I offer an account of how the quantumtheory we have helps us explain so much. The account depends on a pragmatist interpretation of the theory: this takes a quantum state to serve as a source of sound advice to physically situated agents on the content and appropriate degree of belief about matters concerning which they are currently inevitably ignorant. The general account of how to use quantum states and probabilities to explain otherwise puzzling regularities (...) is then illustrated by showing how we can explain single-particle interference phenomena, the stability of matter, and interference of Bose–Einstein condensates. Finally, I note some open problems and relate this account to alternative approaches to explanation that emphasize the importance of causation, of unification, and of structure. 1 Introduction2 Two Requirements on Explanations in Physics3 What We Can use QuantumTheory to Explain4 The Function of Quantum States and Born Probabilities5 How These Functions Contribute to the Explanatory Task6 Example One: Single-Particle Interference7 Example Two: Explanation of the Stability of Matter8 Example Three: Bose Condensation9 Conclusion. (shrink)
Two radically different views about time are possible. According to the first, the universe is three dimensional. It has a past and a future, but that does not mean it is spread out in time as it is spread out in the three dimensions of space. This view requires that there is an unambiguous, absolute, cosmic-wide "now" at each instant. According to the second view about time, the universe is four dimensional. It is spread out in both space and time (...) - in space-time in short. Special and general relativity rule out the first view. There is, according to relativity theory, no such thing as an unambiguous, absolute cosmic-wide "now" at each instant. However, we have every reason to hold that both special and general relativity are false. Not only does the historical record tell us that physics advances from one false theory to another. Furthermore, elsewhere I have shown that we must interpret physics as having established physicalism - in so far as physics can ever establish anything theoretical. Physicalism, here, is to be interpreted as the thesis that the universe is such that some unified "theory of everything" is true. Granted physicalism, it follows immediately that any physical theory that is about a restricted range of phenomena only, cannot be true, whatever its empirical success may be. It follows that both special and general relativity are false. This does not mean of course that the implication of these two theories that there is no unambiguous cosmic-wide "now" at each instant is false. It still may be the case that the first view of time, indicated at the outset, is false. Are there grounds for holding that an unambiguous cosmic-wide "now" does exist, despite special and general relativity, both of which imply that it does not exist? There are such grounds. Elsewhere I have argued that, in order to solve the quantum wave/particle problem and make sense of the quantum domain we need to interpret quantumtheory as a fundamentally probabilistic theory, a theory which specifies how quantum entities - electrons, photons, atoms - interact with one another probabilistically. It is conceivable that this is correct, and the ultimate laws of the universe are probabilistic in character. If so, probabilistic transitions could define unambiguous, absolute cosmic-wide "nows" at each instant. It is entirely unsurprising that special and general relativity have nothing to say about the matter. Both theories are pre-quantum mechanical, classical theories, and general relativity in particular is deterministic. The universe may indeed be three dimensional, with a past and a future, but not spread out in four dimensional space-time, despite the fact that relativity theories appear to rule this out. These considerations, finally, have implications for views about the arrow of time and free will. (shrink)
It is usually taken for granted that orthodox quantumtheory poses a serious problem for scientific realism, in that the theory is empirically extraordinarily successful, and yet has instrumentalism built into it. This paper stand this view on its head. I argue that orthodox quantumtheory suffers from a number of serious (if not always noticed) defects precisely because of its inbuilt instrumentalism. This defective character of orthdoox quantumtheory thus undermines instrumentalism, and (...) supports scientific realism. I go on to consider whether there is here the basis of a general argument against instrumentalism. (shrink)
There is a consistent and simple interpretation of the quantumtheory of isolated systems. The interpretation suffers no measurement problem and provides a quantum explanation of state reduction, which is usually postulated. Quantum entanglement plays an essential role in the construction of the interpretation.
