonstrated exceptional predictive accuracy, attaining an impressive (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  34. Predictive processing and anti-representationalism.Marco Facchin - 2021 - Synthese 199 (3-4):11609-11642.
    Many philosophers claim that the neurocomputational framework of predictive processing entails a globally inferentialist and representationalist view of cognition. Here, I contend that this is not correct. I argue that, given the theoretical commitments these philosophers endorse, no structure within predictive processing systems can be rightfully identified as a representational vehicle. To do so, I first examine some of the theoretical commitments these philosophers share, and show that these commitments provide a set of necessary conditions the satisfaction of which allows (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  35. Energy Efficiency Prediction using Artificial Neural Network.Ahmed J. Khalil, Alaa M. Barhoom, Bassem S. Abu-Nasser, Musleh M. Musleh & Samy S. Abu-Naser - 2019 - International Journal of Academic Pedagogical Research (IJAPR) 3 (9):1-7.
    Buildings energy consumption is growing gradually and put away around 40% of total energy use. Predicting heating and cooling loads of a building in the initial phase of the design to find out optimal solutions amongst different designs is very important, as ell as in the operating phase after the building has been finished for efficient energy. In this study, an artificial neural network model was designed and developed for predicting heating and cooling loads of a building based on a (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  36. When are Purely Predictive Models Best?Robert Northcott - 2017 - Disputatio 9 (47):631-656.
    Can purely predictive models be useful in investigating causal systems? I argue ‘yes’. Moreover, in many cases not only are they useful, they are essential. The alternative is to stick to models or mechanisms drawn from well-understood theory. But a necessary condition for explanation is empirical success, and in many cases in social and field sciences such success can only be achieved by purely predictive models, not by ones drawn from theory. Alas, the attempt to use theory to achieve explanation (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  37. Cognitive Penetration and Predictive Coding: A Commentary on Lupyan.Fiona Macpherson - 2015 - Review of Philosophy and Psychology 6 (4):571-584.
    The main aim of Lupyan’s paper is to claim that perception is cognitively penetrated and that this is consistent with the idea of perception as predictive coding. In these remarks I will focus on what Lupyan says about whether perception is cognitively penetrated, and set aside his remarks about epistemology. I have argued (2012) that perception can be cognitively penetrated and so I am sympathetic to Lupyan’s overall aim of showing that perception is cognitively penetrable. However, I will be critical (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  38. Predicting Tumor Category Using Artificial Neural Networks.Ibrahim M. Nasser & Samy S. Abu-Naser - 2019 - International Journal of Academic Health and Medical Research (IJAHMR) 3 (2):1-7.
    In this paper an Artificial Neural Network (ANN) model, for predicting the category of a tumor was developed and tested. Taking patients’ tests, a number of information gained that influence the classification of the tumor. Such information as age, sex, histologic-type, degree-of-diffe, status of bone, bone-marrow, lung, pleura, peritoneum, liver, brain, skin, neck, supraclavicular, axillar, mediastinum, and abdominal. They were used as input variables for the ANN model. A model based on the Multilayer Perceptron Topology was established and trained using (...)
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  39. Predictive Processing and the Phenomenology of Time Consciousness: A Hierarchical Extension of Rick Grush’s Trajectory Estimation Model.Wanja Wiese - 2017 - Philosophy and Predictive Processing.
    This chapter explores to what extent some core ideas of predictive processing can be applied to the phenomenology of time consciousness. The focus is on the experienced continuity of consciously perceived, temporally extended phenomena (such as enduring processes and successions of events). The main claim is that the hierarchy of representations posited by hierarchical predictive processing models can contribute to a deepened understanding of the continuity of consciousness. Computationally, such models show that sequences of events can be represented as states (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  40. Artificial Neural Network for Predicting COVID 19 Using JNN.Walaa Hasan, Mohammed S. Abu Nasser, Mohammed A. Hasaballah & Samy S. Abu-Naser - 2023 - International Journal of Academic Engineering Research (IJAER) 7 (10):41-47.
    Abstract: The emergence of the novel coronavirus (COVID-19) in 2019 has presented the world with an unprecedented global health crisis. The rapid and widespread transmission of the virus has strained healthcare systems, disrupted economies, and challenged societies. In response to this monumental challenge, the intersection of technology and healthcare has become a focal point for innovation. This research endeavors to leverage the capabilities of Artificial Neural Networks (ANNs) to develop an advanced predictive model for forecasting the spread of COVID-19. It (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  41. Predicting COVID-19 Using JNN.Mohammad S. Mattar & Samy S. Abu-Naser - 2023 - International Journal of Academic Engineering Research (IJAER) 7 (10):52-61.
    Abstract: In, this research embodies the spirit of interdisciplinary collaboration, bringing together data science, healthcare, and public health to address one of the most significant global health challenges in recent history. The achievements of this study underscore the potential of advanced machine learning techniques to enhance our understanding of the pandemic and guide effective decision-making. As we navigate the ongoing battle against COVID-19 and prepare for future health emergencies, the lessons learned from this research serve as a testament to the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  42. Predictive coding and religious belief.Hans Van Eyghen - 2018 - Filosofia Unisinos 19 (3).
