I offer an account of how the quantumtheory we have helps us explain so much. The account depends on a pragmatist interpretation of the theory: this takes a quantum state to serve as a source of sound advice to physically situated agents on the content and appropriate degree of belief about matters concerning which they are currently inevitably ignorant. The general account of how to use quantum states and probabilities to explain otherwise puzzling regularities (...) is then illustrated by showing how we can explain single-particle interference phenomena, the stability of matter, and interference of Bose–Einstein condensates. Finally, I note some open problems and relate this account to alternative approaches to explanation that emphasize the importance of causation, of unification, and of structure. 1 Introduction2 Two Requirements on Explanations in Physics3 What We Can use QuantumTheory to Explain4 The Function of Quantum States and Born Probabilities5 How These Functions Contribute to the Explanatory Task6 Example One: Single-Particle Interference7 Example Two: Explanation of the Stability of Matter8 Example Three: Bose Condensation9 Conclusion. (shrink)
There is a consistent and simple interpretation of the quantumtheory of isolated systems. The interpretation suffers no measurement problem and provides a quantum explanation of state reduction, which is usually postulated. Quantum entanglement plays an essential role in the construction of the interpretation.
Measures and theories of information abound, but there are few formalised methods for treating the contextuality that can manifest in different information systems. Quantumtheory provides one possible formalism for treating information in context. This paper introduces a quantum inspired model of the human mental lexicon. This model is currently being experimentally investigated and we present a preliminary set of pilot data suggesting that concept combinations can indeed behave non-separably.
Bohm and Hiley suggest that a certain new type of active information plays a key objective role in quantum processes. This paper discusses the implications of this suggestion to our understanding of the relation between the mental and the physical aspects of reality.
It is usually taken for granted that orthodox quantumtheory poses a serious problem for scientific realism, in that the theory is empirically extraordinarily successful, and yet has instrumentalism built into it. This paper stand this view on its head. I argue that orthodox quantumtheory suffers from a number of serious (if not always noticed) defects precisely because of its inbuilt instrumentalism. This defective character of orthdoox quantumtheory thus undermines instrumentalism, and (...) supports scientific realism. I go on to consider whether there is here the basis of a general argument against instrumentalism. (shrink)
The received view in physicalist philosophy of mind assumes that causation can only take place at the physical domain and that the physical domain is causally closed. It is often thought that this leaves no room for mental states qua mental to have a causal influence upon the physical domain, leading to epiphenomenalism and the problem of mental causation. However, in recent philosophy of causation there has been growing interest in a line of thought that can be called causal antifundamentalism: (...) causal notions cannot play a role in physics, because the fundamental laws of physics are radically different from causal laws. Causal anti-fundamentalism seems to challenge the received view in physicalist philosophy of mind and thus raises the possibility of there being genuine mental causation after all. This paper argues that while causal anti-fundamentalism provides a possible route to mental causation, we have reasons to think that it is incorrect. Does this mean that we have to accept the received view and give up the hope of genuine mental causation? I will suggest that the ontological interpretation of quantumtheory provides us both with a view about the nature of causality in fundamental physics, as well as a view how genuine mental causation can be compatible with our fundamental (quantum) physical ontology. (shrink)
Genesis of the early quantumtheory represented by Planck’s 1897-1906 papers is considered. It is shown that the first quantum theoretical schemes were constructed as crossbreed ones composed from ideal models and laws of Maxwellian electrodynamics, Newtonian mechanics, statistical mechanics and thermodynamics. Ludwig Boltzmann’s ideas and technique appeared to be crucial. Deriving black-body radiation law Max Planck had to take the experimental evidence into account. It forced him not to deduce from phenomena but to use more (...) class='Hi'>theory instead. The experiments forced Planck to apply the statistical technique to radiation in increasing portions. Planck’s theories in no way were generalizations of existing experimental results. They represented the stages of an ambitious programme of Maxwellian electrodynamics and statistical mechanics reconciliation. (shrink)
In 1957, Feyerabend delivered a paper titled “On the quantum‐theory of measurement” at the Colston Research Symposium in Bristol to sketch a completion of von Neumann’s measurement scheme without collapse, using only unitary quantum dynamics and well‐motivated statistical assumptions about macroscopic quantum systems. Feyerabend’s paper has been recognized as an early contribution to quantum measurement, anticipating certain aspects of decoherence. Our paper reassesses the physical and philosophical content of Feyerabend’s contribution, detailing the technical steps as (...) well as its overall philosophical motivations and consequences. Summarizing our results, Feyerabend interpreted collapse as a positivist assumption in quantum mechanics leading to a strict distinction between the uninterpreted formalism of unitary evolution in quantum mechanics and the classically interpreted observational language describing post‐measurement outcomes. Thus, Feyerabend took his the no‐collapse completion of the von Neumann measurement scheme to shows the dispensability of the positivist assumption, leading the way to a realistic interpretation of quantumtheory. We note, however, that there are substantial problems with his account of measurement that bring into question its viability as a legitimate foil to the orthodox view. We further argue that his dissatisfaction with the von Neumann measurement scheme is indicative of early views on theoretical pluralism. (shrink)