In the Critique of Pure Reason Kant argues that the empirical knowledge of the world depends on a priori conditions of human sensibility and understanding, i. e., our capacities of sense experience and concept formation. The objective knowledge presupposes, on one hand, space and time as a priori conditions of sensibility and, on another hand, a priori judgments, like the principle of causality, as constitutive conditions of understanding. The problem is that in the XX century the physical science completely changed (...) how we conceive our knowledge of the world. Face to this new situation, what was changed in our classical reason? However, if the transcendental point of view is adopted, in the specific case of quantum mechanics, we have to wonder about the general conditions of this theory that make possible such knowledge, which predictive value is much more accurate than the classical physics. The aim of this work is firstly to show the Kantian implications on Bohr’s interpretation of quantum phenomena and secondly to provide an overview of the key elements for understanding the transcendental locus of ordinary language in the quantum mechanics context, in order to give support to a transcendental pragmatic position in the analysis of science. (shrink)
I look at the distinction between between realist and antirealist views of the quantum state. I argue that this binary classification should be reconceived as a continuum of different views about which properties of the quantum state are representationally significant. What's more, the extreme cases -- all or none --- are simply absurd, and should be rejected by all parties. In other words, no sane person should advocate extreme realism or antirealism about the quantum state. And if (...) we focus on the reasonable views, it's no longer clear who counts as a realist, and who counts as an antirealist. Among those taking a more reasonable intermediate view, we find figures such as Bohr and Carnap -- in stark opposition to the stories we've been told. (shrink)
The received view in physicalist philosophy of mind assumes that causation can only take place at the physical domain and that the physical domain is causally closed. It is often thought that this leaves no room for mental states qua mental to have a causal influence upon the physical domain, leading to epiphenomenalism and the problem of mental causation. However, in recent philosophy of causation there has been growing interest in a line of thought that can be called causal antifundamentalism: (...) causal notions cannot play a role in physics, because the fundamental laws of physics are radically different from causal laws. Causal anti-fundamentalism seems to challenge the received view in physicalist philosophy of mind and thus raises the possibility of there being genuine mental causation after all. This paper argues that while causal anti-fundamentalism provides a possible route to mental causation, we have reasons to think that it is incorrect. Does this mean that we have to accept the received view and give up the hope of genuine mental causation? I will suggest that the ontological interpretation of quantumtheory provides us both with a view about the nature of causality in fundamental physics, as well as a view how genuine mental causation can be compatible with our fundamental (quantum) physical ontology. (shrink)
In this paper I put forward a new micro realistic, fundamentally probabilistic, propensiton version of quantumtheory. According to this theory, the entities of the quantum domain - electrons, photons, atoms - are neither particles nor fields, but a new kind of fundamentally probabilistic entity, the propensiton - entities which interact with one another probabilistically. This version of quantumtheory leaves the Schroedinger equation unchanged, but reinterprets it to specify how propensitons evolve when no (...) probabilistic transitions occur. Probabilisitic transitions occur when new "particles" are created as a result of inelastic interactions. All measurements are just special cases of this. This propensiton version of quantumtheory, I argue, solves the wave/particle dilemma, is free of conceptual problems that plague orthodox quantumtheory, recovers all the empirical success of orthodox quantumtheory, and at the same time yields as yet untested predictions that differ from those of orthodox quantumtheory. (shrink)
A fully micro realistic, propensity version of quantumtheory is proposed, according to which fundamental physical entities - neither particles nor fields - have physical characteristics which determine probabilistically how they interact with one another . The version of quantum "smearon" theory proposed here does not modify the equations of orthodox quantumtheory: rather, it gives a radically new interpretation to these equations. It is argued that there are strong general reasons for preferring (...) class='Hi'>quantum "smearon" theory to orthodox quantumtheory; the proposed change in physical interpretation leads quantum "smearon" theory to make experimental predictions subtly different from those of orthodox quantumtheory. Some possible crucial experiments are considered. (shrink)
We discuss the fate of the correspondence principle beyond quantum mechanics, specifically in quantum field theory and quantum gravity, in connection with the intrinsic limitations of the human ability to observe the external world. We conclude that the best correspondence principle is made of unitarity, locality, proper renormalizability (a refinement of strict renormalizability), combined with fundamental local symmetries and the requirement of having a finite number of fields. Quantum gravity is identified in an essentially unique (...) way. The gauge interactions are uniquely identified in form. Instead, the matter sector remains basically unrestricted. The major prediction is the violation of causality at small distances. (shrink)
