Temporal epistemic logics are known, from results of Halpern and Vardi, to have a wide range of complexities of the satisfiability problem: from PSPACE, through non-elementary, to highly undecidable. These complexities depend on the choice of some key parameters specifying, inter alia, possible interactions between time and knowledge, such as synchrony and agents' abilities for learning and recall. In this work we develop practically implementable tableau-based decision procedures for deciding satisfiability in single-agent synchronous temporal-epistemic logics with interactions between time and (...) knowledge. We discuss some complications that occur, even in the single-agent case, when interactions between time and knowledge are assumed and show how the method of incremental tableaux can be adapted to work in EXPSPACE, respectively 2EXPTIME, for these logics, thereby also matching the upper bounds obtained for them by Halpern and Vardi. (shrink)
In this dissertation we present proof systems for several modal logics. These proof systems are based on analytic (or semantic) tableaux. -/- Modal logics are logics for reasoning about possibility, knowledge, beliefs, preferences, and other modalities. Their semantics are almost always based on Saul Kripke’s possible world semantics. In Kripke semantics, models are represented by relational structures or, equivalently, labeled graphs. Syntactic formulas that express statements about knowledge and other modalities are evaluated in terms of such models. -/- This (...) dissertation focuses on modal logics with dynamic operators for public announcements, belief revision, preference upgrades, and so on. These operators are defined in terms of mathematical operations on Kripke models. Thus, for example, a belief revision operator in the syntax would correspond to a belief revision operation on models. -/- The ‘dynamic’ semantics of dynamic modal logics are a clever way of extending languages without compromising on intuitiveness. We present ‘dynamic’ tableau proof systems for these dynamic semantics, with the express aim to make them conceptually simple, easy to use, modular, and extensible. This we do by reflecting the semantics as closely as possible in the components of our tableau system. For instance, dynamic operations on Kripke models have counterpart dynamic relations between tableaux. -/- Soundness, completeness, and decidability are three of the most important properties that a proof system may have. A proof system is sound if and only if any formula for which a proof exists, is true in every model. A proof system is complete if and only if for any formula that is true in all models, a proof exists. A proof system is decidable if and only if any formula can be proved to be a theorem or not a theorem in a finite number of steps. All proof systems in this dissertation are sound, complete, and decidable. -/- Part of our strategy to create modular tableau systems is to delay concerns over decidability until after soundness and completeness have been established. Decidability is attained through the operations of folding and through operations on ‘tableau cascades’, which are graphs of tableaux. -/- Finally, we provide a proof-of-concept implementation of our dynamic tableau system for public announcement logic in the Clojure programming language. (shrink)
Motivated by H. Curry’s well-known objection and by a proposal of L. Henkin, this article introduces the positive tableaux, a form of tableau calculus without refutation based upon the idea of implicational triviality. The completeness of the method is proven, which establishes a new decision procedure for the (classical) positive propositional logic. We also introduce the concept of paratriviality in order to contribute to the question of paradoxes and limitations imposed by the behavior of classical implication.
In this paper we give an analytic tableau calculus P L 1 6 for a functionally complete extension of Shramko and Wansing’s logic. The calculus is based on signed formulas and a single set of tableau rules is involved in axiomatising each of the four entailment relations ⊧ t, ⊧ f, ⊧ i, and ⊧ under consideration—the differences only residing in initial assignments of signs to formulas. Proving that two sets of formulas are in one of the first three entailment (...) relations will in general require developing four tableaux, while proving that they are in the ⊧ relation may require six. (shrink)
Priest has provided a simple tableau calculus for Chellas's conditional logic Ck. We provide rules which, when added to Priest's system, result in tableau calculi for Chellas's CK and Lewis's VC. Completeness of these tableaux, however, relies on the cut rule.
The author considers the model-theoretic character of proofs and disproofs by means of attempted counterexample constructions, distinguishes this proof format from formal derivations, then contrasts two approaches to semantic tableaux proposed by Beth and Lambert-van Fraassen. It is noted that Beth's original approach has not as yet been provided with a precisely formulated rule of closure for detecting tableau sequences terminating in contradiction. To remedy this deficiency, a technique is proposed to clarify tableau operations.