We summarize a new realist, unextravagant interpretation of quantumtheory that builds on the existing physical structure of the theory and allows experiments to have definite outcomes but leaves the theory's basic dynamical content essentially intact. Much as classical systems have specific states that evolve along definite trajectories through configuration spaces, the traditional formulation of quantumtheory permits assuming that closed quantum systems have specific states that evolve unitarily along definite trajectories through Hilbert (...) spaces, and our interpretation extends this intuitive picture of states and Hilbert-space trajectories to the more realistic case of open quantum systems despite the generic development of entanglement. Our interpretation—which we claim is ultimately compatible with Lorentz invariance—reformulates wave-function collapse in terms of an underlying interpolating dynamics, makes it possible to derive the Born rule from deeper principles, and resolves several open questions regarding ontological stability and dynamics. (shrink)
We introduce a realist, unextravagant interpretation of quantumtheory that builds on the existing physical structure of the theory and allows experiments to have definite outcomes but leaves the theory’s basic dynamical content essentially intact. Much as classical systems have specific states that evolve along definite trajectories through configuration spaces, the traditional formulation of quantumtheory permits assuming that closed quantum systems have specific states that evolve unitarily along definite trajectories through Hilbert spaces, (...) and our interpretation extends this intuitive picture of states and Hilbert-space trajectories to the more realistic case of open quantum systems despite the generic development of entanglement. We provide independent justification for the partial-trace operation for density matrices, reformulate wave-function collapse in terms of an underlying interpolating dynamics, derive the Born rule from deeper principles, resolve several open questions regarding ontological stability and dynamics, address a number of familiar no-go theorems, and argue that our interpretation is ultimately compatible with Lorentz invariance. Along the way, we also investigate a number of unexplored features of quantumtheory, including an interesting geometrical structure—which we call subsystem space—that we believe merits further study. We conclude with a summary, a list of criteria for future work on quantum foundations, and further research directions. We include an appendix that briefly reviews the traditional Copenhagen interpretation and the measurement problem of quantumtheory, as well as the instrumentalist approach and a collection of foundational theorems not otherwise discussed in the main text. (shrink)
Stapp and others have proposed that reality involves a fundamental life process, or creative process. It is shown how this process description may be unified with the description that derives from quantum physics. The methods of the quantum physicist and of the biological sciences are seen to be two alternative approaches to the understanding of nature, involving two distinct modes of description which can usefully supplement each other, and neither on its own contains the full story. The unified (...) view explains the major features of quantum mechanics and suggests that biological systems may function more effectively than would be expected on the basis of quantum mechanics alone. (shrink)
In the Critique of Pure Reason Kant argues that the empirical knowledge of the world depends on a priori conditions of human sensibility and understanding, i. e., our capacities of sense experience and concept formation. The objective knowledge presupposes, on one hand, space and time as a priori conditions of sensibility and, on another hand, a priori judgments, like the principle of causality, as constitutive conditions of understanding. The problem is that in the XX century the physical science completely changed (...) how we conceive our knowledge of the world. Face to this new situation, what was changed in our classical reason? However, if the transcendental point of view is adopted, in the specific case of quantum mechanics, we have to wonder about the general conditions of this theory that make possible such knowledge, which predictive value is much more accurate than the classical physics. The aim of this work is firstly to show the Kantian implications on Bohr’s interpretation of quantum phenomena and secondly to provide an overview of the key elements for understanding the transcendental locus of ordinary language in the quantum mechanics context, in order to give support to a transcendental pragmatic position in the analysis of science. (shrink)
The number of independent messages a physical system can carry is limited by the number of its adjustable properties. In particular, systems that have only one adjustable property cannot carry more than a single message at a time. We demonstrate this is the case for the single photons in the double-slit experiment, and the root of the fundamental limit on measuring the complementary aspect of the photons. Next, we analyze the other ‘quantal’ behavior of the systems with a single adjustable (...) property, such as noncommutativity and no-cloning. Finally, we formulate a mathematical theory to describe the dynamics of such systems and derive the standard Hilbert-space formalism of quantum mechanics. Our derivation demonstrates the physical foundation of the quantumtheory. (shrink)