In the author’s previous contribution to this journal (Rosen 2015), a phenomenological string theory was proposed based on qualitative topology and hypercomplex numbers. The current paper takes this further by delving into the ancient Chinese origin of phenomenological string theory. First, we discover a connection between the Klein bottle, which is crucial to the theory, and the Ho-t’u, a Chinese number archetype central to Taoist cosmology. The two structures are seen to mirror each other in expressing the (...) psychophysical (phenomenological) action pattern at the heart of microphysics. But tackling the question of quantum gravity requires that a whole family of topological dimensions be brought into play. What we find in engaging with these structures is a closely related family of Taoist forebears that, in concert with their successors, provide a blueprint for cosmic evolution. Whereas conventional string theory accounts for the generation of nature’s fundamental forces via a notion of symmetry breaking that is essentially static and thus unable to explain cosmogony successfully, phenomenological/Taoist string theory entails the dialectical interplay of symmetry and asymmetry inherent in the principle of synsymmetry. This dynamic concept of cosmic change is elaborated on in the three concluding sections of the paper. Here, a detailed analysis of cosmogony is offered, first in terms of the theory of dimensional development and its Taoist (yin-yang) counterpart, then in terms of the evolution of the elemental force particles through cycles of expansion and contraction in a spiraling universe. The paper closes by considering the role of the analyst per se in the further evolution of the cosmos. (shrink)
The notion of equality between two observables will play many important roles in foundations of quantumtheory. However, the standard probabilistic interpretation based on the conventional Born formula does not give the probability of equality between two arbitrary observables, since the Born formula gives the probability distribution only for a commuting family of observables. In this paper, quantum set theory developed by Takeuti and the present author is used to systematically extend the standard probabilistic interpretation of (...)quantumtheory to define the probability of equality between two arbitrary observables in an arbitrary state. We apply this new interpretation to quantum measurement theory, and establish a logical basis for the difference between simultaneous measurability and simultaneous determinateness. (shrink)
Relationships between current theories, and relationships between current theories and the sought theory of quantum gravity (QG), play an essential role in motivating the need for QG, aiding the search for QG, and defining what would count as QG. Correspondence is the broad class of inter-theory relationships intended to demonstrate the necessary compatibility of two theories whose domains of validity overlap, in the overlap regions. The variety of roles that correspondence plays in the search for QG are (...) illustrated, using examples from specific QG approaches. Reduction is argued to be a special case of correspondence, and to form part of the definition of QG. Finally, the appropriate account of emergence in the context of QG is presented, and compared to conceptions of emergence in the broader philosophy literature. It is argued that, while emergence is likely to hold between QG and general relativity, emergence is not part of the definition of QG, and nor can it serve usefully in the development and justification of the new theory. (shrink)
In this paper I elicit a prediction from structural realism and compare it, not to a historical case, but to a contemporary scientific theory. If structural realism is correct, then we should expect physics to develop theories that fail to provide an ontology of the sort sought by traditional realists. If structure alone is responsible for instrumental success, we should expect surplus ontology to be eliminated. Quantum field theory (QFT) provides the framework for some of the best (...) confirmed theories in science, but debates over its ontology are vexed. Rather than taking a stand on these matters, the structural realist can embrace QFT as an example of just the kind of theory SR should lead us to expect. Yet, it is not clear that QFT meets the structuralist's positive expectation by providing a structure for the world. In particular, the problem of unitarily inequivalent representations threatens to undermine the possibility of QFT providing a unique structure for the world. In response to this problem, I suggest that the structuralist should endorse pluralism about structure. (shrink)
Principles are central to physical reasoning, particularly in the search for a theory of quantum gravity (QG), where novel empirical data is lacking. One principle widely adopted in the search for QG is UV completion: the idea that a theory should (formally) hold up to all possible high energies. We argue---/contra/ standard scientific practice---that UV-completion is poorly-motivated as a guiding principle in theory-construction, and cannot be used as a criterion of theory-justification in the search for (...) QG. For this, we explore the reasons for expecting, or desiring, a UV-complete theory, as well as analyse how UV completion is used, and how it should be used, in various specific approaches to QG. (shrink)
I propose a gentle reconciliation of QuantumTheory and General Relativity. It is possible to add small, but unshackling constraints to the quantum fields, making them compatible with General Relativity. Not all solutions of the Schrodinger's equation are needed. I show that the continuous and spatially separable solutions are sufficient for the nonlocal manifestations associated with entanglement and wavefunction collapse. After extending this idea to quantum fields, I show that Quantum Field Theory can be (...) defined in terms of partitioned classical fields. One key element is the idea of integral interactions, which also helps clarifying the quantum measurement and classical level problems. The unity of QuantumTheory and General Relativity can now be gained with the help of the partitioned fields' energy-momentum. A brief image of a General Relativistic Quantum Standard Model is outlined. (shrink)
This document is a set of notes I took on QFT as a graduate student at the University of Pennsylvania, mainly inspired in lectures by Burt Ovrut, but also working through Peskin and Schroeder (1995), as well as David Tong’s lecture notes available online. They take a slow pedagogical approach to introducing classical field theory, Noether’s theorem, the principles of quantum mechanics, scattering theory, and culminating in the derivation of Feynman diagrams.