The aim of this paper is to emphasize the fact that for all finitely-many-valued logics there is a completely systematic relation between sequent calculi and tableau systems. More importantly, we show that for both of these systems there are al- ways two dual proof sytems (not just only two ways to interpret the calculi). This phenomenon may easily escape one’s attention since in the classical (two-valued) case the two systems coincide. (In two-valued logic the assignment of a truth value and (...) the exclusion of the opposite truth value describe the same situation.). (shrink)
The article develops and justifies, on the basis of the epistemological argumentation theory, two central pieces of the theory of evaluative argumentation interpretation: 1. criteria for recognizing argument types and 2. rules for adding reasons to create ideal arguments. Ad 1: The criteria for identifying argument types are a selection of essential elements from the definitions of the respective argument types. Ad 2: After presenting the general principles for adding reasons (benevolence, authenticity, immanence, optimization), heuristics are proposed for finding missing (...) reasons, for deductive arguments, e.g., semantic tableaux are suggested. (shrink)
The proof theory of many-valued systems has not been investigated to an extent comparable to the work done on axiomatizatbility of many-valued logics. Proof theory requires appropriate formalisms, such as sequent calculus, natural deduction, and tableaux for classical (and intuitionistic) logic. One particular method for systematically obtaining calculi for all finite-valued logics was invented independently by several researchers, with slight variations in design and presentation. The main aim of this report is to develop the proof theory of finite-valued first (...) order logics in a general way, and to present some of the more important results in this area. In Systems covered are the resolution calculus, sequent calculus, tableaux, and natural deduction. This report is actually a template, from which all results can be specialized to particular logics. (shrink)
In their recent paper Bi-facial truth: a case for generalized truth values Zaitsev and Shramko [7] distinguish between an ontological and an epistemic interpretation of classical truth values. By taking the Cartesian product of the two disjoint sets of values thus obtained, they arrive at four generalized truth values and consider two “semi-classical negations” on them. The resulting semantics is used to define three novel logics which are closely related to Belnap’s well-known four valued logic. A syntactic characterization of these (...) logics is left for further work. In this paper, based on our previous work on a functionally complete extension of Belnap’s logic, we present a sound and complete tableau calculus for these logics. It crucially exploits the Cartesian nature of the four values, which is reflected in the fact that each proof consists of two tableaux. The bi-facial notion of truth of Z&S is thus augmented with a bi-facial notion of proof. We also provide translations between the logics for semi-classical negation and classical logic and show that an argument is valid in a logic for semi-classical negation just in case its translation is valid in classical logic. (shrink)
Textbook for students in mathematical logic. Part 1. Total formalization is possible! Formal theories. First order languages. Axioms of constructive and classical logic. Proving formulas in propositional and predicate logic. Glivenko's theorem and constructive embedding. Axiom independence. Interpretations, models and completeness theorems. Normal forms. Tableaux method. Resolution method. Herbrand's theorem.
A modal logic for representing analogical proportions is presented. This logic is a modal interpretation of H. Prade and G. Richard's homogeneous analogy. A tableaux system is given with some examples an intuitions.
Angell's logic of analytic containment AC has been shown to be characterized by a 9-valued matrix NC by Ferguson, and by a 16-valued matrix by Fine. We show that the former is the image of a surjective homomorphism from the latter, i.e., an epimorphic image. The epimorphism was found with the help of MUltlog, which also provides a tableau calculus for NC extended by quantifiers that generalize conjunction and disjunction.
FDE is a logic that captures relevant entailment between implication-free formulae and admits of an intuitive informational interpretation as a 4-valued logic in which “a computer should think”. However, the logic is co-NP complete, and so an idealized model of how an agent can think. We address this issue by shifting to signed formulae where the signs express imprecise values associated with two distinct bipartitions of the set of standard 4 values. Thus, we present a proof system which consists of (...) linear operational rules and only two branching structural rules, the latter expressing a generalized rule of bivalence. This system naturally leads to defining an infinite hierarchy of tractable depth-bounded approximations to FDE. Namely, approximations in which the number of nested applications of the two branching rules is bounded. (shrink)
A textbook for modal and other intensional logics based on the Open Logic Project. It covers normal modal logics, relational semantics, axiomatic and tableaux proof systems, intuitionistic logic, and counterfactual conditionals.