I look at the distinction between between realist and antirealist views of the quantum state. I argue that this binary classification should be reconceived as a continuum of different views about which properties of the quantum state are representationally significant. What's more, the extreme cases -- all or none --- are simply absurd, and should be rejected by all parties. In other words, no sane person should advocate extreme realism or antirealism about the quantum state. And if (...) we focus on the reasonable views, it's no longer clear who counts as a realist, and who counts as an antirealist. Among those taking a more reasonable intermediate view, we find figures such as Bohr and Carnap -- in stark opposition to the stories we've been told. (shrink)
David Bohm, in his "causal theory", made the correct Hegelian synthesis of Einstein's thesis that there is a "there" there, and Bohr's antithesis of "thinglessness" (Nick Herbert’s term). Einstein was a materialist and Bohr was an idealist. Bohm showed that quantum reality has both. This is “physical dualism” (my term). Physical dualism may be a low energy approximation to a deeper monism of cosmic consciousness called "the super-implicate order" (Bohm and Hiley’s term), “pregeometry” (Wheeler’s term), “substratum” (Dirac’s term), (...) “funda-MENTAL space” (Hameroff’s term), “Chi” (Chinese medicine & Falun Gong) etc., but for our immediate pragmatic purpose of constructing naturally conscious nano-computers and of virtually reverse engineering alleged reports of propellantless UFO propulsion (French Intelligence Report, 1999 [email protected] Vol. 5, No. 11, Part 1 -- August 1, 1999 & NIDS report "Best UFO Cases - Europe", I. Von Ludwiger) to the stars and beyond, physical dualism will work. (shrink)
Some variants of quantumtheory theorize dogmatic "unimodal" states-of-being, and are based on hodge-podge classical-quantum language. They are based on ontic syntax, but pragmatic semantics. This error was termed semantic inconsistency [1]. Measurement seems to be central problem of these theories, and widely discussed in their interpretation. Copenhagen theory deviates from this prescription, which is modeled on experience. A complete quantum experiment is "bimodal". An experimenter creates the system-under-study in initial mode of experiment, and annihilates (...) it in the final. The experimental intervention lies beyond the theory. I theorize most rudimentary bimodal quantum experiments studied by Finkelstein [2], and deduce "bimodal probability density" P=|In><Fin| to represent complete quantum experiments. It resembles core insights of the Copenhagen theory. (shrink)
Any realist interpretation of quantumtheory must grapple with the measurement problem and the status of state-vector collapse. In a no-collapse approach, measurement is typically modeled as a dynamical process involving decoherence. We describe how the minimal modal interpretation closes a gap in this dynamical description, leading to a complete and consistent resolution to the measurement problem and an effective form of state collapse. Our interpretation also provides insight into the indivisible nature of measurement—the fact that you can't (...) stop a measurement part-way through and uncover the underlying 'ontic' dynamics of the system in question. Having discussed the hidden dynamics of a system's ontic state during measurement, we turn to more general forms of open-system dynamics and explore the extent to which the details of the underlying ontic behavior of a system can be described. We construct a space of ontic trajectories and describe obstructions to defining a probability measure on this space. (shrink)
Two radically different views about time are possible. According to the first, the universe is three dimensional. It has a past and a future, but that does not mean it is spread out in time as it is spread out in the three dimensions of space. This view requires that there is an unambiguous, absolute, cosmic-wide "now" at each instant. According to the second view about time, the universe is four dimensional. It is spread out in both space and time (...) - in space-time in short. Special and general relativity rule out the first view. There is, according to relativity theory, no such thing as an unambiguous, absolute cosmic-wide "now" at each instant. However, we have every reason to hold that both special and general relativity are false. Not only does the historical record tell us that physics advances from one false theory to another. Furthermore, elsewhere I have shown that we must interpret physics as having established physicalism - in so far as physics can ever establish anything theoretical. Physicalism, here, is to be interpreted as the thesis that the universe is such that some unified "theory of everything" is true. Granted physicalism, it follows immediately that any physical theory that is about a restricted range of phenomena only, cannot be true, whatever its empirical success may be. It follows that both special and general relativity are false. This does not mean of course that the implication of these two theories that there is no unambiguous cosmic-wide "now" at each instant is false. It still may be the case that the first view of time, indicated at the outset, is false. Are there grounds for holding that an unambiguous cosmic-wide "now" does exist, despite special and general relativity, both of which imply that it does not exist? There are such grounds. Elsewhere I have