Related

Contents
25 found
Order:
  1. A Hyperintensional Two-Dimensionalist Solution to the Access Problem.David Elohim - manuscript
    I argue that the two-dimensional hyperintensions of epistemic topic-sensitive two-dimensional truthmaker semantics provide a compelling solution to the access problem. -/- I countenance an abstraction principle for two-dimensional hyperintensions based on Voevodsky's Univalence Axiom and function type equivalence in Homotopy Type Theory. The truth of my first-order abstraction principle for two-dimensional hyperintensions is grounded in its being possibly recursively enumerable i.e. Turing computable and the Turing machine being physically implementable. I apply, further, modal rationalism in modal epistemology to solve the (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  2. The construction of transfinite equivalence algorithms.Han Geurdes - manuscript
    Context: Consistency of mathematical constructions in numerical analysis and the application of computerized proofs in the light of the occurrence of numerical chaos in simple systems. Purpose: To show that a computer in general and a numerical analysis in particular can add its own peculiarities to the subject under study. Hence the need of thorough theoretical studies on chaos in numerical simulation. Hence, a questioning of what e.g. a numerical disproof of a theorem in physics or a prediction in numerical (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  3. What is Logical Monism?Justin Clarke-Doane - forthcoming - In Christopher Peacocke & Paul Boghossian (eds.), Normative Realism.
    Logical monism is the view that there is ‘One True Logic’. This is the default position, against which pluralists react. If there were not ‘One True Logic’, it is hard to see how there could be one true theory of anything. A theory is closed under a logic! But what is logical monism? In this article, I consider semantic, logical, modal, scientific, and metaphysical proposals. I argue that, on no ‘factualist’ analysis (according to which ‘there is One True Logic’ expresses (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  4. Safety and Pluralism in Mathematics.James Andrew Smith - forthcoming - Erkenntnis:1-19.
    A belief one has is safe if either (i) it could not easily be false or (ii) in any nearby world in which it is false, it is not formed using the method one uses to form one’s actual belief. It seems our mathematical beliefs are safe if mathematical pluralism is true: if, loosely put, almost any consistent mathematical theory is true. It seems, after all, that in any nearby world where one’s mathematical beliefs differ from one’s actual beliefs, one (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  5. The iterative conception of function and the iterative conception of set.Tim Button - 2023 - In Carolin Antos, Neil Barton & Giorgio Venturi (eds.), The Palgrave Companion to the Philosophy of Set Theory. Palgrave.
    Hilary Putnam once suggested that “the actual existence of sets as ‘intangible objects’ suffers… from a generalization of a problem first pointed out by Paul Benacerraf… are sets a kind of function or are functions a sort of set?” Sadly, he did not elaborate; my aim, here, is to do so on his behalf. There are well-known methods for treating sets as functions and functions as sets. But these do not raise any obvious philosophical or foundational puzzles. For that, we (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  6. Observation and Intuition.Justin Clarke-Doane & Avner Ash - 2023 - In Carolin Antos, Neil Barton & Giorgio Venturi (eds.), The Palgrave Companion to the Philosophy of Set Theory. Palgrave.
    The motivating question of this paper is: ‘How are our beliefs in the theorems of mathematics justified?’ This is distinguished from the question ‘How are our mathematical beliefs reliably true?’ We examine an influential answer, outlined by Russell, championed by Gödel, and developed by those searching for new axioms to settle undecidables, that our mathematical beliefs are justified by ‘intuitions’, as our scientific beliefs are justified by observations. On this view, axioms are analogous to laws of nature. They are postulated (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  7. Is Time a Physical Unit?Yang I. Pachankis - 2022 - Science Set Journal of Physics 1 (1):1-4.
    The article approaches the epistemological question on the concept of time from an anthropological psychology perspective. The differentiation between imminent perceptions and existence beyond imminent perception has been the earliest conceptualization of time found so far in the traces of human civilizations. The research differentiated psychological time from modern physics and astronomy as the basic hypothesis in the inquiries on the concept of time in physics and modern astronomy – is the physical unit of time an ontological existence of things (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  8. From Maximal Intersubjectivity to Objectivity: An Argument from the Development of Arithmetical Cognition.Markus Pantsar - 2022 - Topoi 42 (1):271-281.
    One main challenge of non-platonist philosophy of mathematics is to account for the apparent objectivity of mathematical knowledge. Cole and Feferman have proposed accounts that aim to explain objectivity through the intersubjectivity of mathematical knowledge. In this paper, focusing on arithmetic, I will argue that these accounts as such cannot explain the apparent objectivity of mathematical knowledge. However, with support from recent progress in the empirical study of the development of arithmetical cognition, a stronger argument can be provided. I will (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  9. Objectivity in Mathematics, Without Mathematical Objects†.Markus Pantsar - 2021 - Philosophia Mathematica 29 (3):318-352.