    In this paper I investigate the epistemic implications of a recent theory of religious cognition that draws on predictive coding. The theory argues that certain experiences are heavily shaped by a subject’s prior (religious) beliefs and thereby makes religious believers prone to detect invisible agents. The theory is an update of older theories of religious cognition but departs from them in crucial ways. I will assess the epistemic implications by reformulating existing arguments based on other (older) theories of religious cognition.
    Download  
     
    Export citation  
     
    Bookmark  
  43. Assertion, knowledge and predictions.Matthew Benton - 2012 - Analysis 72 (1):102-105.
    John N. Williams (1994) and Matthew Weiner (2005) invoke predictions in order to undermine the normative relevance of knowledge for assertions; in particular, Weiner argues, predictions are important counterexamples to the Knowledge Account of Assertion (KAA). I argue here that they are not true counterexamples at all, a point that can be agreed upon even by those who reject KAA.
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  44. Bayes, predictive processing, and the cognitive architecture of motor control.Daniel C. Burnston - 2021 - Consciousness and Cognition 96 (C):103218.
    Despite their popularity, relatively scant attention has been paid to the upshot of Bayesian and predictive processing models of cognition for views of overall cognitive architecture. Many of these models are hierarchical ; they posit generative models at multiple distinct "levels," whose job is to predict the consequences of sensory input at lower levels. I articulate one possible position that could be implied by these models, namely, that there is a continuous hierarchy of perception, cognition, and action control comprising levels (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  45. Prediction, Authority, and Entitlement in Shared Activity.Abraham Sesshu Roth - 2013 - Noûs 48 (4):626-652.
    Shared activity is often simply willed into existence by individuals. This poses a problem. Philosophical reflection suggests that shared activity involves a distinctive, interlocking structure of intentions. But it is not obvious how one can form the intention necessary for shared activity without settling what fellow participants will do and thereby compromising their agency and autonomy. One response to this problem suggests that an individual can have the requisite intention if she makes the appropriate predictions about fellow participants. I argue (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  46. Trust, Predictability and Lasting Peace.Jovan Babić - 2015 - Facta Universitatis, Series: Philosophy, Sociology, Psychology and History 14 (No 1):1 – 14.
    The main focus in the paper is the connection between trust and peace which makes predictability as a necessary condition of the normalcy of life possible, especially collective and communal life. Peace is defined as a specific articulation of the distribution of (political) power within a society. Peace defined in such a way requires a set of rules (norms, or laws) needed for the stability of the established social state of affairs. The main purpose of those norms, laws, is to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  47. Subliminal enhancement of predictive effects during syntactic processing in the left inferior frontal gyrus: an MEG study.Kazuki Iijima & Kuniyoshi L. Sakai - 2014 - Frontiers in Systems Neuroscience 8 (217):01-14.
    Predictive syntactic processing plays an essential role in language comprehension. In our previous study using Japanese object-verb (OV) sentences, we showed that the left inferior frontal gyrus (IFG) responses to a verb increased at 120–140 ms after the verb onset, indicating predictive effects caused by a preceding object. To further elucidate the automaticity of the predictive effects in the present magnetoencephalography study, we examined whether a subliminally presented verb (“subliminal verb”) enhanced the predictive effects on the sentence-final verb (“target verb”) (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  48. Experiential fantasies, prediction, and enactive minds.Michael David Kirchhoff - 2015 - Journal of Consciousness Studies 22 (3-4):68-92.
    A recent surge of work on prediction-driven processing models--based on Bayesian inference and representation-heavy models--suggests that the material basis of conscious experience is inferentially secluded and neurocentrically brain bound. This paper develops an alternative account based on the free energy principle. It is argued that the free energy principle provides the right basic tools for understanding the anticipatory dynamics of the brain within a larger brain-body-environment dynamic, viewing the material basis of some conscious experiences as extensive--relational and thoroughly world-involving.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  49. (1 other version)Prediction, history and political science.Robert Northcott - 2022 - In Harold Kincaid & Jeroen van Bouwel (eds.), The Oxford Handbook of Philosophy of Political Science. New York: Oxford University Press.
    To succeed, political science usually requires either prediction or contextual historical work. Both of these methods favor explanations that are narrow-scope, applying to only one or a few cases. Because of the difficulty of prediction, the main focus of political science should often be contextual historical work. These epistemological conclusions follow from the ubiquity of causal fragility, under-determination, and noise. They tell against several practices that are widespread in the discipline: wide-scope retrospective testing, such as much large-n statistical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  50. Predictive Modeling of Smoke Potential Using Neural Networks and Environmental Data.Abu Al-Reesh Kamal Ali, Al-Safadi Muhammad Nidal, Al-Tanani Waleed Sami & Samy S. Abu-Naser - 2023 - International Journal of Engineering and Information Systems (IJEAIS) 7 (9):38-46.
    This study presents a neural network-based model for predicting smoke potential in a specific area using a Kaggle-derived dataset with 15 environmental features and 62,631 samples. Our five-layer neural network achieved an accuracy of 89.14% and an average error of 0.000715, demonstrating its effectiveness. Key influential features, including temperature, humidity, crude ethanol, pressure, NC1.0, NC2.5, SCNT, and PM2.5, were identified, providing insights into smoke occurrence. This research aids in proactive smoke mitigation and public health protection. The model's accuracy and feature (...)
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 952