argued that, in order to solve the quantum wave/particle problem and make sense of the quantum domain we need to interpret quantumtheory as a fundamentally probabilistic theory, a theory which specifies how quantum entities - electrons, photons, atoms - interact with one another probabilistically. It is conceivable that this is correct, and the ultimate laws of the universe are probabilistic in character. If so, probabilistic transitions could define unambiguous, absolute cosmic-wide "nows" at each instant. It is entirely unsurprising that special and general relativity have nothing to say about the matter. Both theories are pre-quantum mechanical, classical theories, and general relativity in particular is deterministic. The universe may indeed be three dimensional, with a past and a future, but not spread out in four dimensional space-time, despite the fact that relativity theories appear to rule this out. These considerations, finally, have implications for views about the arrow of time and free will. (shrink)
In this paper I put forward a new micro realistic, fundamentally probabilistic, propensiton version of quantumtheory. According to this theory, the entities of the quantum domain - electrons, photons, atoms - are neither particles nor fields, but a new kind of fundamentally probabilistic entity, the propensiton - entities which interact with one another probabilistically. This version of quantumtheory leaves the Schroedinger equation unchanged, but reinterprets it to specify how propensitons evolve when no (...) probabilistic transitions occur. Probabilisitic transitions occur when new "particles" are created as a result of inelastic interactions. All measurements are just special cases of this. This propensiton version of quantumtheory, I argue, solves the wave/particle dilemma, is free of conceptual problems that plague orthodox quantumtheory, recovers all the empirical success of orthodox quantumtheory, and at the same time yields as yet untested predictions that differ from those of orthodox quantumtheory. (shrink)
I propose a gentle reconciliation of QuantumTheory and General Relativity. It is possible to add small, but unshackling constraints to the quantum fields, making them compatible with General Relativity. Not all solutions of the Schrodinger's equation are needed. I show that the continuous and spatially separable solutions are sufficient for the nonlocal manifestations associated with entanglement and wavefunction collapse. After extending this idea to quantum fields, I show that Quantum Field Theory can be (...) defined in terms of partitioned classical fields. One key element is the idea of integral interactions, which also helps clarifying the quantum measurement and classical level problems. The unity of QuantumTheory and General Relativity can now be gained with the help of the partitioned fields' energy-momentum. A brief image of a General Relativistic Quantum Standard Model is outlined. (shrink)
Relationships between current theories, and relationships between current theories and the sought theory of quantum gravity (QG), play an essential role in motivating the need for QG, aiding the search for QG, and defining what would count as QG. Correspondence is the broad class of inter-theory relationships intended to demonstrate the necessary compatibility of two theories whose domains of validity overlap, in the overlap regions. The variety of roles that correspondence plays in the search for QG are (...) illustrated, using examples from specific QG approaches. Reduction is argued to be a special case of correspondence, and to form part of the definition of QG. Finally, the appropriate account of emergence in the context of QG is presented, and compared to conceptions of emergence in the broader philosophy literature. It is argued that, while emergence is likely to hold between QG and general relativity, emergence is not part of the definition of QG, and nor can it serve usefully in the development and justification of the new theory. (shrink)
To comprehend the special relativity genesis, one should unfold Einstein’s activities in quantumtheory first . His victory upon Lorentz’s approach can only be understood in the wider context of a general programme of unification of classical mechanics and classical electrodynamics, with relativity and quantumtheory being merely its subprogrammes. Because of the lack of quantum facets in Lorentz’s theory, Einstein’s programme, which seems to surpass the Lorentz’s one, was widely accepted as soon as (...)quantumtheory became a recognized part of physics. A new approach to special relativity genesis enables to broaden the bothering “Trinity” group of its creators to include Gilbert N. Lewis. Notwithstanding that the links necessarily existing between all the 1905 papers were obscured by Einstein himself due to the reasons discussed below, Lewis revealed from the very beginning the connections between special relativity and quasi-corpuscular theory of light, as he punctuated: “The consequences which one of us obtained from a simple assumption as to the mass of a beam of light, and the fundamental conservation of mass, energy and momentum, Einstein has derived from the principle of relativity and the electromagnetic theory” (Lewis G.N.& Tolman R.C. “The Principle of Relativity and Non-Newtonian Mechanics”, Philosophical Magazine, 1908). (shrink)