This paper shows how the classical finite probability theory (with equiprobable outcomes) can be reinterpreted and recast as the quantum probability calculus of a pedagogical or "toy" model of quantum mechanics over sets (QM/sets). There are two parts. The notion of an "event" is reinterpreted from being an epistemological state of indefiniteness to being an objective state of indefiniteness. And the mathematical framework of finite probability theory is recast as the quantum probability calculus for QM/sets. (...) The point is not to clarify finite probability theory but to elucidate quantum mechanics itself by seeing some of its quantum features in a classical setting. (shrink)
In the paper we will employ set theory to study the formal aspects of quantum mechanics without explicitly making use of space-time. It is demonstrated that von Neuman and Zermelo numeral sets, previously efectively used in the explanation of Hardy’s paradox, follow a Heisenberg quantum form. Here monadic union plays the role of time derivative. The logical counterpart of monadic union plays the part of the Hamiltonian in the commutator. The use of numerals and monadic union in (...) the classical probability resolution of Hardy’s paradox [1] is supported with the present derivation of a commutator for sets. (shrink)
In this text the ancient philosophical question of determinism (“Does every event have a cause ?”) will be re-examined. In the philosophy of science and physics communities the orthodox position states that the physical world is indeterministic: quantum events would have no causes but happen by irreducible chance. Arguably the clearest theorem that leads to this conclusion is Bell’s theorem. The commonly accepted ‘solution’ to the theorem is ‘indeterminism’, in agreement with the Copenhagen interpretation. Here it is recalled that (...) indeterminism is not really a physical but rather a philosophical hypothesis, and that it has counterintuitive and far-reaching implications. At the same time another solution to Bell’s theorem exists, often termed ‘superdeterminism’ or ‘total determinism’. Superdeterminism appears to be a philosophical position that is centuries and probably millennia old: it is for instance Spinoza’s determinism. If Bell’s theorem has both indeterministic and deterministic solutions, choosing between determinism and indeterminism is a philosophical question, not a matter of physical experimentation, as is widely believed. If it is impossible to use physics for deciding between both positions, it is legitimate to ask which philosophical theories are of help. Here it is argued that probability theory – more precisely the interpretation of probability – is instrumental for advancing the debate. It appears that the hypothesis of determinism allows to answer a series of precise questions from probability theory, while indeterminism remains silent for these questions. From this point of view determinism appears to be the more reasonable assumption, after all. (shrink)
David Bohm, in his "causal theory", made the correct Hegelian synthesis of Einstein's thesis that there is a "there" there, and Bohr's antithesis of "thinglessness" (Nick Herbert’s term). Einstein was a materialist and Bohr was an idealist. Bohm showed that quantum reality has both. This is “physical dualism” (my term). Physical dualism may be a low energy approximation to a deeper monism of cosmic consciousness called "the super-implicate order" (Bohm and Hiley’s term), “pregeometry” (Wheeler’s term), “substratum” (Dirac’s term), (...) “funda-MENTAL space” (Hameroff’s term), “Chi” (Chinese medicine & Falun Gong) etc., but for our immediate pragmatic purpose of constructing naturally conscious nano-computers and of virtually reverse engineering alleged reports of propellantless UFO propulsion (French Intelligence Report, 1999 CNINews1@aol.com Vol. 5, No. 11, Part 1 -- August 1, 1999 & NIDS report "Best UFO Cases - Europe", I. Von Ludwiger) to the stars and beyond, physical dualism will work. (shrink)
Stapp and others have proposed that reality involves a fundamental life process, or creative process. It is shown how this process description may be unified with the description that derives from quantum physics. The methods of the quantum physicist and of the biological sciences are seen to be two alternative approaches to the understanding of nature, involving two distinct modes of description which can usefully supplement each other, and neither on its own contains the full story. The unified (...) view explains the major features of quantum mechanics and suggests that biological systems may function more effectively than would be expected on the basis of quantum mechanics alone. (shrink)
Genesis of the early quantumtheory represented by Planck’s 1897-1906 papers is considered. It is shown that the first quantum theoretical schemes were constructed as crossbreed ones composed from ideal models and laws of Maxwellian electrodynamics, Newtonian mechanics, statistical mechanics and thermodynamics. Ludwig Boltzmann’s ideas and technique appeared to be crucial. Deriving black-body radiation law Max Planck had to take the experimental evidence into account. It forced him not to deduce from phenomena but to use more (...) class='Hi'>theory instead. The experiments forced Planck to apply the statistical technique to radiation in increasing portions. Planck’s theories in no way were generalizations of existing experimental results. They represented the stages of an ambitious programme of Maxwellian electrodynamics and statistical mechanics reconciliation. (shrink)
Twenty-first century science faces a dilemma. Two of its well-verified foundation stones - relativity and quantumtheory - have proven inconsistent. Resolution of the conflict has resisted improvements in experimental precision leaving some to believe that some fundamental understanding in our world-view may need modification or even radical reform. Employment of the wave-front model of electrodynamics, as a propagation process with a Markov property, may offer just such a clarification.
To comprehend the special relativity genesis, one should unfold Einstein’s activities in quantumtheory first . His victory upon Lorentz’s approach can only be understood in the wider context of a general programme of unification of classical mechanics and classical electrodynamics, with relativity and quantumtheory being merely its subprogrammes. Because of the lack of quantum facets in Lorentz’s theory, Einstein’s programme, which seems to surpass the Lorentz’s one, was widely accepted as soon as (...)quantumtheory became a recognized part of physics. A new approach to special relativity genesis enables to broaden the bothering “Trinity” group of its creators to include Gilbert N. Lewis. Notwithstanding that the links necessarily existing between all the 1905 papers were obscured by Einstein himself due to the reasons discussed below, Lewis revealed from the very beginning the connections between special relativity and quasi-corpuscular theory of light, as he punctuated: “The consequences which one of us obtained from a simple assumption as to the mass of a beam of light, and the fundamental conservation of mass, energy and momentum, Einstein has derived from the principle of relativity and the electromagnetic theory” (Lewis G.N.& Tolman R.C. “The Principle of Relativity and Non-Newtonian Mechanics”, Philosophical Magazine, 1908). (shrink)
A non-relativistic quantum mechanical theory is proposed that describes the universe as a continuum of worlds whose mutual interference gives rise to quantum phenomena. A logical framework is introduced to properly deal with propositions about objects in a multiplicity of worlds. In this logical framework, the continuum of worlds is treated in analogy to the continuum of time points; both “time” and “world” are considered as mutually independent modes of existence. The theory combines elements of Bohmian (...) mechanics and of Everett’s many-worlds interpretation; it has a clear ontology and a set of precisely defined postulates from where the predictions of standard quantum mechanics can be derived. Probability as given by the Born rule emerges as a consequence of insufficient knowledge of observers about which world it is that they live in. The theory describes a continuum of worlds rather than a single world or a discrete set of worlds, so it is similar in spirit to many-worlds interpretations based on Everett’s approach, without being actually reducible to these. In particular, there is no splitting of worlds, which is a typical feature of Everett-type theories. Altogether, the theory explains (1) the subjective occurrence of probabilities, (2) their quantitative value as given by the Born rule, and (3) the apparently random “collapse of the wavefunction” caused by the measurement, while still being an objectively deterministic theory. (shrink)
Bohm and Hiley suggest that a certain new type of active information plays a key objective role in quantum processes. This paper discusses the implications of this suggestion to our understanding of the relation between the mental and the physical aspects of reality.
