If the conclusion of the TarskiUndefinability Theorem was that some artificially constrained limited notions of a formal system necessarily have undecidable sentences, then Tarski made no mistake within his assumptions. When we expand the scope of his investigation to other notions of formal systems we reach an entirely different conclusion showing that Tarski's assumptions were wrong.
Both Tarski and Gödel “prove” that provability can diverge from Truth. When we boil their claim down to its simplest possible essence it is really claiming that valid inference from true premises might not always derive a true consequence. This is obviously impossible.
The generalized conclusion of the Tarski and Gödel proofs: All formal systems of greater expressive power than arithmetic necessarily have undecidable sentences. Is not the immutable truth that Tarski made it out to be it is only based on his starting assumptions. -/- When we reexamine these starting assumptions from the perspective of the philosophy of logic we find that there are alternative ways that formal systems can be defined that make undecidability inexpressible in all of these formal (...) systems. (shrink)
This paper describes Tarski’s project of rehabilitating the notion of truth, previously considered dubious by many philosophers. The project was realized by providing a formal truth definition, which does not employ any problematic concept.
Tarski’s Convention T—presenting his notion of adequate definition of truth (sic)—contains two conditions: alpha and beta. Alpha requires that all instances of a certain T Schema be provable. Beta requires in effect the provability of ‘every truth is a sentence’. Beta formally recognizes the fact, repeatedly emphasized by Tarski, that sentences (devoid of free variable occurrences)—as opposed to pre-sentences (having free occurrences of variables)—exhaust the range of significance of is true. In Tarski’s preferred usage, it is part (...) of the meaning of true that attribution of being true to a given thing presupposes the thing is a sentence. Beta’s importance is further highlighted by the fact that alpha can be satisfied using the recursively definable concept of being satisfied by every infinite sequence, which Tarski explicitly rejects. Moreover, in Definition 23, the famous truth-definition, Tarski supplements “being satisfied by every infinite sequence” by adding the condition “being a sentence”. Even where truth is undefinable and treated by Tarski axiomatically, he adds as an explicit axiom a sentence to the effect that every truth is a sentence. Surprisingly, the sentence just before the presentation of Convention T seems to imply that alpha alone might be sufficient. Even more surprising is the sentence just after Convention T saying beta “is not essential”. Why include a condition if it is not essential? Tarski says nothing about this dissonance. Considering the broader context, the Polish original, the German translation from which the English was derived, and other sources, we attempt to determine what Tarski might have intended by the two troubling sentences which, as they stand, are contrary to the spirit, if not the letter, of several other passages in Tarski’s corpus. (shrink)
The conventional notion of a formal system is adapted to conform to the sound deductive inference model operating on finite strings. Finite strings stipulated to have the semantic value of Boolean true provide the sound deductive premises. Truth preserving finite string transformation rules provide the valid deductive inference. Sound deductive conclusions are the result of these finite string transformation rules.
Within the (Haskell Curry) notion of a formal system we complete Tarski's formal correctness: ∀x True(x) ↔ ⊢ x and use this finally formalized notion of Truth to refute his own Undefinability Theorem (based on the Liar Paradox), the Liar Paradox, and the (Panu Raatikainen) essence of the conclusion of the 1931 Incompleteness Theorem.
A teaching document I've used in my courses on truth and on incompleteness. Aimed at students who have a good grasp of basic logic, and decent math skills, it attempts to give them the background they need to understand a proper statement of the classic results due to Gödel and Tarski, and sketches their proofs. Topics covered include the notions of language and theory, the basics of formal syntax and arithmetization, formal arithmetic (Q and PA), representability, diagonalization, and the (...) incompleteness and undefinability theorems. (shrink)
The conventional notion of a formal system is adapted to conform to the sound deductive inference model operating on finite strings. Finite strings stipulated to have the semantic property of Boolean true provide the sound deductive premises. Truth preserving finite string transformation rules provide valid the deductive inference. Conclusions of sound arguments are derived from truth preserving finite string transformations applied to true premises.
Could the intersection of [formal proofs of mathematical logic] and [sound deductive inference] specify formal systems having [deductively sound formal proofs of mathematical logic]? All that we have to do to provide [deductively sound formal proofs of mathematical logic] is select the subset of conventional [formal proofs of mathematical logic] having true premises and now we have [deductively sound formal proofs of mathematical logic].
