Switch to: References

Add citations

You must login to add citations.
  1. Computing, Modelling, and Scientific Practice: Foundational Analyses and Limitations.Filippos A. Papagiannopoulos - 2018 - Dissertation, University of Western Ontario
    This dissertation examines aspects of the interplay between computing and scientific practice. The appropriate foundational framework for such an endeavour is rather real computability than the classical computability theory. This is so because physical sciences, engineering, and applied mathematics mostly employ functions defined in continuous domains. But, contrary to the case of computation over natural numbers, there is no universally accepted framework for real computation; rather, there are two incompatible approaches --computable analysis and BSS model--, both claiming to formalise algorithmic (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Pluralism Worth Having: Feyerabend's Well-Ordered Science.Jamie Shaw - 2018 - Dissertation, University of Western Ontario
    The goal of this dissertation is to reconstruct, critically evaluate, and apply the pluralism of Paul Feyerabend. I conclude by suggesting future points of contact between Feyerabend’s pluralism and topics of interest in contemporary philosophy of science. I begin, in Chapter 1, by reconstructing Feyerabend’s critical philosophy. I show how his published works from 1948 until 1970 show a remarkably consistent argumentative strategy which becomes more refined and general as Feyerabend’s thought matures. Specifically, I argue that Feyerabend develops a persuasive (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Coordination in theory extension: How Reichenbach can help us understand endogenization in evolutionary biology.Michele Luchetti - 2021 - Synthese (3-4):1-26.
    Reichenbach’s early solution to the scientific problem of how abstract mathematical representations can successfully express real phenomena is rooted in his view of coordination. In this paper, I claim that a Reichenbach-inspired, ‘layered’ view of coordination provides us with an effective tool to systematically analyse some epistemic and conceptual intricacies resulting from a widespread theorising strategy in evolutionary biology, recently discussed by Okasha (2018) as ‘endogenization’. First, I argue that endogenization is a form of extension of natural selection theory that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • David Hilbert and the foundations of the theory of plane area.Eduardo N. Giovannini - 2021 - Archive for History of Exact Sciences 75 (6):649-698.
    This paper provides a detailed study of David Hilbert’s axiomatization of the theory of plane area, in the classical monograph Foundation of Geometry. On the one hand, we offer a precise contextualization of this theory by considering it against its nineteenth-century geometrical background. Specifically, we examine some crucial steps in the emergence of the modern theory of geometrical equivalence. On the other hand, we analyze from a more conceptual perspective the significance of Hilbert’s theory of area for the foundational program (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Mathematics, ethics and purism: an application of MacIntyre’s virtue theory.Paul Ernest - 2020 - Synthese 199 (1-2):3137-3167.
    A traditional problem of ethics in mathematics is the denial of social responsibility. Pure mathematics is viewed as neutral and value free, and therefore free of ethical responsibility. Applications of mathematics are seen as employing a neutral set of tools which, of themselves, are free from social responsibility. However, mathematicians are convinced they know what constitutes good mathematics. Furthermore many pure mathematicians are committed to purism, the ideology that values purity above applications in mathematics, and some historical reasons for this (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Computing, Modelling, and Scientific Practice: Foundational Analyses and Limitations.Philippos Papayannopoulos - 2018 - Dissertation,
    This dissertation examines aspects of the interplay between computing and scientific practice. The appropriate foundational framework for such an endeavour is rather real computability than the classical computability theory. This is so because physical sciences, engineering, and applied mathematics mostly employ functions defined in continuous domains. But, contrary to the case of computation over natural numbers, there is no universally accepted framework for real computation; rather, there are two incompatible approaches --computable analysis and BSS model--, both claiming to formalise algorithmic (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Philosophy of mathematical practice: A primer for mathematics educators.Yacin Hamami & Rebecca Morris - 2020 - ZDM Mathematics Education 52:1113–1126.
    In recent years, philosophical work directly concerned with the practice of mathematics has intensified, giving rise to a movement known as the philosophy of mathematical practice . In this paper we offer a survey of this movement aimed at mathematics educators. We first describe the core questions philosophers of mathematical practice investigate as well as the philosophical methods they use to tackle them. We then provide a selective overview of work in the philosophy of mathematical practice covering topics including the (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Structural Relativity and Informal Rigour.Neil Barton - 2022 - In Gianluigi Oliveri, Claudio Ternullo & Stefano Boscolo (eds.), Objects, Structures, and Logics, FilMat Studies in the Philosophy of Mathematics. Springer. pp. 133-174.