The most part of the debates on Quantum Mechanics (QM) interpretation come out from the remains of a classical language based upon waves and particles. Such problems can find a decisive clarification in Quantum Field Theory (QFT), where the concept of “classical object” is replaced by an interaction networks. On the other hand, it is simpler to discuss about non-locality in QM than in QFT. We propose here the concept of transaction as a connection between theQM and (...) QFT language as well as the possibility to introduce quantum non-locality ab initio.We also mention the cosmological consequence of a non-local archaic vacuum here defined. (shrink)
We comment some recent results obtained by using a Clifford bare bone skeleton of quantum mechanics in order to formulate the conclusion that quantum mechanics has its origin in the logic, and relates conceptual entities. Such results touch directly the basic problem about the structure of our cognitive and conceptual dynamics and thus of our mind. The problem of exploring consciousness results consequently to be strongly linked. This is the reason because studies on quantum mechanics applied to (...) this matter are so important for neurologists and psychologists. Under this profile we present some experimental results showing violation of Bell inequality during the MBTI test in investigation of C.V. Jung’s theory of personality. (shrink)
In times of crisis, when current theories are revealed as inadequate to task, and new physics is thought to be required---physics turns to re-evaluate its principles, and to seek new ones. This paper explores the various types, and roles of principles that feature in the problem of quantum gravity as a current crisis in physics. I illustrate the diversity of the principles being appealed to, and show that principles serve in a variety of roles in all stages of the (...) crisis, including in motivating the need for a new theory, and defining what this theory should be like. In particular, I consider: the generalised correspondence principle, UV-completion, background independence, and the holographic principle. I also explore how the current crisis fits with Friedman's view on the roles of principles in revolutionary theory-change, finding that while many key aspects of this view are not represented in quantum gravity, the view could potentially offer a useful diagnostic, and prescriptive strategy. This paper is intended to be relatively non-technical, and to bring some of the philosophical issues from the search for quantum gravity to a more general philosophical audience interested in the roles of principles in scientific theory-change. (shrink)
The predominant approaches to understanding how quantumtheory and General Relativity are related to each other implicitly assume that both theories use the same concept of mass. Given that despite great efforts such approaches have not yet produced a consistent falsifiable quantumtheory of gravity, this paper entertains the possibility that the concepts of mass in the two theories are in fact distinct. It points out that if the concept of mass in quantum mechanics is (...) defined such that it always exists in a superposition and is not a gravitational source, then this sharply segregates the domains of quantumtheory and of general relativity. This concept of mass violates the equivalence principle applied to active gravitational mass, but may still produce effects consistent with the equivalence principle when applied to passive gravitational mass (in agreement with observations) by the correspondence principle applied to a weak field in the appropriate limit. An experiment that successfully measures the gravity field of quantum objects in a superposition, and in particular of photons, would not only falsify this distinction but also constitute the first direct empirical test that gravity must in fact be described fundamentally by a quantumtheory. (shrink)
Some variants of quantumtheory theorize dogmatic "unimodal" states-of-being, and are based on hodge-podge classical-quantum language. They are based on ontic syntax, but pragmatic semantics. This error was termed semantic inconsistency [1]. Measurement seems to be central problem of these theories, and widely discussed in their interpretation. Copenhagen theory deviates from this prescription, which is modeled on experience. A complete quantum experiment is "bimodal". An experimenter creates the system-under-study in initial mode of experiment, and annihilates (...) it in the final. The experimental intervention lies beyond the theory. I theorize most rudimentary bimodal quantum experiments studied by Finkelstein [2], and deduce "bimodal probability density" P=|In><Fin| to represent complete quantum experiments. It resembles core insights of the Copenhagen theory. (shrink)
This report reviews what quantum physics and information theory have to tell us about the age-old question, How come existence? No escape is evident from four conclusions: (1) The world cannot be a giant machine, ruled by any preestablished continuum physical law. (2) There is no such thing at the microscopic level as space or time or spacetime continuum. (3) The familiar probability function or functional, and wave equation or functional wave equation, of standard quantumtheory (...) provide mere continuum idealizations and by reason of this circumstance conceal the information-theoretic source from which they derive. (4) No element in the description of physics shows itself as closer to primordial than the elementary quantum phenomenon, that is, the elementary device-intermediated act of posing a yes-no physical question and eliciting an answer or, in brief, the elementary act of observer-participancy. Otherwise stated, every physical quantity, every it, derives its ultimate significance from bits, binary yes-or-no indications, a conclusion which we epitomize in the phrase, it from bit. (shrink)
Which way does causation proceed? The pattern in the material world seems to be upward: particles to molecules to organisms to brains to mental processes. In contrast, the principles of quantum mechanics allow us to see a pattern of downward causation. These new ideas describe sets of multiple levels in which each level influences the levels below it through generation and selection. Top-down causation makes exciting sense of the world: we can find analogies in psychology, in the formation of (...) our minds, in locating the source of consciousness, and even in the possible logic of belief in God. (shrink)
The original purpose of the present study, 2011, started with a preprint «On the Probable Failure of the Uncountable Power Set Axiom», 1988, is to save from the transfinite deadlock of higher set theory the jewel of mathematical Continuum — this genuine, even if mostly forgotten today raison d’être of all traditional set-theoretical enterprises to Infinity and beyond, from Georg Cantor to David Hilbert to Kurt Gödel to W. Hugh Woodin to Buzz Lightyear.
In this paper, I introduce an intrinsic account of the quantum state. This account contains three desirable features that the standard platonistic account lacks: (1) it does not refer to any abstract mathematical objects such as complex numbers, (2) it is independent of the usual arbitrary conventions in the wave function representation, and (3) it explains why the quantum state has its amplitude and phase degrees of freedom. -/- Consequently, this account extends Hartry Field’s program outlined in Science (...) Without Numbers (1980), responds to David Malament’s long-standing impossibility conjecture (1982), and establishes an important first step towards a genuinely intrinsic and nominalistic account of quantum mechanics. I will also compare the present account to Mark Balaguer’s (1996) nominalization of quantum mechanics and discuss how it might bear on the debate about “wave function realism.” In closing, I will suggest some possible ways to extend this account to accommodate spinorial degrees of freedom and a variable number of particles (e.g. for particle creation and annihilation). -/- Along the way, I axiomatize the quantum phase structure as what I shall call a “periodic difference structure” and prove a representation theorem as well as a uniqueness theorem. These formal results could prove fruitful for further investigation into the metaphysics of phase and theoretical structure. (shrink)
Why do photons and speeding electrons have both wave features and particle features when common sense tells us that they should be either particle or wave and not an amalgam of both? Part I of this paper deals with photons and argues that there are flaws in the assumptions we have made regarding their particle nature. The argument depends upon distinguishing between two identities of the photon, namely unstored energy and its stored (relativistic) mass. Part II extends these arguments to (...) the case of the speeding electron and argues that current ontological assumptions made about projectiles have exacerbated our confusion about the nature of moving electrons. When regarded ontologically, projectile motion is not as simple as has been assumed by both classical and modern physics. (shrink)
John Bell proposed an ontology for the GRW modification of quantum mechanics in terms of flashes occurring at space- time points. This article spells out the motivation for this ontology, inquires into the status of the wave function in it, critically examines the claim of its being Lorentz invariant, and considers whether it is a parsimonious but nevertheless physically adequate ontology.
I have read many recent discussions of the limits of computation and the universe as computer, hoping to find some comments on the amazing work of polymath physicist and decision theorist David Wolpert but have not found a single citation and so I present this very brief summary. Wolpert proved some stunning impossibility or incompleteness theorems (1992 to 2008-see arxiv.org) on the limits to inference (computation) that are so general they are independent of the device doing the computation, and even (...) independent of the laws of physics, so they apply across computers, physics, and human behavior. They make use of Cantor's diagonalization, the liar paradox and worldlines to provide what may be the ultimate theorem in Turing Machine Theory, and seemingly provide insights into impossibility,incompleteness, the limits of computation,and the universe as computer, in all possible universes and all beings or mechanisms, generating, among other things,a non-quantum mechanical uncertainty principle and a proof of monotheism. (shrink)
What is the boundary between the animate and inanimate world? It is obvious that the animate world is under rules of inanimate world. Is the converse true? This paper is aimed at imposing the well-known Darwin's theory of evolution to inanimate world of atomic realm where bizarre behavior of electron challenges our everyday perception of inanimate world. This paper, suggests a weird, peculiar and highly elegant speculation of existing, leads suspicious about validity of the law of conservation of mass, (...) provides conceptual foundation for many odd explanations of quantum mechanics such wave-particle duality of elementary particles, the inherent randomness and probabilistic nature of world as quantum mechanics states, the Louis de Broglie proposition of wave-like behavior of moving particles, Schrödinger's wave function description of probability of finding electron at any location around the nucleus and even the roots of causality. It defines existence as follows: "All the elementary particles emerge spontaneously and randomly in space where the possibility of conforming the physical laws is higher and after appearing if they not conform the laws of physics, they vanish." It proposes, the emerging from nothing, as a natural process and in other word there is an inherent urge to existence not only for animate world but also for inanimate world. Assuming the correctness of the proposed speculation, leads to dramatic development of human perception of existing, reality and interaction with world. (shrink)
THE PRINCIPLE OF SUPERPOSITION. The need for a quantumtheory Classical mechanics has been developed continuously from the time of Newton and applied to an ...
This paper centers on the implicit metaphysics beyond the Theory of Relativity and the Principle of Indeterminacy – two revolutionary theories that have changed 20th Century Physics – using the perspective of Husserlian Transcedental Phenomenology. Albert Einstein (1879-1955) and Werner Heisenberg (1901-1976) abolished the theoretical framework of Classical (Galilean- Newtonian) physics that has been complemented, strengthened by Cartesian metaphysics. Rene Descartes (1596- 1850) introduced a separation between subject and object (as two different and self- enclosed substances) while Galileo and (...) Newton did the “mathematization” of the world. Newtonian physics, however, had an inexplicable postulate of absolute space and absolute time – a kind of geometrical framework, independent of all matter, for the explication of locality and acceleration. Thus, Cartesian modern metaphysics and Galilean- Newtonian physics go hand in hand, resulting to socio- ethical problems, materialism and environmental destruction. Einstein got rid of the Newtonian absolutes and was able to provide a new foundation for our notions of space and time: the four (4) dimensional space- time; simultaneity and the constancy of velocity of light, and the relativity of all systems of reference. Heisenberg, following the theory of quanta of Max Planck, told us of our inability to know sub- atomic phenomena and thus, blurring the line between the Cartesian separation of object and subject, hence, initiating the crisis of the foundations of Classical Physics. But the real crisis, according to Edmund Husserl (1859-1930) is that Modern (Classical) Science had “idealized” the world, severing nature from what he calls the Lebenswelt (life- world), the world that is simply there even before it has been reduced to mere mathematical- logical equations. Husserl thus, aims to establish a new science that returns to the “pre- scientific” and “non- mathematized” world of rich and complex phenomena: phenomena as they “appear to human consciousness”. To overcome the Cartesian equation of subject vs. object (man versus environment), Husserl brackets the external reality of Newtonian Science (epoché = to put in brackets, to suspend judgment) and emphasizes (1) the meaning of “world” different from the “world” of Classical Physics, (2) the intentionality of consciousness (L. in + tendere = to tend towards, to be essentially related to or connected to) which means that even before any scientific- logical description of the external reality, there is always a relation already between consciousness and an external reality. The world is the equiprimordial existence of consciousness and of external reality. My paper aims to look at this new science of the pre- idealized phenomena started by Husserl (a science of phenomena as they appear to conscious, human, lived experience, hence he calls it phenomenology), centering on the life- world and the intentionality of consciousness, as providing a new way of looking at ourselves and the world, in short, as providing a new metaphysics (as an antidote to Cartesian metaphysics) that grounds the revolutionary findings of Einstein and Heisenberg. The environmental destruction, technocracy, socio- ethical problems in the modern world are all rooted in this Galilean- Newtonian- Cartesian interpretation of the relationship between humans and the world after the crumbling of European Medieval Ages. Friedrich Nietzsche (1844-1900) comments that the modern world is going toward a nihilism (L. nihil = nothingness) at the turn of the century. Now, after two World Wars and the dropping of Atomic bomb, the capitalism and imperialism on the one hand, and on the other hand the poverty, hunger of the non- industrialized countries alongside destruction of nature (i.e., global warming), Nietzsche might be correct: unless humanity changes the way it looks at humanity and the kosmos. The works of Einstein, Heisenberg and Husserl seem to be pointing the way for us humans to escape nihilism by a “great existential transformation.” What these thinkers of post- modernity (after Cartesian/ Newtonian/ Galilean modernity) point to are: a) a new therapeutic way of looking at ourselves and our world (metaphysics) and b) a new and corrective notion of “rationality” (different from the objectivist, mathematico- logical way of thinking). This paper is divided into four parts: 1) A summary of Classical Physics and a short history of QuantumTheory 2) Einstein’s Special and General Relativity and Heisenberg’s Indeterminacy Principle 3) Husserl’s discussion of the Crisis of Europe, the life- world and intentionality of consciousness 4) A Metaphysics of Relativity and Indeterminacy and a Corrective notion of Rationality in Husserl’s Phenomenology . (shrink)
A new constructivist approach to modeling in economics and theory of consciousness is proposed. The state of elementary object is defined as a set of its measurable consumer properties. A proprietor's refusal or consent for the offered transaction is considered as a result of elementary economic measurement. We were also able to obtain the classical interpretation of the quantum-mechanical law of addition of probabilities by introducing a number of new notions. The principle of “local equity” assumes the transaction (...) completed (regardless of the result) of the states of transaction partners are not changed in connection with the reception of new information on proposed offers or adopted decisions (consent or refusal of the transaction). However it has no relation to the paradoxes of quantumtheory connected with non-local interaction of entangled states. In the economic systems the mechanism of entangling has a classical interpretation, while the quantum-mechanical formalism of the description of states appears as a result of idealization of the selection mechanism in the proprietor's consciousness. (shrink)