To eliminate incompleteness, undecidability and inconsistency from formal systems we only need to convert the formal proofs to theorem consequences of symbolic logic to conform to the sound deductive inference model. -/- Within the sound deductive inference model there is a (connected sequence of valid deductions from true premises to a true conclusion) thus unlike the formal proofs of symbolic logic provability cannot diverge from truth.
Tarski's Undefinability of Truth Theorem comes in two versions: that no consistent theory which interprets Robinson's Arithmetic (Q) can prove all instances of the T-Scheme and hence define truth; and that no such theory, if sound, can even express truth. In this note, I prove corresponding limitative results for validity. While Peano Arithmetic already has the resources to define a predicate expressing logical validity, as Jeff Ketland has recently pointed out (2012, Validity as a primitive. Analysis 72: 421-30), (...) no theory which interprets Q closed under the standard structural rules can define nor express validity, on pain of triviality. The results put pressure on the widespread view that there is an asymmetry between truth and validity, viz. that while the former cannot be defined within the language, the latter can. I argue that Vann McGee's and Hartry Field's arguments for the asymmetry view are problematic. (shrink)
We can simply define Gödel 1931 Incompleteness away by redefining the meaning of the standard definition of Incompleteness: A theory T is incomplete if and only if there is some sentence φ such that (T ⊬ φ) and (T ⊬ ¬φ). This definition construes the existence of self-contradictory expressions in a formal system as proof that this formal system is incomplete because self-contradictory expressions are neither provable nor disprovable in this formal system. Since self-contradictory expressions are neither provable nor disprovable (...) only because they are self-contradictory we could define them as unsound instead of defining the formal system as incomplete. (shrink)
The prospects and limitations of defining truth in a finite model in the same language whose truth one is considering are thoroughly examined. It is shown that in contradistinction to Tarski's undefinability theorem for arithmetic, it is in a definite sense possible in this case to define truth in the very language whose truth is in question.
Interesting as they are by themselves in philosophy and mathematics, paradoxes can be made even more fascinating when turned into proofs and theorems. For example, Russell’s paradox, which overthrew Frege’s logical edifice, is now a classical theorem in set theory, to the effect that no set contains all sets. Paradoxes can be used in proofs of some other theorems—thus Liar’s paradox has been used in the classical proof of Tarski’s theorem on the undefinability of truth in sufficiently rich (...) languages. This paradox (as well as Richard’s paradox) appears implicitly in Gödel’s proof of his celebrated first incompleteness theorem. In this paper, we study Yablo’s paradox from the viewpoint of first- and second-order logics. We prove that a formalization of Yablo’s paradox (which is second order in nature) is non-first-orderizable in the sense of George Boolos (1984). (shrink)
I prove both the mathematical conjectures P ≠ NP and the Continuum Hypothesis are eternally unprovable using the same fundamental idea. Starting with the Saunders Maclane idea that a proof is eternal or it is not a proof, I use the indeterminacy of human biological capabilities in the eternal future to show that since both conjectures are independent of Axioms and have definitions connected with human biological capabilities, it would be impossible to prove them eternally without the creation and widespread (...) acceptance of new axioms. I also show that the same fundamental concepts cannot be used to demonstrate the eternal unprovability of many other mathematical theorems and open conjectures. Finally I investigate the idea’s implications for the foundations of mathematics including its relation to Godel’s Incompleteness Theorem and Tarsky’s Undefinability Theorem. (shrink)
Tarski’s pioneering work on truth has been thought by some to motivate a robust, correspondence-style theory of truth, and by others to motivate a deflationary attitude toward truth. I argue that Tarski’s work suggests neither; if it motivates any contemporary theory of truth, it motivates conceptual primitivism, the view that truth is a fundamental, indefinable concept. After outlining conceptual primitivism and Tarski’s theory of truth, I show how the two approaches to truth share much in common. While (...)Tarski does not explicitly accept primitivism, the view is open to him, and fits better with his formal work on truth than do correspondence or deflationary theories. Primitivists, in turn, may rely on Tarski’s insights in motivating their own perspective on truth. I conclude by showing how viewing Tarski through the primitivist lens provides a fresh response to some familiar charges from Putnam and Etchemendy. (shrink)