    I identify two reasons for believing in the objectivity of mathematical knowledge: apparent objectivity and applications in science. Focusing on arithmetic, I analyze platonism and cognitive nativism in terms of explaining these two reasons. After establishing that both theories run into difficulties, I present an alternative epistemological account that combines the theoretical frameworks of enculturation and cumulative cultural evolution. I show that this account can explain why arithmetical knowledge appears to be objective and has scientific applications. Finally, I will argue (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   9 citations  
  10. Realism, Objectivity, and Evaluation.Justin Clarke-Doane - 2020 - In David Kaspar (ed.), Explorations in Ethics. Palgrave-Macmillan.
    I discuss Benacerraf's epistemological challenge for realism about areas like mathematics, metalogic, and modality, and describe the pluralist response to it. I explain why normative pluralism is peculiarly unsatisfactory, and use this explanation to formulate a radicalization of Moore's Open Question Argument. According to the argument, the facts -- even the normative facts -- fail to settle the practical questions at the center of our normative lives. One lesson is that the concepts of realism and objectivity, which are widely identified, (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  11. Wittgenstein, Peirce, and Paradoxes of Mathematical Proof.Sergiy Koshkin - 2020 - Analytic Philosophy 62 (3):252-274.
    Wittgenstein's paradoxical theses that unproved propositions are meaningless, proofs form new concepts and rules, and contradictions are of limited concern, led to a variety of interpretations, most of them centered on rule-following skepticism. We argue, with the help of C. S. Peirce's distinction between corollarial and theorematic proofs, that his intuitions are better explained by resistance to what we call conceptual omniscience, treating meaning as fixed content specified in advance. We interpret the distinction in the context of modern epistemic logic (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  12. The Relationship of Arithmetic As Two Twin Peano Arithmetic(s) and Set Theory: A New Glance From the Theory of Information.Vasil Penchev - 2020 - Metaphilosophy eJournal (Elseviers: SSRN) 12 (10):1-33.
    The paper introduces and utilizes a few new concepts: “nonstandard Peano arithmetic”, “complementary Peano arithmetic”, “Hilbert arithmetic”. They identify the foundations of both mathematics and physics demonstrating the equivalence of the newly introduced Hilbert arithmetic and the separable complex Hilbert space of quantum mechanics in turn underlying physics and all the world. That new both mathematical and physical ground can be recognized as information complemented and generalized by quantum information. A few fundamental mathematical problems of the present such as Fermat’s (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  13. Review of: Hilary Putnam on Logic and Mathematics, by Geoffrey Hellman and Roy T. Cook (eds.). [REVIEW]Tim Button - 2019 - Mind 129 (516):1327-1337.
    Putnam’s most famous contribution to mathematical logic was his role in investigating Hilbert’s Tenth Problem; Putnam is the ‘P’ in the MRDP Theorem. This volume, though, focusses mostly on Putnam’s work on the philosophy of logic and mathematics. It is a somewhat bumpy ride. Of the twelve papers, two scarcely mention Putnam. Three others focus primarily on Putnam’s ‘Mathematics without foundations’ (1967), but with no interplay between them. The remaining seven papers apparently tackle unrelated themes. Some of this disjointedness would (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  14. Can Mathematical Objects Be Causally Efficacious?Seungbae Park - 2018 - Inquiry: An Interdisciplinary Journal of Philosophy 62 (3):247–255.
    Callard (2007) argues that it is metaphysically possible that a mathematical object, although abstract, causally affects the brain. I raise the following objections. First, a successful defence of mathematical realism requires not merely the metaphysical possibility but rather the actuality that a mathematical object affects the brain. Second, mathematical realists need to confront a set of three pertinent issues: why a mathematical object does not affect other concrete objects and other mathematical objects, what counts as a mathematical object, and how (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   3 citations  
  15. In Defense of Mathematical Inferentialism.Seungbae Park - 2017 - Analysis and Metaphysics 16:70-83.
    I defend a new position in philosophy of mathematics that I call mathematical inferentialism. It holds that a mathematical sentence can perform the function of facilitating deductive inferences from some concrete sentences to other concrete sentences, that a mathematical sentence is true if and only if all of its concrete consequences are true, that the abstract world does not exist, and that we acquire mathematical knowledge by confirming concrete sentences. Mathematical inferentialism has several advantages over mathematical realism and fictionalism.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   4 citations  
  16. Two Criticisms against Mathematical Realism.Seungbae Park - 2017 - Diametros 52:96-106.
    Mathematical realism asserts that mathematical objects exist in the abstract world, and that a mathematical sentence is true or false, depending on whether the abstract world is as the mathematical sentence says it is. I raise two objections against mathematical realism. First, the abstract world is queer in that it allows for contradictory states of affairs. Second, mathematical realism does not have a theoretical resource to explain why a sentence about a tricle is true or false. A tricle is an (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  17. Against Mathematical Convenientism.Seungbae Park - 2016 - Axiomathes 26 (2):115-122.