Scientific realism is the view that our best scientific theories can be regarded as (approximately) true. This is connected with the view that science, physics in particular, and metaphysics could (and should) inform one another: on the one hand, science tells us what the world is like, and on the other hand, metaphysical principles allow us to select between the various possible theories which are underdetermined by the data. Nonetheless, quantum mechanics has always been regarded as, at best, puzzling, (...) if not contradictory. As such, it has been considered for a long time at odds with scientific realism, and thus a naturalized quantum metaphysics was deemed impossible. Luckily, now we have many quantum theories compatible with a realist interpretation. However, scientific realists assumed that the wave-function, regarded as the principal ingredient of quantum theories, had to represent a physical entity, and because of this they struggled with quantum superpositions. In this paper I discuss a particular approach which makes quantum mechanics compatible with scientific realism without doing that. In this approach, the wave-function does not represent matter which is instead represented by some spatio-temporal entity dubbed the primitive ontology: point-particles, continuous matter fields, space-time events. I argue how within this framework one develops a distinctive theory-construction schema, which allows to perform a more informed theory evaluation by analyzing the various ingredients of the approach and their inter-relations. (shrink)
In this paper I outline my propensiton version of quantumtheory (PQT). PQT is a fully micro-realistic version of quantumtheory that provides us with a very natural possible solution to the fundamental wave/particle problem, and is free of the severe defects of orthodox quantumtheory (OQT) as a result. PQT makes sense of the quantum world. PQT recovers all the empirical success of OQT and is, furthermore, empirically testable (although not as yet (...) tested). I argue that Einstein almost put forward this version of quantumtheory in 1916/17 in his papers on spontaneous and induced radiative transitions, but retreated from doing so because he disliked the probabilistic character of the idea. Subsequently, the idea was overlooked because debates about quantumtheory polarised into the Bohr/Heisenberg camp, which argued for the abandonment of realism and determinism, and the Einstein/Schrödinger camp, which argued for the retention of realism and determinism, no one, as a result, pursuing the most obvious option of retaining realism but abandoning determinism. It is this third, overlooked option that leads to PQT. PQT has implications for quantum field theory, the standard model, string theory, and cosmology. The really important point, however, is that it is experimentally testable. I indicate two experiments in principle capable of deciding between PQT and OQT. (shrink)
What are quantum entities? Is the quantum domain deterministic or probabilistic? Orthodox quantumtheory (OQT) fails to answer these two fundamental questions. As a result of failing to answer the first question, OQT is very seriously defective: it is imprecise, ambiguous, ad hoc, non-explanatory, inapplicable to the early universe, inapplicable to the cosmos as a whole, and such that it is inherently incapable of being unified with general relativity. It is argued that probabilism provides a very (...) natural solution to the quantum wave/particle dilemma and promises to lead to a fully micro-realistic, testable version of quantumtheory that is free of the defects of OQT. It is suggested that inelastic interactions may induce quantum probabilistic transitions. (shrink)
The theme of phenomenology and quantum physics is here tackled by examining some basic interpretational issues in quantum physics. One key issue in quantumtheory from the very beginning has been whether it is possible to provide a quantum ontology of particles in motion in the same way as in classical physics, or whether we are restricted to stay within a more limited view of quantum systems, in terms of complementary but mutually exclusive phenomena. (...) In phenomenological terms we could describe the situation by saying that according to the usual interpretation of quantumtheory, quantum phenomena require a kind of epoche. However, there are other interpretations that seem to re-establish the possibility of a mind-independent ontology at the quantum level. We will show that even such ontological interpretations contain novel, non-classical features, which require them to give a special role to “phenomena” or “appearances”, a role not encountered in classical physics. We will conclude that while ontological interpretations of quantumtheory are possible, quantumtheory implies the need of a certain kind of epoche even for this type of interpretations. While different from the epoche connected to phenomenological description, the “quantum epoche” nevertheless points to a potentially interesting parallel between phenomenology and quantum philosophy. (shrink)
An account is given of a recent proposal to complete modern quantumtheory by adding a characterisation of consciousness. The resulting theory is applied to give mechanisms for typical parapsychological phenomena, and ways of testing it are discussed.
Create an account to enable off-campus access through your institution's proxy server.
Monitor this page
Be alerted of all new items appearing on this page. Choose how you want to monitor it:
Email
RSS feed
About us
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.