The objective of this article is to demonstrate how the historical debate between materialism and idealism, in the field of Philosophy, extends, in new clothes, to the field of Quantum Physics characterized by realism and anti-realism. For this, we opted for a debate, also historical, between the realism of Albert Einstein, for whom reality exists regardless of the existence of the knowing subject, and Niels Bohr, for whom we do not have access to the ultimate reality of the matter, (...) unless conditioning it to the existence of an observer endowed with rationality, position adopted in the Interpretation of Complementarity – posture that was expanded in 1935 when Bohr assumed a “relationalist” conception, according to which the quantum state is defined by the relationship between the quantum object and the entire measuring device. This is an extremely important debate, as it further consolidates the results of nascent Quantum Mechanics, guaranteeing Bohr the leadership of the orthodoxy based on the interpretation of complementarity. Here, when dealing with QuantumTheory, we will not make any distinction between the terms Quantum Physics, QuantumTheory or Quantum Mechanics. The entire discussion will be held under the name “QuantumTheory”. Theory that tries to analyze and describe the behavior of physical systems of reduced dimensions, close to the sizes of molecules, atoms and subatomic particles. We hope that the reader will appreciate the genius of these two titans in this field of Physics when they magnificently formulate the arguments that support the object of their defenses. (shrink)
Eternalism, the view that what we regard locally as being located in the past, the present and the future equally exists, is the best ontological account of temporal existence in line with special and general relativity. However, special and general relativity are not fundamental theories and several research programs aim at finding a more fundamental theory of quantum gravity weaving together all we know from relativistic physics and quantum physics. Interestingly, some of these approaches assert that time (...) is not fundamental. If time is not fundamental, what does it entail for eternalism and the standard debate over existence in time? First, I will argue that the non-fundamentality of time to be found in string theory entails standard eternalism. Second, I will argue that the non-fundamentality of time to be found in loop quantum gravity entails atemporal eternalism, namely a novel position in the spirit of standard eternalism. (shrink)
Most of us are either philosophically naïve scientists or scientifically naïve philosophers, so we misjudged Schrödinger’s “very burlesque” portrait of QuantumTheory (QT) as a profound conundrum. The clear signs of a strawman argument were ignored. The Ontic Probability Interpretation (TOPI) is a metatheory: a theory about the meaning of QT. Ironically, equating Reality with Actuality cannot explain actual data, justifying the century-long philosophical struggle. The actual is real but not everything real is actual. The ontic character (...) of the Probable has been elusive for so long because it cannot be grasped directly from experiment; it can only be inferred from physical setups that do not morph it into the Actual. Born’s Rule and the quantum formalism for the microworld are intuitively surmised from instances in our macroworld. The posited reality of the quanton’s probable states and properties is probed and proved. After almost a century, TOPI aims at setting the record straight: the so-called ‘Basis’ and ‘Measurement’ problems are ill-advised. About the first, all bases are legitimate regardless of state and milieu. As for the second, its premise is false: there is no need for a physical ‘collapse’ process that would convert many states into a single state. Under TOPI, a more sensible variant of the ‘measurement problem’ can be reformulated in non-anthropic terms as a real problem. Yet, as such, it is not part of QT per se and will be tackled in future papers. As for the mythical cat, the ontic state of a radioactive nucleus is not pure, so its evolution is not governed by Schrödinger’s equation -- let alone the rest of his “hellish machine”. Einstein was right: “The Lord is subtle but not malicious”. However, ‘The Lord’ turned out to be much subtler than what Einstein and Schrödinger could have ever accepted. Future articles will reveal how other ‘paradoxes of QT’ are fully explained under TOPI, showing its soundness and potential for nurturing further theoretical/technological advance. (shrink)
Twenty-first century science faces a dilemma. Two of its well-verified foundation stones - relativity and quantumtheory - have proven inconsistent. Resolution of the conflict has resisted improvements in experimental precision leaving some to believe that some fundamental understanding in our world-view may need modification or even radical reform. Employment of the wave-front model of electrodynamics, as a propagation process with a Markov property, may offer just such a clarification.
The notion of equality between two observables will play many important roles in foundations of quantumtheory. However, the standard probabilistic interpretation based on the conventional Born formula does not give the probability of equality between two arbitrary observables, since the Born formula gives the probability distribution only for a commuting family of observables. In this paper, quantum set theory developed by Takeuti and the present author is used to systematically extend the standard probabilistic interpretation of (...)quantumtheory to define the probability of equality between two arbitrary observables in an arbitrary state. We apply this new interpretation to quantum measurement theory, and establish a logical basis for the difference between simultaneous measurability and simultaneous determinateness. (shrink)
This proposal serves to enhance scientific and technological literacy, by promoting STEM (Science, Technology, Engineering, and Mathematics) education with particular reference to contemporary physics. The study is presented in the form of a repertoire, and it gives the reader a glimpse of the conceptual structure and development of quantumtheory along a rational line of thought, whose understanding might be the key to introducing young generations of students to physics.