2nd edition. Many-valued logics are those logics that have more than the two classical truth values, to wit, true and false; in fact, they can have from three to infinitely many truth values. This property, together with truth-functionality, provides a powerful formalism to reason in settings where classical logic—as well as other non-classical logics—is of no avail. Indeed, originally motivated by philosophical concerns, these logics soon proved relevant for a plethora of applications ranging from switching theory to cognitive modeling, and (...) they are today in more demand than ever, due to the realization that inconsistency and vagueness in knowledge bases and information processes are not only inevitable and acceptable, but also perhaps welcome. The main modern applications of (any) logic are to be found in the digital computer, and we thus require the practical knowledge how to computerize—which also means automate—decisions (i.e. reasoning) in many-valued logics. This, in turn, necessitates a mathematical foundation for these logics. This book provides both these mathematical foundation and practical knowledge in a rigorous, yet accessible, text, while at the same time situating these logics in the context of the satisfiability problem (SAT) and automated deduction. The main text is complemented with a large selection of exercises, a plus for the reader wishing to not only learn about, but also do something with, many-valued logics. (shrink)
We develop a conceptually clear, intuitive, and feasible decision procedure for testing satisfiability in the full multi\-agent epistemic logic \CMAELCD\ with operators for common and distributed knowledge for all coalitions of agents mentioned in the language. To that end, we introduce Hintikka structures for \CMAELCD\ and prove that satisfiability in such structures is equivalent to satisfiability in standard models. Using that result, we design an incremental tableau-building procedure that eventually constructs a satisfying Hintikka structure for every satisfiable input set of (...) formulae of \CMAELCD\ and closes for every unsatisfiable input set of formulae. (shrink)
ABSTRACT: This 1974 paper builds on our 1969 paper (Corcoran-Weaver [2]). Here we present three (modal, sentential) logics which may be thought of as partial systematizations of the semantic and deductive properties of a sentence operator which expresses certain kinds of necessity. The logical truths [sc. tautologies] of these three logics coincide with one another and with those of standard formalizations of Lewis's S5. These logics, when regarded as logistic systems (cf. Corcoran [1], p. 154), are seen to be equivalent; (...) but, when regarded as consequence systems (ibid., p. 157), one diverges from the others in a fashion which suggests that two standard measures of semantic complexity may not be as closely linked as previously thought. -/- This 1974 paper uses the linear notation for natural deduction presented in [2]: each two-dimensional deduction is represented by a unique one-dimensional string of characters. Thus obviating need for two-dimensional trees, tableaux, lists, and the like—thereby facilitating electronic communication of natural deductions. The 1969 paper presents a (modal, sentential) logic which may be thought of as a partial systematization of the semantic and deductive properties of a sentence operator which expresses certain kinds of necessity. The logical truths [sc. tautologies] of this logic coincides those of standard formalizations of Lewis’s S4. Among the paper's innovations is its treatment of modal logic in the setting of natural deduction systems--as opposed to axiomatic systems. The author’s apologize for the now obsolete terminology. For example, these papers speak of “a proof of a sentence from a set of premises” where today “a deduction of a sentence from a set of premises” would be preferable. 1. Corcoran, John. 1969. Three Logical Theories, Philosophy of Science 36, 153–77. J P R -/- 2. Corcoran, John and George Weaver. 1969. Logical Consequence in Modal Logic: Natural Deduction in S5 Notre Dame Journal of Formal Logic 10, 370–84. MR0249278 (40 #2524). 3. Weaver, George and John Corcoran. 1974. Logical Consequence in Modal Logic: Some Semantic Systems for S4, Notre Dame Journal of Formal Logic 15, 370–78. MR0351765 (50 #4253). (shrink)
Could there be a single logical system that would allow us to work simultaneously with classical, paraconsistent, and paracomplete negations? These three negations were separately studied in logics whose negations bear their names. Initially we will restrict our analysis to propositional logics by analyzing classical negation, ¬c, as treated by Classical Propositional Logic (LPC); the paraconsistent negation, ¬p, as treated through the hierarchy of Paraconsistent Propositional Calculi Cn (0 ≤ n ≤ ω); and the paracomplete negation, ¬q, as treated by (...) the hierarchy of Paracomplete Propositional Calculi Pn (0 ≤ n ≤ ω). In “Logics that are both paraconsistent and paracomplete” (1989), Newton da Costa proposed a system with approximate characteristics to what we are looking for. In the hierarchy of Non-Alethical Propositional Calculi Nn (0 ≤ n ≤ ω), only one negation is introduced (as primitive), called a “non-alethic” (¬n), whose operation preserves the properties of classical, or paraconsistent or paracomplete negation -- depending on the well or ill behavior of the formula connected to it. However, as we shall see, in the hierarchy Nn we can not reiterate negations with different behaviors in a same formula (e.g., ¬p¬cα or ¬q¬c¬p α), or even analyze a formula like ¬cα → ¬pα. In view of these problems, can we really say that the hierarchy Nn allows us to understand the relationships and interactions of the three types of negations? In order to deal with this, given the initial problem, we will present four axiomatic systems (KG) in which, unlike Nn, the three negations are directly introduced -- offering a semantics and a method of proofs by analytic tableaux. Through the KG Systems we will show how the negations interact, obtaining non-demonstrable theorems in LPC, Cn, Pn, and Nn (0 ≤ n ≤ ω). Finally, we will also offer a first-order extension for the KG Systems. (shrink)
In this paper I introduce the idea of a higher-order modal logic—not a modal logic for higher-order predicate logic, but rather a logic of higher-order modalities. “What is a higher-order modality?”, you might be wondering. Well, if a first-order modality is a way that some entity could have been—whether it is a mereological atom, or a mereological complex, or the universe as a whole—a higher-order modality is a way that a first-order modality could have been. First-order modality is modeled in (...) terms of a space of possible worlds—a set of worlds structured by an accessibility relation, i.e., a relation of relative possibility—each world representing a way that the entire universe could have been. A second-order modality would be modeled in terms of a space of spaces of (first-order) possible worlds, each space representing a way that (first-order) possible worlds could have been. And just as there is a unique actual world which represents the way that things actually are, there is a unique actual space which represents the way that first-order modality actually is. -/- One might wonder what the accessibility relation itself is like. Presumably, if it is logical or metaphysical modality that is being dealt with, it is reflexive; but is it also symmetric, or transitive? Especially in the case of metaphysical modality, the answer is not clear. And whichever of these properties it may or may not have, could that itself have been different? Could at least some rival modal logics represent different ways that first-order modality could have been? -/- To be clear, the idea behind my proposal is not just that some things which are possible or necessary might not have been so at the first order, as determined by the actual accessibility relation, but also that the actual accessibility relation, and hence the nature or structure of actual modality, could have been different at some higher order of modality. Even if the accessibility relation is actually both symmetric and transitive, perhaps it could (second-order) have been otherwise: There is a (second-order) possible space of worlds in which it is different, where it fails to be symmetric, or transitive. We must, therefore, introduce the notion of a higher-order accessibility relation, one that in this case relates spaces of first-order worlds. The question then arises as to whether that relation is symmetric, or transitive. We can then consider third-order modalities, spaces of spaces of spaces of possible worlds, where the second-order accessibility relation differs from how it actually is. I can see no reason why there should be a limit to this hierarchy of higher-order modalities, any more than I can see a reason why there should be a limit to the hierarchy of higher-order properties. There will thus be an infinity of orders, one for each positive integer, and each order will have an accessibility relation of its own. To keep things as clear as possible, a space of first-order points (i.e., of possible worlds) shall be called a galaxy, a space of second-order points, a universe, and a space of any higher order, a cosmos. However, to keep things as simple as possible, in what follows I will deal with but a single cosmos, and hence will not deal with modalities higher than the third order. -/- The accessibility relation is not the only thing that might be thought to vary between spaces of worlds: Perhaps the contents of the spaces can vary as well. While I presume that the contents of the worlds themselves remain constant—it makes doubtful sense to suppose that in one space some entity e exists in a world w and in another space e doesn’t exist in that same world w—we may suppose that different spaces differ as to which worlds they contain, just as different worlds may differ as to which objects they contain. Thus we might have a higher-order analogue of a variable-domain modal logic. There seem, then, to be three ways in which spaces can differ: First, as to the properties of the accessibility relation; second, as to which worlds the relation relates; and third, as to which worlds or spaces are parts of their domains. -/- The paper will be structured as follows. In Section 2 I provide some reasons why one might want to pursue this kind of project in the first place. In Section 3 I outline the syntax and semantics of my proposed logic. Section 4 covers semantic tableaux for this system; and after giving the rules for their construction, I construct a few of them myself to establish some logical consequences of the system and give the reader a feel for how it works. In Sections 5, 6 and 7 I explore some of its potential philosophical implications for areas besides logic, namely the philosophy of language; metaphysics, including the metaphysics of modality and the philosophy of time, and finally the philosophy of religion, before concluding the paper in Section 8. (shrink)
In this paper we focus our attention on tableau methods for propositional interval temporal logics. These logics provide a natural framework for representing and reasoning about temporal properties in several areas of computer science. However, while various tableau methods have been developed for linear and branching time point-based temporal logics, not much work has been done on tableau methods for interval-based ones. We develop a general tableau method for Venema's \cdt\ logic interpreted over partial orders (\nsbcdt\ for short). It combines (...) features of the classical tableau method for first-order logic with those of explicit tableau methods for modal logics with constraint label management, and it can be easily tailored to most propositional interval temporal logics proposed in the literature. We prove its soundness and completeness, and we show how it has been implemented. (shrink)
This work studies some problems connected to the role of negation in logic, treating the positive fragments of propositional calculus in order to deal with two main questions: the proof of the completeness theorems in systems lacking negation, and the puzzle raised by positive paradoxes like the well-known argument of Haskel Curry. We study the constructive com- pleteness method proposed by Leon Henkin for classical fragments endowed with implication, and advance some reasons explaining what makes difficult to extend this constructive (...) method to non-classical fragments equipped with weaker implications (that avoid Curry's objection). This is the case, for example, of Jan Lukasiewicz's n-valued logics and Wilhelm Ackermann's logic of restricted implication. Besides such problems, both Henkin's method and the triviality phenomenon enable us to propose a new positive tableau proof system which uses only positive meta-linguistic resources, and to mo- tivate a new discussion concerning the role of negation in logic proposing the concept of paratriviality. In this way, some relations between positive reasoning and infinity, the possibilities to obtain a ¯first-order positive logic as well as the philosophical connection between truth and meaning are dis- cussed from a conceptual point of view. (shrink)
This paper presents a sequent calculus and a dual domain semantics for a theory of definite descriptions in which these expressions are formalised in the context of complete sentences by a binary quantifier I. I forms a formula from two formulas. Ix[F, G] means ‘The F is G’. This approach has the advantage of incorporating scope distinctions directly into the notation. Cut elimination is proved for a system of classical positive free logic with I and it is shown to be (...) sound and complete for the semantics. The system has a number of novel features and is briefly compared to the usual approach of formalising ‘the F ’ by a term forming operator. It does not coincide with Hintikka’s and Lambert’s preferred theories, but the divergence is well-motivated and attractive. (shrink)
We employ a recently developed methodology -- called "structural refinement" -- to extract nested sequent systems for a sizable class of intuitionistic modal logics from their respective labelled sequent systems. This method can be seen as a means by which labelled sequent systems can be transformed into nested sequent systems through the introduction of propagation rules and the elimination of structural rules, followed by a notational translation. The nested systems we obtain incorporate propagation rules that are parameterized with formal grammars, (...) and which encode certain frame conditions expressible as first-order Horn formulae that correspond to a subclass of the Scott-Lemmon axioms. We show that our nested systems are sound, cut-free complete, and admit hp-admissibility of typical structural rules. (shrink)
Create an account to enable off-campus access through your institution's proxy server.
Monitor this page
Be alerted of all new items appearing on this page. Choose how you want to monitor it:
Email
RSS feed
About us
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.