Many commentators on Alfred Tarski have, following Hartry Field, claimed that Tarski's truth-definition was motivated by physicalism—the doctrine that all facts, including semantic facts, must be reducible to physical facts. I claim, instead, that Tarski did not aim to reduce semantic facts to physical ones. Thus, Field's criticism that Tarski's truth-definition fails to fulfill physicalist ambitions does not reveal Tarski to be inconsistent, since Tarski's goal is not to vindicate physicalism. I argue that (...) class='Hi'>Tarski's only published remarks that speak approvingly of physicalism were written in unusual circumstances: Tarski was likely attempting to appease an audience of physicalists that he viewed as hostile to his ideas. In later sections I develop positive accounts of: (1) Tarski's reduction of semantic concepts; (2) Tarski's motivation to develop formal semantics in the particular way he does; and (3) the role physicalism plays in Tarski's thought. (shrink)
Alfred Tarski was one of the greatest logicians of the twentieth century. His influence comes not merely through his own work but from the legion of students who pursued his projects, both in Poland and Berkeley. This chapter focuses on three key areas of Tarski's research, beginning with his groundbreaking studies of the concept of truth. Tarski's work led to the creation of the area of mathematical logic known as model theory and prefigured semantic approaches in the (...) philosophy of language and philosophical logic, such as Kripke's possible worlds semantics for modal logic. We also examine the paradoxical decomposition of the sphere known as the Banach–Tarski paradox. Finally we examine Tarski's work on decidable and undecidable theories, which he carried out in collaboration with students such as Mostowski, Presburger, Robinson and others. (shrink)
Alfred Tarski was a nominalist. But he published almost nothing on his nominalist views, and until recently the only sources scholars had for studying Tarski’s nominalism were conversational reports from his friends and colleagues. However, a recently-discovered archival resource provides the most detailed information yet about Tarski’s nominalism. Tarski spent the academic year 1940-41 at Harvard, along with many of the leading lights of scientific philosophy: Carnap, Quine, Hempel, Goodman, and (for the fall semester) Russell. This (...) group met frequently to discuss logical and philosophical topics of shared interest. At these meetings, Carnap took dictation notes, which are now stored in the Archives of Scientific Philosophy. Interestingly, and somewhat surprisingly, the plurality of notes covers a proposal Tarski presents for a nominalist language of unified science. This chapter addresses the following questions about this project. What, precisely, is Tarski’s nominalist position? What rationales are given for Tarski’s nominalist stance—and are these rationales defensible? Finally, how is Tarskian nominalism of 1941 related to current nominalist projects? (shrink)
In this manuscript, published here for the first time, Tarski explores the concept of logical notion. He draws on Klein's Erlanger Programm to locate the logical notions of ordinary geometry as those invariant under all transformations of space. Generalizing, he explicates the concept of logical notion of an arbitrary discipline.
Alfred Tarski seems to endorse a partial conception of truth, the T-schema, which he believes might be clarified by the application of empirical methods, specifically citing the experimental results of Arne Næss (1938a). The aim of this paper is to argue that Næss’ empirical work confirmed Tarski’s semantic conception of truth, among others. In the first part, I lay out the case for believing that Tarski’s T-schema, while not the formal and generalizable Convention-T, provides a partial account (...) of truth that may be buttressed by an examination of the ordinary person’s views of truth. Then, I address a concern raised by Tarski’s contemporaries who saw Næss’ results as refuting Tarski’s semantic conception. Following that, I summarize Næss’ results. Finally, I will contend with a few objections that suggest a strict interpretation of Næss’ results might recommend an overturning of Tarski’s theory. (shrink)
This article is a translation of the paper in Polish (Alfred Tarski - człowiek, który zdefiniował prawdę) published in Ruch Filozoficzny 4 (4) (2007). It is a personal Alfred Tarski memories based on my stay in Berkeley and visit the Alfred Tarski house for the invitation of Janusz Tarski.
This article is a characteristic of Alfred Tarski's profile, seen from a personal perspective after a long visit to Berkeley, at the invitation of Jan Tarski, in the house where Alfred Tarski lived. It takes into account the scientific achievements and research results of Tarski, as well as certain impressions of the author of these memories concerning the exotic life of this great Polish logician and mathematician of the 20th century.
Hilary Putnam's famous arguments criticizing Tarski's theory of truth are evaluated. It is argued that they do not succeed to undermine Tarski's approach. One of the arguments is based on the problematic idea of a false instance of T-schema. The other ignores various issues essential for Tarski's setting such as language-relativity of truth definition.
