Switch to: References

Add citations

You must login to add citations.
  1. Traditional logic and the early history of sets, 1854-1908.José Ferreirós - 1996 - Archive for History of Exact Sciences 50 (1):5-71.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • The Rise of non-Archimedean Mathematics and the Roots of a Misconception I: The Emergence of non-Archimedean Systems of Magnitudes.Philip Ehrlich - 2006 - Archive for History of Exact Sciences 60 (1):1-121.
    Download  
     
    Export citation  
     
    Bookmark   49 citations  
  • A pantheist in spite of himself: Craig, Hegel, and divine infinity.Russell W. Dumke - 2016 - International Journal for Philosophy of Religion 80 (3):243-257.
    In his 2006 paper `Pantheists in Spite of Themselves: God and Infinity in Contemporary Theology,’ William Lane Craig examines the work of Wolfhart Pannenberg, Philip Clayton, and F. LeRon Shults, whose conceptions of God are influenced by Hegel. Craig shows that these thinkers’ Hegelian formulations lead to monism, despite their attempts to avoid it. He then attempts to refute Hegelian thinking by appealing to Cantor. I argue that that this refutation fails because Cantor and Hegel are far more amicable than (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Exploring Categorical Structuralism.C. Mclarty - 2004 - Philosophia Mathematica 12 (1):37-53.
    Hellman [2003] raises interesting challenges to categorical structuralism. He starts citing Awodey [1996] which, as Hellman sees, is not intended as a foundation for mathematics. It offers a structuralist framework which could denned in any of many different foundations. But Hellman says Awodey's work is 'naturally viewed in the context of Mac Lane's repeated claim that category theory provides an autonomous foundation for mathematics as an alternative to set theory' (p. 129). Most of Hellman's paper 'scrutinizes the formulation of category (...)
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • Natural Numbers and Infinitesimals: A Discussion between Benno Kerry and Georg Cantor.Carlo Proietti - 2008 - History and Philosophy of Logic 29 (4):343-359.
    During the first months of 1887, while completing the drafts of his Mitteilungen zur Lehre vom Transfiniten, Georg Cantor maintained a continuous correspondence with Benno Kerry. Their exchange essentially concerned two main topics in the philosophy of mathematics, namely, (a) the concept of natural number and (b) the infinitesimals. Cantor's and Kerry's positions turned out to be irreconcilable, mostly because of Kerry's irremediably psychologistic outlook, according to Cantor at least. In this study, I will examine and reconstruct the main points (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Book Reviews. [REVIEW][author unknown] - 2005 - History and Philosophy of Logic 26 (2):145-172.
    Download  
     
    Export citation  
     
    Bookmark  
  • On the Onto-Epistemological Status of the Empty Set and the Pure Singleton.Osman Gazi Birgül - 2022 - Axiomathes 32 (6):1111-1128.
    This article discusses the quiddity of the empty set from its epistemological and linguistic aspects. It consists of four parts. The first part compares the concept of _nihil privativum_ and the empty set in terms of representability, arguing the empty set can be treated as a negative and formal concept. It is argued that, unlike Frege’s definition of zero, the quantitative negation with a full scope is what enables us to represent the empty set conceptually without committing to an antinomy. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Infinitesimal Probabilities.Vieri Benci, Leon Horsten & Sylvia Wenmackers - 2016 - British Journal for the Philosophy of Science 69 (2):509-552.
    Non-Archimedean probability functions allow us to combine regularity with perfect additivity. We discuss the philosophical motivation for a particular choice of axioms for a non-Archimedean probability theory and answer some philosophical objections that have been raised against infinitesimal probabilities in general. _1_ Introduction _2_ The Limits of Classical Probability Theory _2.1_ Classical probability functions _2.2_ Limitations _2.3_ Infinitesimals to the rescue? _3_ NAP Theory _3.1_ First four axioms of NAP _3.2_ Continuity and conditional probability _3.3_ The final axiom of NAP (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • The negative theology of absolute infinity: Cantor, mathematics, and humility.Rico Gutschmidt & Merlin Carl - 2024 - International Journal for Philosophy of Religion 95 (3):233-256.
    Cantor argued that absolute infinity is beyond mathematical comprehension. His arguments imply that the domain of mathematics cannot be grasped by mathematical means. We argue that this inability constitutes a foundational problem. For Cantor, however, the domain of mathematics does not belong to mathematics, but to theology. We thus discuss the theological significance of Cantor’s treatment of absolute infinity and show that it can be interpreted in terms of negative theology. Proceeding from this interpretation, we refer to the recent debate (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Conceptions and paradoxes of sets.G. Aldo Antonelli - 1999 - Philosophia Mathematica 7 (2):136-163.
    This paper is concerned with the way different axiom systems for set theory can be justified by appeal to such intuitions as limitation of size, predicativity, stratification, etc. While none of the different conceptions historically resulting from the impetus to provide a solution to the paradoxes turns out to rest on an intuition providing an unshakeable foundation,'each supplies a picture of the set-theoretic universe that is both useful and internally well motivated. The same is true of more recently proposed axiom (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Dimitry Gawronsky: Reality and Actual Infinitesimals.Hernán Pringe - 2023 - Kant Studien 114 (1):68-97.
    The aim of this paper is to analyze Dimitry Gawronsky’s doctrine of actual infinitesimals. I examine the peculiar connection that his critical idealism establishes between transcendental philosophy and mathematics. In particular, I reconstruct the relationship between Gawronsky’s differentials, Cantor’s transfinite numbers, Veronese’s trans-Archimedean numbers and Robinson’s hyperreal numbers. I argue that by means of his doctrine of actual infinitesimals, Gawronsky aims to provide an interpretation of calculus that eliminates any alleged given element in knowledge.
    Download  
     
    Export citation  
     
    Bookmark  
  • Analitička filozofija_izabrani tekstovi.Nijaz Ibrulj - 2022 - Sarajevo: Academia Analitica.
    Analytical philosophy is ruled by the alliance of logic, linguistics and mathematics since its beginnings in the syllogistic calculus of terms and premises in Aristotle's Analytica protera, in the theories of medieval logic that dealt with what are Proprietatis Terminorum (significatio, suppositio, appellatio), in the theological apologetics of argumentation with the combinatorics of symbols by Raymundus Llullus in the work Ars Magna, Generalis et Ultima (1305-08), in what is presented as Theologia Combinata (cf. Tomus II.p.251) in Ars Magna Sciendi sive (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On Robust Theorems Due to Bolzano, Weierstrass, Jordan, and Cantor.Dag Normann & Sam Sanders - 2024 - Journal of Symbolic Logic 89 (3):1077-1127.
    Reverse Mathematics (RM hereafter) is a program in the foundations of mathematics where the aim is to identify the minimal axioms needed to prove a given theorem from ordinary, i.e., non-set theoretic, mathematics. This program has unveiled surprising regularities: the minimal axioms are very often equivalent to the theorem over the base theory, a weak system of ‘computable mathematics’, while most theorems are either provable in this base theory, or equivalent to one of only four logical systems. The latter plus (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • German Idealism and the Origins of Pure Mathematics: Riemann, Dedekind, Cantor.Ehsan Karimi Torshizi - 2021 - Journal of Philosophical Investigations 15 (36):171-188.
    When it comes to the relation of modern mathematics and philosophy, most people tend to think of the three major schools of thought—i.e. logicism, formalism, and intuitionism—that emerged as profound researches on the foundations and nature of mathematics in the beginning of the 20th century and have shaped the dominant discourse of an autonomous discipline of analytic philosophy, generally known under the rubric of “philosophy of mathematics” since then. What has been completely disregarded by these philosophical attitudes, these foundational researches (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Ipotesi del Continuo.Claudio Ternullo - 2017 - Aphex 16.
    L’Ipotesi del Continuo, formulata da Cantor nel 1878, è una delle congetture più note della teoria degli insiemi. Il Problema del Continuo, che ad essa è collegato, fu collocato da Hilbert, nel 1900, fra i principali problemi insoluti della matematica. A seguito della dimostrazione di indipendenza dell’Ipotesi del Continuo dagli assiomi della teoria degli insiemi, lo status attuale del problema è controverso. In anni più recenti, la ricerca di una soluzione del Problema del Continuo è stata anche una delle ragioni (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Actual and Potential Infinity.Øystein Linnebo & Stewart Shapiro - 2017 - Noûs 53 (1):160-191.
    The notion of potential infinity dominated in mathematical thinking about infinity from Aristotle until Cantor. The coherence and philosophical importance of the notion are defended. Particular attention is paid to the question of whether potential infinity is compatible with classical logic or requires a weaker logic, perhaps intuitionistic.
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Non-Representational Mathematical Realism.María José Frápolli - 2015 - Theoria: Revista de Teoría, Historia y Fundamentos de la Ciencia 30 (3):331-348.
    This paper is an attempt to convince anti-realists that their correct intuitions against the metaphysical inflationism derived from some versions of mathematical realism do not force them to embrace non-standard, epistemic approaches to truth and existence. It is also an attempt to convince mathematical realists that they do not need to implement their perfectly sound and judicious intuitions with the anti-intuitive developments that render full-blown mathematical realism into a view which even Gödel considered objectionable. I will argue for the following (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Gödel’s Cantorianism.Claudio Ternullo - 2015 - In E.-M. Engelen (ed.), Kurt Gödel: Philosopher-Scientist. Presses Universitaires de Provence. pp. 417-446.
    Gödel’s philosophical conceptions bear striking similarities to Cantor’s. Although there is no conclusive evidence that Gödel deliberately used or adhered to Cantor’s views, one can successfully reconstruct and see his “Cantorianism” at work in many parts of his thought. In this paper, I aim to describe the most prominent conceptual intersections between Cantor’s and Gödel’s thought, particularly on such matters as the nature and existence of mathematical entities (sets), concepts, Platonism, the Absolute Infinite, the progress and inexhaustibility of mathematics.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • How are Concepts of Infinity Acquired?Kazimierz Trzęsicki - 2015 - Studies in Logic, Grammar and Rhetoric 40 (1):179-217.
    Concepts of infinity have been subjects of dispute since antiquity. The main problems of this paper are: is the mind able to acquire a concept of infinity? and: how are concepts of infinity acquired? The aim of this paper is neither to say what the meanings of the word “infinity” are nor what infinity is and whether it exists. However, those questions will be mentioned, but only in necessary extent.
    Download  
     
    Export citation  
     
    Bookmark  
  • Primitive terms and the limits of conceptual understanding.Danie Strauss - 2013 - South African Journal of Philosophy 32 (2):173-185.
    Ignoring primitive terms leads to an infinite regress. The alternative is to account for an intuitive understanding into the meaning of such terms. The current investigation proceeds on the basis of an idea of the structure of the various modes of being within which concrete entities function. Examples of primtive terms are given from disciplines such as mathematics, physics and logic and they are related to the general idea of a modal aspect. It is argued that primitive terms are not (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Zilch.Alex Oliver & Timothy Smiley - 2013 - Analysis 73 (4):601-613.
    We all learn about the mistake of treating ‘nothing’ as if it were a term standing for something; but is it a mistake to treat it as an empty term, denoting nothing? We argue not, and we introduce ‘zilch’, defined as ‘the non-self-identical thing’, as a term which is empty as a matter of logical necessity. We contrast its behaviour with that of the quantifier ‘nothing’, and illustrate its uses. We use the same idea to vindicate Locke’s, Descartes’ and Hume’s (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Is unsaying polite?Berislav Žarnić - 2011 - In Majda Trobok, Nenad Miščević & Berislav Žarnić (eds.), Between Logic and Reality: Modeling Inference, Action and Understanding. Dordrecht and New York: Springer. pp. 201--224.
    This paper is divided in five sections. Section 11.1 sketches the history of the distinction between speech act with negative content and negated speech act, and gives a general dynamic interpretation for negated speech act. “Downdate semantics” for AGM contraction is introduced in Section 11.2. Relying on semantically interpreted contraction, Section 11.3 develops the dynamic semantics for constative and directive speech acts, and their external negations. The expressive completeness for the formal variants of natural language utterances, none of which is (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Logic and philosophy of mathematics in the early Husserl.Stefania Centrone - 2009 - New York: Springer.
    This volume will be of particular interest to researchers working in the history, and in the philosophy, of logic and mathematics, and more generally, to ...
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Austrian Philosophy: The Legacy of Franz Brentano.Barry Smith - 1994 - Chicago: Open Court.
    This book is a survey of the most important developments in Austrian philosophy in its classical period from the 1870s to the Anschluss in 1938. Thus it is intended as a contribution to the history of philosophy. But I hope that it will be seen also as a contribution to philosophy in its own right as an attempt to philosophize in the spirit of those, above all Roderick Chisholm, Rudolf Haller, Kevin Mulligan and Peter Simons, who have done so much (...)
    Download  
     
    Export citation  
     
    Bookmark   114 citations  
  • The significance of a non-reductionist ontology for the discipline of mathematics: A historical and systematic analysis. [REVIEW]D. F. M. Strauss - 2010 - Axiomathes 20 (1):19-52.
    A Christian approach to scholarship, directed by the central biblical motive of creation, fall and redemption and guided by the theoretical idea that God subjected all of creation to His Law-Word, delimiting and determining the cohering diversity we experience within reality, in principle safe-guards those in the grip of this ultimate commitment and theoretical orientation from absolutizing or deifying anything within creation. In this article my over-all approach is focused on the one-sided legacy of mathematics, starting with Pythagorean arithmeticism (“everything (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Hao Wang as philosopher and interpreter of gödel.Charles Parsons - 1998 - Philosophia Mathematica 6 (1):3-24.
    The paper undertakes to characterize Hao Wang's style, convictions, and method as a philosopher, centering on his most important philosophical work From Mathematics to Philosophy, 1974. The descriptive character of Wang's characteristic method is emphasized. Some specific achievements are discussed: his analyses of the concept of set, his discussion, in connection with setting forth Gödel's views, of minds and machines, and his concept of ‘analytic empiricism’ used to criticize Carnap and Quine. Wang's work as interpreter of Gödel's thought and the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Zermelo and set theory.Akihiro Kanamori - 2004 - Bulletin of Symbolic Logic 10 (4):487-553.
    Ernst Friedrich Ferdinand Zermelo transformed the set theory of Cantor and Dedekind in the first decade of the 20th century by incorporating the Axiom of Choice and providing a simple and workable axiomatization setting out generative set-existence principles. Zermelo thereby tempered the ontological thrust of early set theory, initiated the delineation of what is to be regarded as set-theoretic, drawing out the combinatorial aspects from the logical, and established the basic conceptual framework for the development of modern set theory. Two (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Logos, Logic and Maximal Infinity.A. C. Paseau - 2022 - Religious Studies 58:420-435.
    Download  
     
    Export citation  
     
    Bookmark  
  • The Philosophy of the Cosmonomic Idea and the Philosophical Foundations of Mathematics.Danie Strauss - 2021 - Philosophia Reformata:1-19.
    Since the discovery of the paradoxes of Zeno, the problem of infinity was dominated by the meaning of endlessness—a view also adhered to by Herman Dooyeweerd. Since Aristotle, philosophers and mathematicians distinguished between the potential infinite and the actual infinite. The main aim of this article is to highlight the strengths and limitations of Dooyeweerd’s philosophy for an understanding of the foundations of mathematics, including Dooyeweerd’s quasi-substantial view of the natural numbers and his view of the other types of numbers (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A teoria cantoriana dos números transfinitos: sua relação com o pensamento analógico-geométrico.Walter Gomide - 2016 - Veritas – Revista de Filosofia da Pucrs 61 (2):337-349.
    Neste pequeno artigo, analiso como a intuição geométrica estava presente no desenvolvimento seminal da teoria cantoriana dos conjuntos. Deste fato, decorre que a noção de conjunto ou de número transfinito não era tratada por Cantor como algo que merecesse uma fundamentação lógica. Os paradoxos que surgiram na teoria de Cantor são fruto de tal descompromisso inicial, e as tentativas ulteriores de resolvê-los fizeram com que aspectos intuitivos e esperados sobre os conjuntos ou infinito se perdessem. Em especial, observa-se aqui as (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Hegel’s ‘Bad Infinity’ as a Logical Problem.Vojtěch Kolman - 2016 - Hegel Bulletin 37 (2):258-280.
    The paper analyses the concept of ‘bad infinity’ in connection with Hegel’s critique of infinitesimal calculus and with the belittling of Hegel’s mathematical notions by the representatives of modern logic and the foundations of mathematics. The main line of argument draws on the observation that Hegel’s difference is only derivatively a mathematical one and is primarily of a broadly logico-epistemological nature. Because of this, the concept of bad infinity can be fruitfully utilized, by way of inversion, in an analysis of (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Perception, Intuition, and Reliability.Kai Hauser & Tahsİn Öner - 2018 - Theoria 84 (1):23-59.
    The question of how we can know anything about ideal entities to which we do not have access through our senses has been a major concern in the philosophical tradition since Plato's Phaedo. This article focuses on the paradigmatic case of mathematical knowledge. Following a suggestion by Gödel, we employ concepts and ideas from Husserlian phenomenology to argue that mathematical objects – and ideal entities in general – are recognized in a process very closely related to ordinary perception. Our analysis (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Foundations as truths which organize mathematics.Colin Mclarty - 2013 - Review of Symbolic Logic 6 (1):76-86.
    The article looks briefly at Fefermans own foundations. Among many different senses of foundations, the one that mathematics needs in practice is a recognized body of truths adequate to organize definitions and proofs. Finding concise principles of this kind has been a huge achievement by mathematicians and logicians. We put ZFC and categorical foundations both into this context.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Frege's Approach to the Foundations of Analysis (1874–1903).Matthias Schirn - 2013 - History and Philosophy of Logic 34 (3):266-292.
    The concept of quantity (Größe) plays a key role in Frege's theory of real numbers. Typically enough, he refers to this theory as ?theory of quantity? (?Größenlehre?) in the second volume of his opus magnum Grundgesetze der Arithmetik (Frege 1903). In this essay, I deal, in a critical way, with Frege's treatment of the concept of quantity and his approach to analysis from the beginning of his academic career until Frege 1903. I begin with a few introductory remarks. In Section (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Główne koncepcje i kierunki filozofii matematyki XX wieku.Roman Murawski - 2003 - Zagadnienia Filozoficzne W Nauce 33.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Historians and Philosophers of Logic: Are They Compatible? The Bolzano-Weierstrass Theorem as a Case Study.Gregory H. Moore - 1999 - History and Philosophy of Logic 20 (3-4):169-180.
    This paper combines personal reminiscences of the philosopher John Corcoran with a discussion of certain conflicts between historians of logic and philosophers of logic. Some mistaken claims about the history of the Bolzano-Weierstrass Theorem are analyzed in detail and corrected.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Cantor on Frege's Foundations of Arithmetic : Cantor's 1885 Review of Frege's Die Grundlagen der Arithmetik.Marcus Rossberg & Philip A. Ebert - 2009 - History and Philosophy of Logic 30 (4):341-348.
    In 1885, Georg Cantor published his review of Gottlob Frege's Grundlagen der Arithmetik . In this essay, we provide its first English translation together with an introductory note. We also provide a translation of a note by Ernst Zermelo on Cantor's review, and a new translation of Frege's brief response to Cantor. In recent years, it has become philosophical folklore that Cantor's 1885 review of Frege's Grundlagen already contained a warning to Frege. This warning is said to concern the defectiveness (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Continuum, name and paradox.Vojtěch Kolman - 2010 - Synthese 175 (3):351 - 367.
    The article deals with Cantor's argument for the non-denumerability of reals somewhat in the spirit of Lakatos' logic of mathematical discovery. At the outset Cantor's proof is compared with some other famous proofs such as Dedekind's recursion theorem, showing that rather than usual proofs they are resolutions to do things differently. Based on this I argue that there are "ontologically" safer ways of developing the diagonal argument into a full-fledged theory of continuum, concluding eventually that famous semantic paradoxes based on (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The mathematical development of set theory from Cantor to Cohen.Akihiro Kanamori - 1996 - Bulletin of Symbolic Logic 2 (1):1-71.
    Set theory is an autonomous and sophisticated field of mathematics, enormously successful not only at its continuing development of its historical heritage but also at analyzing mathematical propositions cast in set-theoretic terms and gauging their consistency strength. But set theory is also distinguished by having begun intertwined with pronounced metaphysical attitudes, and these have even been regarded as crucial by some of its great developers. This has encouraged the exaggeration of crises in foundations and of metaphysical doctrines in general. However, (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • The mathematical import of zermelo's well-ordering theorem.Akihiro Kanamori - 1997 - Bulletin of Symbolic Logic 3 (3):281-311.
    Set theory, it has been contended, developed from its beginnings through a progression ofmathematicalmoves, despite being intertwined with pronounced metaphysical attitudes and exaggerated foundational claims that have been held on its behalf. In this paper, the seminal results of set theory are woven together in terms of a unifying mathematical motif, one whose transmutations serve to illuminate the historical development of the subject. The motif is foreshadowed in Cantor's diagonal proof, and emerges in the interstices of the inclusion vs. membership (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Gödel's program revisited part I: The turn to phenomenology.Kai Hauser - 2006 - Bulletin of Symbolic Logic 12 (4):529-590.
    Convinced that the classically undecidable problems of mathematics possess determinate truth values, Gödel issued a programmatic call to search for new axioms for their solution. The platonism underlying his belief in the determinateness of those questions in combination with his conception of intuition as a kind of perception have struck many of his readers as highly problematic. Following Gödel's own suggestion, this article explores ideas from phenomenology to specify a meaning for his mathematical realism that allows for a defensible epistemology.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Aristotelian Continua.Øystein Linnebo, Stewart Shapiro & Geoffrey Hellman - 2016 - Philosophia Mathematica 24 (2):214-246.
    In previous work, Hellman and Shapiro present a regions-based account of a one-dimensional continuum. This paper produces a more Aristotelian theory, eschewing the existence of points and the use of infinite sets or pluralities. We first show how to modify the original theory. There are a number of theorems that have to be added as axioms. Building on some work by Linnebo, we then show how to take the ‘potential’ nature of the usual operations seriously, by using a modal language, (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • What is a Line?D. F. M. Strauss - 2014 - Axiomathes 24 (2):181-205.
    Since the discovery of incommensurability in ancient Greece, arithmeticism and geometricism constantly switched roles. After ninetieth century arithmeticism Frege eventually returned to the view that mathematics is really entirely geometry. Yet Poincaré, Brouwer, Weyl and Bernays are mathematicians opposed to the explication of the continuum purely in terms of the discrete. At the beginning of the twenty-first century ‘continuum theorists’ in France (Longo, Thom and others) believe that the continuum precedes the discrete. In addition the last 50 years witnessed the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • What are sets and what are they for?Alex Oliver & Timothy Smiley - 2006 - Philosophical Perspectives 20 (1):123–155.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Zermelo: Boundary numbers and domains of sets continued.Heinz-Dieter Ebbinghaus - 2006 - History and Philosophy of Logic 27 (4):285-306.
    Towards the end of his 1930 paper on boundary numbers and domains of sets Zermelo briefly discusses the questions of consistency and of the existence of an unbounded sequence of strongly inaccessible cardinals, deferring a detailed discussion to a later paper which never appeared. In a report to the Emergency Community of German Science from December 1930 about investigations in progress he mentions that some of the intended extensions of these topics had been worked out and were nearly ready for (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Relative consistency and accessible domains.Wilfried Sieg - 1990 - Synthese 84 (2):259 - 297.
    Wilfred Sieg. Relative Consistency and Accesible Domains.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Intuition and Its Object.Kai Hauser - 2015 - Axiomathes 25 (3):253-281.
    The view that mathematics deals with ideal objects to which we have epistemic access by a kind of perception has troubled many thinkers. Using ideas from Husserl’s phenomenology, I will take a different look at these matters. The upshot of this approach is that there are non-material objects and that they can be recognized in a process very closely related to sense perception. In fact, the perception of physical objects may be regarded as a special case of this more universal (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Against Set Theory.Peter Simons - 2005 - In Johann C. Marek Maria E. Reicher (ed.), Experience and Analysis. HPT&ÖBV. pp. 143--152.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • (1 other version)Infinite Regress Arguments.Anna-Sofia Maurin - 2013 - In Christer Svennerlind, Almäng Jan & Rögnvaldur Ingthorsson (eds.), Johanssonian Investigations: Essays in Honour of Ingvar Johansson on His Seventieth Birthday. Frankfurt: Ontos Verlag. pp. 5--421.
    According to Johansson (2009: 22) an infinite regress is vicious just in case “what comes first [in the regress-order] is for its definition dependent on what comes afterwards.” Given a few qualifications (to be spelled out below (section 3)), I agree. Again according to Johansson (ibid.), one of the consequences of accepting this way of distinguishing vicious from benign regresses is that the so-called Russellian Resemblance Regress (RRR), if generated in a one-category trope-theoretical framework, is vicious and that, therefore, the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Intrinsic Justifications for Large-Cardinal Axioms.Rupert McCallum - 2021 - Philosophia Mathematica 29 (2):195-213.
    ABSTRACT We shall defend three philosophical theses about the extent of intrinsic justification based on various technical results. We shall present a set of theorems which indicate intriguing structural similarities between a family of “weak” reflection principles roughly at the level of those considered by Tait and Koellner and a family of “strong” reflection principles roughly at the level of those of Welch and Roberts, which we claim to lend support to the view that the stronger reflection principles are intrinsically (...)
    Download  
     
    Export citation  
     
    Bookmark