    Informal rigour is the process by which we come to understand particular mathematical structures and then manifest this rigour through axiomatisations. Structural relativity is the idea that the kinds of structures we isolate are dependent upon the logic we employ. We bring together these ideas by considering the level of informal rigour exhibited by our set-theoretic discourse, and argue that different foundational programmes should countenance different underlying logics (intermediate between first- and second-order) for formulating set theory. By bringing considerations of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Requiem for logical nihilism, or: Logical nihilism annihilated.Bogdan Dicher - 2020 - Synthese 198 (8):7073-7096.
    Logical nihilism is the view that the relation of logical consequence is empty: there are counterexamples to any putative logical law. In this paper, I argue that the nihilist threat is illusory. The nihilistic arguments do not work. Moreover, the entire project is based on a misguided interpretation of the generality of logic.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Maddy On The Multiverse.Claudio Ternullo - 2019 - In Stefania Centrone, Deborah Kant & Deniz Sarikaya (eds.), Reflections on the Foundations of Mathematics: Univalent Foundations, Set Theory and General Thoughts. Springer Verlag. pp. 43-78.
    Penelope Maddy has recently addressed the set-theoretic multiverse, and expressed reservations on its status and merits ([Maddy, 2017]). The purpose of the paper is to examine her concerns, by using the interpretative framework of set-theoretic naturalism. I first distinguish three main forms of 'multiversism', and then I proceed to analyse Maddy's concerns. Among other things, I take into account salient aspects of multiverse-related mathematics , in particular, research programmes in set theory for which the use of the multiverse seems to (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Representational unification in cognitive science: Is embodied cognition a unifying perspective?Marcin Miłkowski & Przemysław Nowakowski - 2019 - Synthese 199 (Suppl 1):67-88.
    In this paper, we defend a novel, multidimensional account of representational unification, which we distinguish from integration. The dimensions of unity are simplicity, generality and scope, non-monstrosity, and systematization. In our account, unification is a graded property. The account is used to investigate the issue of how research traditions contribute to representational unification, focusing on embodied cognition in cognitive science. Embodied cognition contributes to unification even if it fails to offer a grand unification of cognitive science. The study of this (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Reliability of mathematical inference.Jeremy Avigad - 2020 - Synthese 198 (8):7377-7399.
    Of all the demands that mathematics imposes on its practitioners, one of the most fundamental is that proofs ought to be correct. It has been common since the turn of the twentieth century to take correctness to be underwritten by the existence of formal derivations in a suitable axiomatic foundation, but then it is hard to see how this normative standard can be met, given the differences between informal proofs and formal derivations, and given the inherent fragility and complexity of (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Mathematicians writing for mathematicians.Line Edslev Andersen, Mikkel Willum Johansen & Henrik Kragh Sørensen - 2019 - Synthese 198 (Suppl 26):6233-6250.
    We present a case study of how mathematicians write for mathematicians. We have conducted interviews with two research mathematicians, the talented PhD student Adam and his experienced supervisor Thomas, about a research paper they wrote together. Over the course of 2 years, Adam and Thomas revised Adam’s very detailed first draft. At the beginning of this collaboration, Adam was very knowledgeable about the subject of the paper and had good presentational skills but, as a new PhD student, did not yet (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Why the Method of Cases Doesn’t Work.Christopher Suhler - 2019 - Review of Philosophy and Psychology 10 (4):825-847.
    In recent years, there has been increasing discussion of whether philosophy actually makes progress. This discussion has been prompted, in no small part, by the depth and persistence of disagreement among philosophers on virtually every major theoretical issue in the field. In this paper, I examine the role that the Method of Cases – the widespread philosophical method of testing and revising theories by comparing their verdicts against our intuitions in particular cases – plays in creating and sustaining theoretical disagreements (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Philosophy of Mathematical Practice — Motivations, Themes and Prospects†.Jessica Carter - 2019 - Philosophia Mathematica 27 (1):1-32.
    A number of examples of studies from the field ‘The Philosophy of Mathematical Practice’ (PMP) are given. To characterise this new field, three different strands are identified: an agent-based, a historical, and an epistemological PMP. These differ in how they understand ‘practice’ and which assumptions lie at the core of their investigations. In the last part a general framework, capturing some overall structure of the field, is proposed.