In the early 20th century, scepticism was common among philosophers about the very meaningfulness of the notion of truth – and of the related notions of denotation, definition etc. (i.e., what Tarski called semantical concepts). Awareness was growing of the various logical paradoxes and anomalies arising from these concepts. In addition, more philosophical reasons were being given for this aversion.1 The atmosphere changed dramatically with Alfred Tarski’s path-breaking contribution. What Tarski did was to show that, assuming that (...) the syntax of the object language is specified exactly enough, and that the metatheory has a certain amount of set theoretic power,2 one can explicitly define truth in the object language. And what can be explicitly defined can be eliminated. It follows that the defined concept cannot give rise to any inconsistencies (that is, paradoxes). This gave new respectability to the concept of truth and related notions. Nevertheless, philosophers’ judgements on the nature and philosophical relevance of Tarski’s work have varied. It is my aim here to review and evaluate some threads in this debate. (shrink)
Alfred Tarski (1901--1983) is widely regarded as one of the two giants of twentieth-century logic and also as one of the four greatest logicians of all time (Aristotle, Frege and Gödel being the other three). Of the four, Tarski was the most prolific as a logician. The four volumes of his collected papers, which exclude most of his 19 monographs, span over 2500 pages. Aristotle's writings are comparable in volume, but most of the Aristotelian corpus is not about (...) logic, whereas virtually everything written by Tarski concerns logic more or less directly. There is no doubt that Tarski wrote more on logic than any other author; he started publishing on logic in 1921 at the age of 20 and continued until his death at the age of 82. Two of his works appeared posthumously [Hist. Philos. Logic 7 (1986), no. 2, 143--154; MR0868748 (88b:03010); Tarski and Givant, A formalization of set theory without variables, Amer. Math. Soc., Providence, RI, 1987; MR0920815 (89g:03012)]. Tarski's voluminous writings were widely scattered in numerous journals, some quite rare. It has been extremely difficult to study the development of Tarski's thought and to trace the interconnections and interdependence of his various papers. Thanks to the present collection all this has changed, and it is likely that the increased accessibility of Tarski's papers will have the effect of increasing Tarski's already enormous influence. (shrink)
A good definition of process tracing should highlight what is distinctive about process tracing as a methodology of causal inference. I look at eight criteria that are used to define process tracing in the methodological literature, and I dismiss all eight criteria as unhelpful (some because they are too restrictive, and others because they are vacuous). In place of these criteria, I propose four alternative criteria, and I draw a distinction between process tracing for the ultimate aim of testing a (...) start--end hypothesis versus process tracing as an ultimate end in itself. Although it is clear enough how the former method works, there is still much methodological work to be done in understanding the latter method as a distinctive method of causal inference, I argue. (shrink)
In this paper the importance of Tarski's truth definition is evaluated like a productive resource to criticize Nietzsche's nihilistic view and any pragmatic understanding of truth.
This paper discusses the history of the confusion and controversies over whether the definition of consequence presented in the 11-page 1936 Tarski consequence-definition paper is based on a monistic fixed-universe framework?like Begriffsschrift and Principia Mathematica. Monistic fixed-universe frameworks, common in pre-WWII logic, keep the range of the individual variables fixed as the class of all individuals. The contrary alternative is that the definition is predicated on a pluralistic multiple-universe framework?like the 1931 Gödel incompleteness paper. A pluralistic multiple-universe framework recognizes (...) multiple universes of discourse serving as different ranges of the individual variables in different interpretations?as in post-WWII model theory. In the early 1960s, many logicians?mistakenly, as we show?held the ?contrary alternative? that Tarski 1936 had already adopted a Gödel-type, pluralistic, multiple-universe framework. We explain that Tarski had not yet shifted out of the monistic, Frege?Russell, fixed-universe paradigm. We further argue that between his Principia-influenced pre-WWII Warsaw period and his model-theoretic post-WWII Berkeley period, Tarski's philosophy underwent many other radical changes. (shrink)
This paper considers a formalisation of classical logic using general introduction rules and general elimination rules. It proposes a definition of ‘maximal formula’, ‘segment’ and ‘maximal segment’ suitable to the system, and gives reduction procedures for them. It is then shown that deductions in the system convert into normal form, i.e. deductions that contain neither maximal formulas nor maximal segments, and that deductions in normal form satisfy the subformula property. Tarski’s Rule is treated as a general introduction rule for (...) implication. The general introduction rule for negation has a similar form. Maximal formulas with implication or negation as main operator require reduction procedures of a more intricate kind not present in normalisation for intuitionist logic. (shrink)