Effective Field Theory (EFT) is the successful paradigm underlying modern theoretical physics, including the "Core Theory" of the Standard Model of particle physics plus Einstein's general relativity. I will argue that EFT grants us a unique insight: each EFT model comes with a built-in specification of its domain of applicability. Hence, once a model is tested within some domain (of energies and interaction strengths), we can be confident that it will continue to be accurate within that domain. Currently, (...) the Core Theory has been tested in regimes that include all of the energy scales relevant to the physics of everyday life (biology, chemistry, technology, etc.). Therefore, we have reason to be confident that the laws of physics underlying the phenomena of everyday life are completely known. (shrink)
We argue that human consciousness may be a property of single electron in the brain. We suppose that each electron in the universe has at least primitive consciousness. Each electron subjectively “observes” its quantum dynamics (energy, momentum, “shape” of wave function) in the form of sensations and other mental phenomena. However, some electrons in neural cells have complex “human” consciousnesses due to complex quantum dynamics in complex organic environment. We discuss neurophysiological and physical aspects of this hypothesis and (...) show that: (1) single chemically active electron has enough informational capacity to “contain” the richness of human subjective experience; (2) quantum states of some electrons might be directly influenced by human sensory data and have direct influence upon human behavior in real brain; (3) main physical and philosophical drawbacks of “conventional” “quantum theories of consciousness” may be solved by our hypothesis without much changes in their conceptual basis. We do not suggest any “new physics”, and our neuroscientific assumptions are similar to those used by other proponents of “quantum consciousness”. However, our hypothesis suggests radical changes in our view on human and physical reality. (shrink)
Ignited by Einstein and Bohr a century ago, the philosophical struggle about Reality is yet unfinished, with no signs of a swift resolution. Despite vast technological progress fueled by the iconic EPR paper (EPR), the intricate link between ontic and epistemic aspects of QuantumTheory (QT) has greatly hindered our grip on Reality and further progress in physical theory. Fallacies concealed by tortuous logical negations made EPR comprehension much harder than it could have been had Einstein written (...) it himself in German. It is plagued with preconceptions about what a physical property is, the 'Uncertainty Principle', and the Principle of Locality. Numerous interpretations of QT vis à vis Reality exist and are keenly disputed. This is the first of a series of articles arguing for a physical interpretation called ‘The Ontic Probability Interpretation’ (TOPI). A gradual explanation of TOPI is given intertwined with a meticulous logico-philosophical scrutiny of EPR. Part I focuses on the meaning of Einstein’s ‘Incompleteness’ claim. A conceptual confusion, a preconception about Reality, and a flawed dichotomy are shown to be severe obstacles for the EPR argument to succeed. Part II analyzes Einstein’s ‘Incompleteness/Nonlocality Dilemma’. Future articles will further explain TOPI, demonstrating its soundness and potential for nurturing theoretical progress. (shrink)
After pinpointing a conceptual confusion (TCC), a Reality preconception (TRP1), and a fallacious dichotomy (TFD), the famous EPR/EPRB argument for correlated ‘particles’ is studied in the light of the Ontic Probability Interpretation (TOPI) of QuantumTheory (QT). Another Reality preconception (TRP2) is identified, showing that EPR used and ignored QT predictions in a single paralogism. Employing TFD and TRP2, EPR unveiled a contradiction veiled in its premises. By removing nonlocality from QT’s Ontology by fiat, EPR preordained its incompleteness. (...) The Petitio Principii fallacy was at work from the outset. Einstein surmised the solution to his incompleteness/nonlocality dilemma in 1949, but never abandoned his philosophical stance. It is concluded that there are no definitions of Reality: we have to accept that Reality may not conform to our prejudices and, if an otherwise successful theory predicts what we do not believe in, no gedankenexperiment will help because our biases may slither through. Only actual experiments could assist in solving Einstein’s dilemma, as proven in the last 50 years. Notwithstanding, EPR is one of the most influential papers in history and has immensely sparked both conceptual and technological progress. Future articles will further explain TOPI, demonstrating its soundness and potential for nurturing theoretical advance. (shrink)
I propose a rational reconstruction of the early quantumtheory (1900–1913) in terms of the ideas presented by Ernst Cassirer. Specifically, I propose to reconsider the early quantumtheory through the lens of the method of conceptual functionalization that Ernst Cassirer laid down in his Substance and Function (S&F, 1910) and he later refined in Determinism and Indeterminism in Modern Physics (D&I, 1937). Following Cassirer’s functional interpretation of natural sciences, it is my primary concern to reconsider (...) the conceptual evolution of Planck’s quantum of action from 1900 to 1913. In this regard, I shall emphasize the importance of the quantum of action (Planck’s constant) in the architectonic structure of the early quantumtheory, in the role of an element of fundamental continuity between the first quantumtheory and the formulation by Niels Bohr of the first atomic theory. (shrink)
In the author’s previous contribution to this journal (Rosen 2015), a phenomenological string theory was proposed based on qualitative topology and hypercomplex numbers. The current paper takes this further by delving into the ancient Chinese origin of phenomenological string theory. First, we discover a connection between the Klein bottle, which is crucial to the theory, and the Ho-t’u, a Chinese number archetype central to Taoist cosmology. The two structures are seen to mirror each other in expressing the (...) psychophysical (phenomenological) action pattern at the heart of microphysics. But tackling the question of quantum gravity requires that a whole family of topological dimensions be brought into play. What we find in engaging with these structures is a closely related family of Taoist forebears that, in concert with their successors, provide a blueprint for cosmic evolution. Whereas conventional string theory accounts for the generation of nature’s fundamental forces via a notion of symmetry breaking that is essentially static and thus unable to explain cosmogony successfully, phenomenological/Taoist string theory entails the dialectical interplay of symmetry and asymmetry inherent in the principle of synsymmetry. This dynamic concept of cosmic change is elaborated on in the three concluding sections of the paper. Here, a detailed analysis of cosmogony is offered, first in terms of the theory of dimensional development and its Taoist (yin-yang) counterpart, then in terms of the evolution of the elemental force particles through cycles of expansion and contraction in a spiraling universe. The paper closes by considering the role of the analyst per se in the further evolution of the cosmos. (shrink)
The predominant approaches to understanding how quantumtheory and General Relativity are related to each other implicitly assume that both theories use the same concept of mass. Given that despite great efforts such approaches have not yet produced a consistent falsifiable quantumtheory of gravity, this paper entertains the possibility that the concepts of mass in the two theories are in fact distinct. It points out that if the concept of mass in quantum mechanics is (...) defined such that it always exists in a superposition and is not a gravitational source, then this sharply segregates the domains of quantumtheory and of general relativity. This concept of mass violates the equivalence principle applied to active gravitational mass, but may still produce effects consistent with the equivalence principle when applied to passive gravitational mass (in agreement with observations) by the correspondence principle applied to a weak field in the appropriate limit. An experiment that successfully measures the gravity field of quantum objects in a superposition, and in particular of photons, would not only falsify this distinction but also constitute the first direct empirical test that gravity must in fact be described fundamentally by a quantumtheory. (shrink)
This document is a set of notes I took on QFT as a graduate student at the University of Pennsylvania, mainly inspired in lectures by Burt Ovrut, but also working through Peskin and Schroeder (1995), as well as David Tong’s lecture notes available online. They take a slow pedagogical approach to introducing classical field theory, Noether’s theorem, the principles of quantum mechanics, scattering theory, and culminating in the derivation of Feynman diagrams.
This report reviews what quantum physics and information theory have to tell us about the age-old question, How come existence? No escape is evident from four conclusions: (1) The world cannot be a giant machine, ruled by any preestablished continuum physical law. (2) There is no such thing at the microscopic level as space or time or spacetime continuum. (3) The familiar probability function or functional, and wave equation or functional wave equation, of standard quantumtheory (...) provide mere continuum idealizations and by reason of this circumstance conceal the information-theoretic source from which they derive. (4) No element in the description of physics shows itself as closer to primordial than the elementary quantum phenomenon, that is, the elementary device-intermediated act of posing a yes-no physical question and eliciting an answer or, in brief, the elementary act of observer-participancy. Otherwise stated, every physical quantity, every it, derives its ultimate significance from bits, binary yes-or-no indications, a conclusion which we epitomize in the phrase, it from bit. (shrink)
THE PRINCIPLE OF SUPERPOSITION. The need for a quantumtheory Classical mechanics has been developed continuously from the time of Newton and applied to an ...
A fully micro realistic, propensity version of quantumtheory is proposed, according to which fundamental physical entities - neither particles nor fields - have physical characteristics which determine probabilistically how they interact with one another . The version of quantum "smearon" theory proposed here does not modify the equations of orthodox quantumtheory: rather, it gives a radically new interpretation to these equations. It is argued that there are strong general reasons for preferring (...) class='Hi'>quantum "smearon" theory to orthodox quantumtheory; the proposed change in physical interpretation leads quantum "smearon" theory to make experimental predictions subtly different from those of orthodox quantumtheory. Some possible crucial experiments are considered. (shrink)
In this paper I elicit a prediction from structural realism and compare it, not to a historical case, but to a contemporary scientific theory. If structural realism is correct, then we should expect physics to develop theories that fail to provide an ontology of the sort sought by traditional realists. If structure alone is responsible for instrumental success, we should expect surplus ontology to be eliminated. Quantum field theory (QFT) provides the framework for some of the best (...) confirmed theories in science, but debates over its ontology are vexed. Rather than taking a stand on these matters, the structural realist can embrace QFT as an example of just the kind of theory SR should lead us to expect. Yet, it is not clear that QFT meets the structuralist's positive expectation by providing a structure for the world. In particular, the problem of unitarily inequivalent representations threatens to undermine the possibility of QFT providing a unique structure for the world. In response to this problem, I suggest that the structuralist should endorse pluralism about structure. (shrink)
David Lewis is a natural target for those who believe that findings in quantum physics threaten the tenability of traditional metaphysical reductionism. Such philosophers point to allegedly holistic entities they take both to be the subjects of some claims of quantum mechanics and to be incompatible with Lewisian metaphysics. According to one popular argument, the non-separability argument from quantum entanglement, any realist interpretation of quantumtheory is straightforwardly inconsistent with the reductive conviction that the complete (...) physical state of the world supervenes on the intrinsic properties of and spatio-temporal relations between its point-sized constituents. Here I defend Lewis's metaphysical doctrine, and traditional reductionism more generally, against this alleged threat from quantum holism. After presenting the non-separability argument from entanglement, I show that Bohmian mechanics, an interpretation of quantum mechanics explicitly recognized as a realist one by proponents of the non-separability argument, plausibly rejects a key premise of that argument. Another holistic worry for Humeanism persists, however, the trouble being the apparently holistic character of the Bohmian pilot wave. I present a Humean strategy for addressing the holistic threat from the pilot wave by drawing on resources from the Humean best system account of laws. (shrink)
Why do photons and speeding electrons have both wave features and particle features when common sense tells us that they should be either particle or wave and not an amalgam of both? Part I of this paper deals with photons and argues that there are flaws in the assumptions we have made regarding their particle nature. The argument depends upon distinguishing between two identities of the photon, namely unstored energy and its stored (relativistic) mass. Part II extends these arguments to (...) the case of the speeding electron and argues that current ontological assumptions made about projectiles have exacerbated our confusion about the nature of moving electrons. When regarded ontologically, projectile motion is not as simple as has been assumed by both classical and modern physics. (shrink)
In the paper we will employ set theory to study the formal aspects of quantum mechanics without explicitly making use of space-time. It is demonstrated that von Neuman and Zermelo numeral sets, previously efectively used in the explanation of Hardy’s paradox, follow a Heisenberg quantum form. Here monadic union plays the role of time derivative. The logical counterpart of monadic union plays the part of the Hamiltonian in the commutator. The use of numerals and monadic union in (...) the classical probability resolution of Hardy’s paradox [1] is supported with the present derivation of a commutator for sets. (shrink)
Which way does causation proceed? The pattern in the material world seems to be upward: particles to molecules to organisms to brains to mental processes. In contrast, the principles of quantum mechanics allow us to see a pattern of downward causation. These new ideas describe sets of multiple levels in which each level influences the levels below it through generation and selection. Top-down causation makes exciting sense of the world: we can find analogies in psychology, in the formation of (...) our minds, in locating the source of consciousness, and even in the possible logic of belief in God. (shrink)
In the first part I argue that Buddhism and Hinduism can be unified by a Pure Consciousness thesis, which says that the nature of ultimate reality is an unconditioned and pure consciousness and that the phenomenal world is a mere appearance of pure consciousness. In the second part I argue that the Pure Consciousness thesis can be supported by an argument from quantum physics. According to our best scientific theories, the fundamental nature of reality consists of quantum fields, (...) and it seems that quantum fields have merely particle-like appearances—particles seem to be mere epiphenomena. This interpretation can be generalized. There appear to be individual entities, small and large, and their ontological reality is precisely what it appears to be—they are mere appearances. (shrink)
In this paper, I introduce an intrinsic account of the quantum state. This account contains three desirable features that the standard platonistic account lacks: (1) it does not refer to any abstract mathematical objects such as complex numbers, (2) it is independent of the usual arbitrary conventions in the wave function representation, and (3) it explains why the quantum state has its amplitude and phase degrees of freedom. -/- Consequently, this account extends Hartry Field’s program outlined in Science (...) Without Numbers (1980), responds to David Malament’s long-standing impossibility conjecture (1982), and establishes an important first step towards a genuinely intrinsic and nominalistic account of quantum mechanics. I will also compare the present account to Mark Balaguer’s (1996) nominalization of quantum mechanics and discuss how it might bear on the debate about “wave function realism.” In closing, I will suggest some possible ways to extend this account to accommodate spinorial degrees of freedom and a variable number of particles (e.g. for particle creation and annihilation). -/- Along the way, I axiomatize the quantum phase structure as what I shall call a “periodic difference structure” and prove a representation theorem as well as a uniqueness theorem. These formal results could prove fruitful for further investigation into the metaphysics of phase and theoretical structure. -/- (For a more recent version of this paper, please see "The Intrinsic Structure of Quantum Mechanics" available on PhilPapers.). (shrink)
A non-relativistic quantum mechanical theory is proposed that describes the universe as a continuum of worlds whose mutual interference gives rise to quantum phenomena. A logical framework is introduced to properly deal with propositions about objects in a multiplicity of worlds. In this logical framework, the continuum of worlds is treated in analogy to the continuum of time points; both “time” and “world” are considered as mutually independent modes of existence. The theory combines elements of Bohmian (...) mechanics and of Everett’s many-worlds interpretation; it has a clear ontology and a set of precisely defined postulates from where the predictions of standard quantum mechanics can be derived. Probability as given by the Born rule emerges as a consequence of insufficient knowledge of observers about which world it is that they live in. The theory describes a continuum of worlds rather than a single world or a discrete set of worlds, so it is similar in spirit to many-worlds interpretations based on Everett’s approach, without being actually reducible to these. In particular, there is no splitting of worlds, which is a typical feature of Everett-type theories. Altogether, the theory explains (1) the subjective occurrence of probabilities, (2) their quantitative value as given by the Born rule, and (3) the apparently random “collapse of the wavefunction” caused by the measurement, while still being an objectively deterministic theory. (shrink)
Create an account to enable off-campus access through your institution's proxy server.
Monitor this page
Be alerted of all new items appearing on this page. Choose how you want to monitor it:
Email
RSS feed
About us
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.