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Semantic capital: its nature, value, and curation.Luciano Floridi - 2018 - Philosophy and Technology 31 (4):481-497.
    There is a wealth of resources— ideas, insights, discoveries, inventions, traditions, cultures, languages, arts, religions, sciences, narratives, stories, poems, customs and norms, music and songs, games and personal experiences, and advertisements—that we produce, curate, consume, transmit, and inherit as humans. This wealth, which I define as semantic capital, gives meaning to, and makes sense of, our own existence and the world surrounding us. It defines who we are and enables humans to develop an individual and social life. This paper discusses (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The "Artificial Mathematician" Objection: Exploring the (Im)possibility of Automating Mathematical Understanding.Sven Delarivière & Bart Van Kerkhove - 2017 - In B. Sriraman (ed.), Humanizing Mathematics and its Philosophy. Birkhäuser. pp. 173-198.
    Reuben Hersh confided to us that, about forty years ago, the late Paul Cohen predicted to him that at some unspecified point in the future, mathematicians would be replaced by computers. Rather than focus on computers replacing mathematicians, however, our aim is to consider the (im)possibility of human mathematicians being joined by “artificial mathematicians” in the proving practice—not just as a method of inquiry but as a fellow inquirer.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Abel and his mathematics in contexts.Henrik Kragh Sørensen - 2002 - NTM Zeitschrift für Geschichte der Wissenschaften, Technik und Medizin 10 (1-3):137-155.
    200 years ago, on August 5, 1802, Niels Henrik Abel was born on Finnøy near Stavanger on the Norwegian west coast. During a short life span, Abel contributed to a deep transition in mathematics in which concepts replaced formulae as the basic objects of mathematics. The transformation of mathematics in the 1820s and its manifestation in Abel’s works are the themes of the author’s PhD thesis. After sketching the formative instances in Abel’s well-known biography, this article illustrates two aspects of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A Role for Representation Theorems†.Emiliano Ippoliti - 2018 - Philosophia Mathematica 26 (3):396-412.
    I argue that the construction of representation theorems is a powerful tool for creating novel objects and theories in mathematics, as the construction of a new representation introduces new pieces of information in a very specific way that enables a solution for a problem and a proof of a new theorem. In more detail I show how the work behind the proof of a representation theorem transforms a mathematical problem in a way that makes it tractable and introduces information into (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Validations of proofs considered as texts: Can undergraduates tell whether an argument proves a theorem?Annie Selden - 2003 - Journal for Mathematics Education Research 34 (1):4-36.
    We report on an exploratory study of the way eight mid-level undergraduate mathematics majors read and reflected on four student-generated arguments purported to be proofs of a single theorem. The results suggest that mid-level undergraduates tend to focus on surface features of such arguments and that their ability to determine whether arguments are proofs is very limited -- perhaps more so than either they or their instructors recognize. We begin by discussing arguments (purported proofs) regarded as texts and validations of (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Manufacturing a Mathematical Group: A Study in Heuristics.Emiliano Ippoliti - 2020 - Topoi 39 (4):963-971.
    I examine the way a relevant conceptual novelty in mathematics, that is, the notion of group, has been constructed in order to show the kinds of heuristic reasoning that enabled its manufacturing. To this end, I examine salient aspects of the works of Lagrange, Cauchy, Galois and Cayley. In more detail, I examine the seminal idea resulting from Lagrange’s heuristics and how Cauchy, Galois and Cayley develop it. This analysis shows us how new mathematical entities are generated, and also how (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Scientific Discovery Reloaded.Emiliano Ippoliti - 2020 - Topoi 39 (4):847-856.
    The way scientific discovery has been conceptualized has changed drastically in the last few decades: its relation to logic, inference, methods, and evolution has been deeply reloaded. The ‘philosophical matrix’ moulded by logical empiricism and analytical tradition has been challenged by the ‘friends of discovery’, who opened up the way to a rational investigation of discovery. This has produced not only new theories of discovery, but also new ways of practicing it in a rational and more systematic way. Ampliative rules, (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Apriorist self-interest: How it embraces altruism and is not vacuous.J. C. Lester - 1997 - Journal of Social and Evolutionary Systems 20 (3):221-232.
    This essay is part of an attempt to reconcile two extreme views in economics: the (neglected) subjective, apriorist approach and the (standard) objective, scientific (i.e., falsifiable) approach. The Austrian subjective view of value, building on Carl Menger’s theory of value, was developed into a theory of economics as being entirely an a priori theory of action. This probably finds its most extreme statement in Ludwig von Mises’ Human Action (1949). In contrast, the standard economic view has developed into making falsifiable (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Fitting Feelings and Elegant Proofs: On the Psychology of Aesthetic Evaluation in Mathematics.Cain Todd - 2017 - Philosophia Mathematica:nkx007.
    ABSTRACT This paper explores the role of aesthetic judgements in mathematics by focussing on the relationship between the epistemic and aesthetic criteria employed in such judgements, and on the nature of the psychological experiences underpinning them. I claim that aesthetic judgements in mathematics are plausibly understood as expressions of what I will call ‘aesthetic-epistemic feelings’ that serve a genuine cognitive and epistemic function. I will then propose a naturalistic account of these feelings in terms of sub-personal processes of representing and (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Mohan Ganesalingam. The Language of Mathematics: A Linguistic and Philosophical Investigation. FoLLI Publications on Logic, Language and Information. [REVIEW]Andrew Aberdein - 2017 - Philosophia Mathematica 25 (1):143–147.
    Download  
     
    Export citation  
     
    Bookmark  
  • Leonard Nelson: A Theory of Philosophical Fallacies: Translated by Fernando Leal and David Carus Springer, Cham, Switzerland, 2016, vi + 211 pp. [REVIEW]Andrew Aberdein - 2017 - Argumentation 31 (2):455-461.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Commentary on Krabbe.David M. Godden - unknown
    Download  
     
    Export citation  
     
    Bookmark  
  • International Handbook of Research in History, Philosophy and Science Teaching.Michael R. Matthews (ed.) - 2014 - Springer.
    This inaugural handbook documents the distinctive research field that utilizes history and philosophy in investigation of theoretical, curricular and pedagogical issues in the teaching of science and mathematics. It is contributed to by 130 researchers from 30 countries; it provides a logically structured, fully referenced guide to the ways in which science and mathematics education is, informed by the history and philosophy of these disciplines, as well as by the philosophy of education more generally. The first handbook to cover the (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • (1 other version)Towards a theory of mathematical argument.Ian J. Dove - 2013 - In Andrew Aberdein & Ian J. Dove (eds.), The Argument of Mathematics. Dordrecht, Netherland: Springer. pp. 291--308.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Non-deductive Logic in Mathematics: The Probability of Conjectures.James Franklin - 2013 - In Andrew Aberdein & Ian J. Dove (eds.), The Argument of Mathematics. Dordrecht, Netherland: Springer. pp. 11--29.
    Mathematicians often speak of conjectures, yet unproved, as probable or well-confirmed by evidence. The Riemann Hypothesis, for example, is widely believed to be almost certainly true. There seems no initial reason to distinguish such probability from the same notion in empirical science. Yet it is hard to see how there could be probabilistic relations between the necessary truths of pure mathematics. The existence of such logical relations, short of certainty, is defended using the theory of logical probability (or objective Bayesianism (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Argument of Mathematics.Andrew Aberdein & Ian J. Dove (eds.) - 2013 - Dordrecht, Netherland: Springer.
    Written by experts in the field, this volume presents a comprehensive investigation into the relationship between argumentation theory and the philosophy of mathematical practice. Argumentation theory studies reasoning and argument, and especially those aspects not addressed, or not addressed well, by formal deduction. The philosophy of mathematical practice diverges from mainstream philosophy of mathematics in the emphasis it places on what the majority of working mathematicians actually do, rather than on mathematical foundations. -/- The book begins by first challenging the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Hilary Putnam on Meaning and Necessity.Anders Öberg - 2011 - Dissertation, Uppsala University
    In this dissertation on Hilary Putnam's philosophy, I investigate his development regarding meaning and necessity, in particular mathematical necessity. Putnam has been a leading American philosopher since the end of the 1950s, becoming famous in the 1960s within the school of analytic philosophy, associated in particular with the philosophy of science and the philosophy of language. Under the influence of W.V. Quine, Putnam challenged the logical positivism/empiricism that had become strong in America after World War II, with influential exponents such (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Managing Informal Mathematical Knowledge: Techniques from Informal Logic.Andrew Aberdein - 2006 - Lecture Notes in Artificial Intelligence 4108:208--221.
    Much work in MKM depends on the application of formal logic to mathematics. However, much mathematical knowledge is informal. Luckily, formal logic only represents one tradition in logic, specifically the modeling of inference in terms of logical form. Many inferences cannot be captured in this manner. The study of such inferences is still within the domain of logic, and is sometimes called informal logic. This paper explores some of the benefits informal logic may have for the management of informal mathematical (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Computing as a Science: A Survey of Competing Viewpoints. [REVIEW]Matti Tedre - 2011 - Minds and Machines 21 (3):361-387.
    Since the birth of computing as an academic discipline, the disciplinary identity of computing has been debated fiercely. The most heated question has concerned the scientific status of computing. Some consider computing to be a natural science and some consider it to be an experimental science. Others argue that computing is bad science, whereas some say that computing is not a science at all. This survey article presents viewpoints for and against computing as a science. Those viewpoints are analyzed against (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Mathematics and argumentation.Andrew Aberdein - 2009 - Foundations of Science 14 (1-2):1-8.
    Some authors have begun to appeal directly to studies of argumentation in their analyses of mathematical practice. These include researchers from an impressively diverse range of disciplines: not only philosophy of mathematics and argumentation theory, but also psychology, education, and computer science. This introduction provides some background to their work.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Philosophy of mathematics.Leon Horsten - 2008 - Stanford Encyclopedia of Philosophy.
    If mathematics is regarded as a science, then the philosophy of mathematics can be regarded as a branch of the philosophy of science, next to disciplines such as the philosophy of physics and the philosophy of biology. However, because of its subject matter, the philosophy of mathematics occupies a special place in the philosophy of science. Whereas the natural sciences investigate entities that are located in space and time, it is not at all obvious that this is also the case (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Mathematics, indispensability and scientific progress.Alan Baker - 2001 - Erkenntnis 55 (1):85-116.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Ontology and mathematical practice.Jessica Carter - 2004 - Philosophia Mathematica 12 (3):244-267.
    In this paper I propose a position in the ontology of mathematics which is inspired mainly by a case study in the mathematical discipline if-theory. The main theses of this position are that mathematical objects are introduced by mathematicians and that after mathematical objects have been introduced, they exist as objectively accessible abstract objects.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • The derivation-indicator view of mathematical practice.Jody Azzouni - 2004 - Philosophia Mathematica 12 (2):81-106.
    The form of nominalism known as 'mathematical fictionalism' is examined and found wanting, mainly on grounds that go back to an early antinominalist work of Rudolf Carnap that has unfortunately not been paid sufficient attention by more recent writers.
    Download  
     
    Export citation  
     
    Bookmark   65 citations  
  • Argumentation in Mathematical Practice.Andrew Aberdein & Zoe Ashton - 2024 - In Bharath Sriraman (ed.), Handbook of the History and Philosophy of Mathematical Practice. Cham: Springer. pp. 2665-2687.
    Formal logic has often been seen as uniquely placed to analyze mathematical argumentation. While formal logic is certainly necessary for a complete understanding of mathematical practice, it is not sufficient. Important aspects of mathematical reasoning closely resemble patterns of reasoning in nonmathematical domains. Hence the tools developed to understand informal reasoning, collectively known as argumentation theory, are also applicable to much mathematical argumentation. This chapter investigates some of the details of that application. Consideration is given to the many contrasting meanings (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Science, method and critical thinking.Antoine Danchin - 2023 - Microbial Biotechnology 16 (10):1888-1894.
    Science is founded on a method based on critical thinking. A prerequisite for this is not only a sufficient command of language but also the comprehension of the basic concepts underlying our understanding of reality. This constraint implies an awareness of the fact that the truth of the World is not directly accessible to us, but can only be glimpsed through the construction of mod- els designed to anticipate its behaviour. Because the relationship between models and reality rests on the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Lakatos' Undone Work: The Practical Turn and the Division of Philosophy of Mathematics and Philosophy of Science - Introduction to the Special Issue on Lakatos’ Undone Work.Sophie Nagler, Hannah Pillin & Deniz Sarikaya - 2022 - Kriterion - Journal of Philosophy 36:1-10.
    We give an overview of Lakatos’ life, his philosophy of mathematics and science, as well as of this issue. Firstly, we briefly delineate Lakatos’ key contributions to philosophy: his anti-formalist philosophy of mathematics, and his methodology of scientific research programmes in the philosophy of science. Secondly, we outline the themes and structure of the masterclass Lakatos’ Undone Work – The Practical Turn and the Division of Philosophy of Mathematics and Philosophy of Science, which gave rise to this special issue. Lastly, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Indeterminacy, coincidence, and “Sourcing Newness” in mathematical research.James V. Martin - 2022 - Synthese 200 (1):1-23.
    Far from being unwelcome or impossible in a mathematical setting, indeterminacy in various forms can be seen as playing an important role in driving mathematical research forward by providing “sources of newness” in the sense of Hutter and Farías :434–449, 2017). I argue here that mathematical coincidences, phenomena recently under discussion in the philosophy of mathematics, are usefully seen as inducers of indeterminacy and as put to work in guiding mathematical research. I suggest that to call a pair of mathematical (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Direct and converse applications: Two sides of the same coin?Daniele Molinini - 2022 - European Journal for Philosophy of Science 12 (1):1-21.
    In this paper I present two cases, taken from the history of science, in which mathematics and physics successfully interplay. These cases provide, respectively, an example of the successful application of mathematics in astronomy and an example of the successful application of mechanics in mathematics. I claim that an illustration of these cases has a twofold value in the context of the applicability debate. First, it enriches the debate with an historical perspective which is largely omitted in the contemporary discussion. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Prospects for a Monist Theory of Non-causal Explanation in Science and Mathematics.Alexander Reutlinger, Mark Colyvan & Karolina Krzyżanowska - 2020 - Erkenntnis 87 (4):1773-1793.
    We explore the prospects of a monist account of explanation for both non-causal explanations in science and pure mathematics. Our starting point is the counterfactual theory of explanation for explanations in science, as advocated in the recent literature on explanation. We argue that, despite the obvious differences between mathematical and scientific explanation, the CTE can be extended to cover both non-causal explanations in science and mathematical explanations. In particular, a successful application of the CTE to mathematical explanations requires us to (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Against logical generalism.Nicole Wyatt & Gillman Payette - 2019 - Synthese 198 (Suppl 20):4813-4830.
    The orthodox view of logic takes for granted the central importance of logical principles. Logic, and thus logical reasoning, is to be understood as a system of rules or principles with universal application. Let us call this orthodox view logical generalism. In this paper we argue that logical generalism, whether monist or pluralist, is wrong. We then outline an account of logical consequence in the absence of general logical principles, which we call logical particularism.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Argumentation Theory for Mathematical Argument.Joseph Corneli, Ursula Martin, Dave Murray-Rust, Gabriela Rino Nesin & Alison Pease - 2019 - Argumentation 33 (2):173-214.
    To adequately model mathematical arguments the analyst must be able to represent the mathematical objects under discussion and the relationships between them, as well as inferences drawn about these objects and relationships as the discourse unfolds. We introduce a framework with these properties, which has been used to analyse mathematical dialogues and expository texts. The framework can recover salient elements of discourse at, and within, the sentence level, as well as the way mathematical content connects to form larger argumentative structures. (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Happiest Thoughts: Great Thought Experiments of Modern Physics.Kent A. Peacock - unknown
    This is a review of those key thought experiments in physics from the late 19th century onward that seem to have played a particular role in the process of the discovery or advancement of theory. Among others the paper discusses Maxwell's demon, several of Einstein's thought experiments in relativity, Heisenberg's microscope, the Einstein-Schrödinger cat, and the EPR thought experiment.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Fitting Feelings and Elegant Proofs: On the Psychology of Aesthetic Evaluation in Mathematics.Cain Todd - 2018 - Philosophia Mathematica 26 (2):211-233.
    This paper explores the role of aesthetic judgements in mathematics by focussing on the relationship between the epistemic and aesthetic criteria employed in such judgements, and on the nature of the psychological experiences underpinning them. I claim that aesthetic judgements in mathematics are plausibly understood as expressions of what I will call ‘aesthetic-epistemic feelings’ that serve a genuine cognitive and epistemic function. I will then propose a naturalistic account of these feelings in terms of sub-personal processes of representing and assessing (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Mathematical reasoning with higher-order anti-unifcation.Markus Guhe, Alison Pease, Alan Smaill, Martin Schmidt, Helmar Gust, Kai-Uwe Kühnberger & Ulf Krumnack - 2010 - In S. Ohlsson & R. Catrambone (eds.), Proceedings of the 32nd Annual Conference of the Cognitive Science Society. Cognitive Science Society.
    Download  
     
    Export citation  
     
    Bookmark