The period from 1900 to 1935 was particularly fruitful and important for the development of logic and logical metatheory. This survey is organized along eight "itineraries" concentrating on historically and conceptually linked strands in this development. Itinerary I deals with the evolution of conceptions of axiomatics. Itinerary II centers on the logical work of Bertrand Russell. Itinerary III presents the development of set theory from Zermelo onward. Itinerary IV discusses the contributions of the algebra of logic tradition, in particular, Löwenheim (...) and Skolem. Itinerary V surveys the work in logic connected to the Hilbert school, and itinerary V deals specifically with consistency proofs and metamathematics, including the incompleteness theorems. Itinerary VII traces the development of intuitionistic and many-valued logics. Itinerary VIII surveys the development of semantical notions from the early work on axiomatics up to Tarski's work on truth. (shrink)
We discuss misinformation about “the liar antinomy” with special reference to Tarski’s 1933 truth-definition paper [1]. Lies are speech-acts, not merely sentences or propositions. Roughly, lies are statements of propositions not believed by their speakers. Speakers who state their false beliefs are often not lying. And speakers who state true propositions that they don’t believe are often lying—regardless of whether the non-belief is disbelief. Persons who state propositions on which they have no opinion are lying as much as those (...) who state propositions they believe to be false. Not all lies are statements of false propositions—some lies are true; some have no truth-value. People who only occasionally lie are not liars: roughly, liars repeatedly and habitually lie. Some half-truths are statements intended to mislead even though the speakers “interpret” the sentences used as expressing true propositions. Others are statements of propositions believed by the speakers to be questionable but without revealing their supposed problematic nature. The two “formulations” of “the antinomy of the liar” in [1], pp.157–8 and 161–2, have nothing to do with lying or liars. The first focuses on an “expression” Tarski calls ‘c’, namely the following. -/- c is not a true sentence -/- The second focuses on another “expression”, also called ‘c’, namely the following. -/- for all p, if c is identical with the sentence ‘p’, then not p -/- Without argumentation or even discussion, Tarski implies that these strange “expressions” are English sentences. [1] Alfred Tarski, The concept of truth in formalized languages, pp. 152–278, Logic, Semantics, Metamathematics, papers from 1923 to 1938, ed. John Corcoran, Hackett, Indianapolis 1983. -/- https://www.academia.edu/12525833/Sentence_Proposition_Judgment_Statement_and_Fact_Speaking_about_th e_Written_English_Used_in_Logic. (shrink)
CORCORAN REVIEWS THE 4 VOLUMES OF TARSKI’S COLLECTED PAPERS Alfred Tarski (1901--1983) is widely regarded as one of the two giants of twentieth-century logic and also as one of the four greatest logicians of all time (Aristotle, Frege and Gödel being the other three). Of the four, Tarski was the most prolific as a logician. The four volumes of his collected papers, which exclude most of his 19 monographs, span over 2500 pages. Aristotle's writings are comparable in (...) volume, but most of the Aristotelian corpus is not about logic, whereas virtually everything written by Tarski concerns logic more or less directly. There is no doubt that Tarski wrote more on logic than any other author; he started publishing on logic in 1921 at the age of 20 and continued until his death at the age of 82. (shrink)
The paper presents Alfred Tarski’s debate with the semantic antinomies: the basic Liar Paradox, and its more sophisticated versions, which are currently discussed in philosophy: Strengthen Liar Paradox, Cyclical Liar Paradox, Contingent Liar Paradox, Correct Liar Paradox, Card Paradox, Yablo’s Paradox and a few others. Since Tarski, himself did not addressed these paradoxes—neither in his famous work published in 1933, nor in later papers in which he developed the Semantic Theory of Truth—therefore, We try to defend his concept (...) of truth against these antinomies. It is demonstrated that Tarskian theory of truth is resistant to the paradoxes and it is still the best solution to avoid the antinomies and remain within a classical logic, that is, accepting the laws of noncontradiction, excluded middle, and the principle of bivalence. Thus, the goal of the paper is double—firstly, to show that none of the versions of the Liar Paradox’s is a serious threat to Tarski’s concept of truth, and secondly, that Semantic Theory of Truth allows to remain within classical logic, and at the same time, avoid antinomies—which makes it the most attractive among classical theories of truth. (shrink)
Gómez-Torrente’s papers have made important contributions to vindicate Tarski’s model-theoretic account of the logical properties in the face of Etchemendy’s criticisms. However, at some points his vindication depends on interpreting the Tarskian account as purportedly modally deflationary, i.e., as not intended to capture the intuitive modal element in the logical properties, that logical consequence is (epistemic or alethic) necessary truth-preservation. Here it is argued that the views expressed in Tarski’s seminal work do not support this modally deflationary interpretation, (...) even if Tarski himself was sceptical about modalities. (shrink)
Tarski's analysis of the concept of truth gives rise to a hierarchy of languages. Does this fragment the concept all the way to philosophical unacceptability? I argue it doesn't, drawing on a modification of Kaplan's theory of indexicals.
ABSTRACT: Compilation of eleven short essays that reflect authors view on various themes. Themes covered under this compilation are: • Right or wrong, good or bad, beautiful or ugly, these are all undefined and indefinable abstractions. • Communication: we're losing this ability; we are hiding behind a screen. • Ecology and environment: what can we do? • From kings to subjects: a society founded on the principle of dishonesty, arrogance and inequality. • Globalization and constraints, we must respect and protect (...) diversity! • The Internet: the most possible objective analysis. • Everybody isn’t equal in front of law and you cannot speak about justice... • The World’s Government, our money does not belong to us anymore! • We are reducing our planet into a giant landfill: we ourselves are becoming garbage! • School: an obstacle to reasoning, reflection and research. • Let’s entrust the highest roles of the State to young people and women! (shrink)
Philosopher’s judgements on the philosophical value of Tarski’s contributions to the theory of truth have varied. For example Karl Popper, Rudolf Carnap, and Donald Davidson have, in their different ways, celebrated Tarski’s achievements and have been enthusiastic about their philosophical relevance. Hilary Putnam, on the other hand, pronounces that “[a]s a philosophical account of truth, Tarski’s theory fails as badly as it is possible for an account to fail.” Putnam has several alleged reasons for his dissatisfaction,1 but (...) one of them, the one I call the modal objection (cf. Raatikainen 2003), has been particularly influential. In fact, very similar objections have been presented over and over again in the literature. Already in 1954, Arthur Pap had criticized Tarski’s account with a similar argument (Pap 1954). Moreover, both Scott Soames (1984) and John Etchemendy (1988) use, with an explicit reference to Putnam, similar modal arguments in relation to Tarski. Richard Heck (1997), too, shows some sympathy for such considerations. Simon Blackburn (1984, Ch. 8) has put forward a related argument against Tarski. Recently, Marian David has criticized Tarski’s truth definition with an analogous argument as well (David 2004, p. 389-390).2 This line of argument is thus apparently one of the most influential critiques of Tarski. It is certainly worthy of serious attention. Nevertheless, I shall argue that, given closer scrutiny, it does not present such an acute problem for the Tarskian approach to truth as many philosophers think. But I also believe that it is important to understand clearly why this is so. Moreover, I think that a careful consideration of the issue illuminates certain important but somewhat neglected aspects of the Tarskian approach. (shrink)
Logical Indefinites.Jack Woods - 2014 - Logique Et Analyse -- Special Issue Edited by Julien Murzi and Massimiliano Carrara 227: 277-307.details
I argue that we can and should extend Tarski's model-theoretic criterion of logicality to cover indefinite expressions like Hilbert's ɛ operator, Russell's indefinite description operator η, and abstraction operators like 'the number of'. I draw on this extension to discuss the logical status of both abstraction operators and abstraction principles.
One of the most fundamental questions in the philosophy of mathematics concerns the relation between truth and formal proof. The position according to which the two concepts are the same is called deflationism, and the opposing viewpoint substantialism. In an important result of mathematical logic, Kurt Gödel proved in his first incompleteness theorem that all consistent formal systems containing arithmetic include sentences that can neither be proved nor disproved within that system. However, such undecidable Gödel sentences can be established to (...) be true once we expand the formal system with Alfred Tarski s semantical theory of truth, as shown by Stewart Shapiro and Jeffrey Ketland in their semantical arguments for the substantiality of truth. According to them, in Gödel sentences we have an explicit case of true but unprovable sentences, and hence deflationism is refuted. -/- Against that, Neil Tennant has shown that instead of Tarskian truth we can expand the formal system with a soundness principle, according to which all provable sentences are assertable, and the assertability of Gödel sentences follows. This way, the relevant question is not whether we can establish the truth of Gödel sentences, but whether Tarskian truth is a more plausible expansion than a soundness principle. In this work I will argue that this problem is best approached once we think of mathematics as the full human phenomenon, and not just consisting of formal systems. When pre-formal mathematical thinking is included in our account, we see that Tarskian truth is in fact not an expansion at all. I claim that what proof is to formal mathematics, truth is to pre-formal thinking, and the Tarskian account of semantical truth mirrors this relation accurately. -/- However, the introduction of pre-formal mathematics is vulnerable to the deflationist counterargument that while existing in practice, pre-formal thinking could still be philosophically superfluous if it does not refer to anything objective. Against this, I argue that all truly deflationist philosophical theories lead to arbitrariness of mathematics. In all other philosophical accounts of mathematics there is room for a reference of the pre-formal mathematics, and the expansion of Tarkian truth can be made naturally. Hence, if we reject the arbitrariness of mathematics, I argue in this work, we must accept the substantiality of truth. Related subjects such as neo-Fregeanism will also be covered, and shown not to change the need for Tarskian truth. -/- The only remaining route for the deflationist is to change the underlying logic so that our formal languages can include their own truth predicates, which Tarski showed to be impossible for classical first-order languages. With such logics we would have no need to expand the formal systems, and the above argument would fail. From the alternative approaches, in this work I focus mostly on the Independence Friendly (IF) logic of Jaakko Hintikka and Gabriel Sandu. Hintikka has claimed that an IF language can include its own adequate truth predicate. I argue that while this is indeed the case, we cannot recognize the truth predicate as such within the same IF language, and the need for Tarskian truth remains. In addition to IF logic, also second-order logic and Saul Kripke s approach using Kleenean logic will be shown to fail in a similar fashion. (shrink)
Halbach has argued that Tarski biconditionals are not ontologically conservative over classical logic, but his argument is undermined by the fact that he cannot include a theory of arithmetic, which functions as a theory of syntax. This article is an improvement on Halbach's argument. By adding the Tarski biconditionals to inclusive negative free logic and the universal closure of minimal arithmetic, which is by itself an ontologically neutral combination, one can prove that at least one thing exists. The (...) result can then be strengthened to the conclusion that infinitely many things exist. Those things are not just all Gödel codes of sentences but rather all natural numbers. Against this background inclusive negative free logic collapses into noninclusive free logic, which collapses into classical logic. The consequences for ontological deflationism with respect to truth are discussed. (shrink)
Kit Fine has reawakened a puzzle about variables with a long history in analytic philosophy, labeling it “the antinomy of the variable”. Fine suggests that the antinomy demands a reconceptualization of the role of variables in mathematics, natural language semantics, and first-order logic. The difficulty arises because: (i) the variables ‘x’ and ‘y’ cannot be synonymous, since they make different contributions when they jointly occur within a sentence, but (ii) there is a strong temptation to say that distinct variables ‘x’ (...) and ‘y’ are synonymous, since sentences differing by the total, proper substitution of ‘x’ for ‘y’ always agree in meaning. We offer a precise interpretation of the challenge posed by (i) and (ii). We then develop some neglected passages of Tarski to show that his semantics for variables has the resources to resolve the antinomy without abandoning standard compositional semantics. (shrink)
This papers discuss the place, if any, of Convention T (the condition of material adequacy of the proper definition of truth formulated by Tarski) in the truth-makers account offered by Kevin Mulligan, Peter Simons and Barry Smith. It is argued that although Tarski’s requirement seems entirely acceptable in the frameworks of truth-makers theories for the first-sight, several doubts arise under a closer inspection. In particular, T-biconditionals have no clear meaning as sentences about truth-makers. Thus, truth-makers theory cannot be (...) considered as the semantic theory of truth enriched by metaphysical (ontological) data. The problem of truth-makers for sentences about future events is discussed at the end of the paper. (shrink)
Create an account to enable off-campus access through your institution's proxy server.
Monitor this page
Be alerted of all new items appearing on this page. Choose how you want to monitor it:
Email
RSS feed
About us
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.