    Indispensablists argue that when our belief system conflicts with our experiences, we can negate a mathematical belief but we do not because if we do, we would have to make an excessive revision of our belief system. Thus, we retain a mathematical belief not because we have good evidence for it but because it is convenient to do so. I call this view ‘ mathematical convenientism.’ I argue that mathematical convenientism commits the consequential fallacy and that it demolishes the Quine-Putnam (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   4 citations  
  18. Objectivity in Ethics and Mathematics.Justin Clarke-Doane - 2015 - Proceedings of the Aristotelian Society: The Virtual Issue 3.
    How do axioms, or first principles, in ethics compare to those in mathematics? In this companion piece to G.C. Field's 1931 "On the Role of Definition in Ethics", I argue that there are similarities between the cases. However, these are premised on an assumption which can be questioned, and which highlights the peculiarity of normative inquiry.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   9 citations  
  19. (1 other version)Gödel’s Cantorianism.Claudio Ternullo - 2015 - In E.-M. Engelen (ed.), Kurt Gödel: Philosopher-Scientist. Presses Universitaires de Provence. pp. 417-446.
    Gödel’s philosophical conceptions bear striking similarities to Cantor’s. Although there is no conclusive evidence that Gödel deliberately used or adhered to Cantor’s views, one can successfully reconstruct and see his “Cantorianism” at work in many parts of his thought. In this paper, I aim to describe the most prominent conceptual intersections between Cantor’s and Gödel’s thought, particularly on such matters as the nature and existence of mathematical entities (sets), concepts, Platonism, the Absolute Infinite, the progress and inexhaustibility of mathematics.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  20. The Philosophical Significance of Tennenbaum’s Theorem.T. Button & P. Smith - 2012 - Philosophia Mathematica 20 (1):114-121.
    Tennenbaum's Theorem yields an elegant characterisation of the standard model of arithmetic. Several authors have recently claimed that this result has important philosophical consequences: in particular, it offers us a way of responding to model-theoretic worries about how we manage to grasp the standard model. We disagree. If there ever was such a problem about how we come to grasp the standard model, then Tennenbaum's Theorem does not help. We show this by examining a parallel argument, from a simpler model-theoretic (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   12 citations  
  21. What is Absolute Undecidability?†.Justin Clarke-Doane - 2012 - Noûs 47 (3):467-481.
    It is often supposed that, unlike typical axioms of mathematics, the Continuum Hypothesis (CH) is indeterminate. This position is normally defended on the ground that the CH is undecidable in a way that typical axioms are not. Call this kind of undecidability “absolute undecidability”. In this paper, I seek to understand what absolute undecidability could be such that one might hope to establish that (a) CH is absolutely undecidable, (b) typical axioms are not absolutely undecidable, and (c) if a mathematical (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   14 citations  
  22. Last bastion of reason. [REVIEW]James Franklin - 2000 - New Criterion 18 (9):74-78.
    Attacks the irrationalism of Lakatos's Proofs and Refutations and defends mathematics as a "last bastion" of reason against postmodernist and deconstructionist currents.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  23. On Saying What You Really Want to Say: Wittgenstein, Gödel and the Trisection of the Angle.Juliet Floyd - 1995 - In Jaakko Hintikka (ed.), From Dedekind to Gödel: The Foundations of Mathematics in the Early Twentieth Century, Synthese Library Vol. 251 (Kluwer Academic Publishers. pp. 373-426.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   13 citations  
  24. Do Abstract Mathematical Axioms About Infinite Sets Apply To The Real, Physical Universe?Roger Granet - manuscript
    Suppose one has a system, the infinite set of positive integers, P, and one wants to study the characteristics of a subset (or subsystem) of that system, the infinite subset of odd positives, O, relative to the overall system. In mathematics, this is done by pairing off each odd with a positive, using a function such as O=2P+1. This puts the odds in a one-to-one correspondence with the positives, thereby, showing that the subset of odds and the original set of (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  25. Traditional Mathematics Is Not the Language of Nature: Multivalued Interaction Dynamics Makes the World Go Round.Andrei P. Kirilyuk -
    We show that critically accumulating "difficult" problems, contradictions and stagnation in modern science have the unified and well-specified mathematical origin in the explicit, artificial reduction of any interaction problem solution to an "exact", dynamically single-valued (or unitary) function, while in reality any unreduced interaction development leads to a dynamically multivalued solution describing many incompatible system configurations, or "realisations", that permanently replace one another in causally random order. We obtain thus the universal concept of dynamic complexity and chaos impossible in unitary (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark