Switch to: References

Citations of:

Das Kontinuum

Journal of Symbolic Logic 25 (3):282-284 (1960)

Add citations

You must login to add citations.
  1. The Limits of Abstraction: Towards a Phenomenologically Reformed Understanding of Science.Philipp Berghofer - 2023 - Journal of Phenomenological Psychology 54 (1):76-101.
    Husserl argued that psychology needs to establish an abstraction that is opposite to the abstraction successfully established in the natural sciences. While the natural sciences abstract away the psychological or subjective, psychology must abstract away the physical or worldly. However, Husserl and other phenomenologists such as Iso Kern have argued that there is a crucial systematic disanalogy between both abstractions. While the abstraction of the natural sciences can be performed completely, the abstraction of psychology cannot. In this context, Husserl argues (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Weyl and Two Kinds of Potential Domains.Laura Crosilla & Øystein Linnebo - forthcoming - Noûs.
    According to Weyl, “‘inexhaustibility’ is essential to the infinite”. However, he distinguishes two kinds of inexhaustible, or merely potential, domains: those that are “extensionally determinate” and those that are not. This article clarifies Weyl's distinction and explains its enduring logical and philosophical significance. The distinction sheds lights on the contemporary debate about potentialism, which in turn affords a deeper understanding of Weyl.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • In defense of Countabilism.David Builes & Jessica M. Wilson - 2022 - Philosophical Studies 179 (7):2199-2236.
    Inspired by Cantor's Theorem (CT), orthodoxy takes infinities to come in different sizes. The orthodox view has had enormous influence in mathematics, philosophy, and science. We will defend the contrary view---Countablism---according to which, necessarily, every infinite collection (set or plurality) is countable. We first argue that the potentialist or modal strategy for treating Russell's Paradox, first proposed by Parsons (2000) and developed by Linnebo (2010, 2013) and Linnebo and Shapiro (2019), should also be applied to CT, in a way that (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Bishop's Mathematics: a Philosophical Perspective.Laura Crosilla - forthcoming - In Handbook of Bishop's Mathematics. CUP.
    Errett Bishop's work in constructive mathematics is overwhelmingly regarded as a turning point for mathematics based on intuitionistic logic. It brought new life to this form of mathematics and prompted the development of new areas of research that witness today's depth and breadth of constructive mathematics. Surprisingly, notwithstanding the extensive mathematical progress since the publication in 1967 of Errett Bishop's Foundations of Constructive Analysis, there has been no corresponding advances in the philosophy of constructive mathematics Bishop style. The aim of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Constitution of Weyl’s Pure Infinitesimal World Geometry.C. D. McCoy - 2022 - Hopos: The Journal of the International Society for the History of Philosophy of Science 12 (1):189–208.
    Hermann Weyl was one of the most important figures involved in the early elaboration of the general theory of relativity and its fundamentally geometrical spacetime picture of the world. Weyl’s development of “pure infinitesimal geometry” out of relativity theory was the basis of his remarkable attempt at unifying gravitation and electromagnetism. Many interpreters have focused primarily on Weyl’s philosophical influences, especially the influence of Husserl’s transcendental phenomenology, as the motivation for these efforts. In this article, I argue both that these (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Phenomenological Ideas in the Philosophy of Mathematics. From Husserl to Gödel.Roman Murawski Thomas Bedürftig - 2018 - Studia Semiotyczne 32 (2):33-50.
    The paper is devoted to phenomenological ideas in conceptions of modern philosophy of mathematics. Views of Husserl, Weyl, Becker andGödel will be discussed and analysed. The aim of the paper is to show the influence of phenomenological ideas on the philosophical conceptions concerning mathematics. We shall start by indicating the attachment of Edmund Husserl to mathematics and by presenting the main points of his philosophy of mathematics. Next, works of two philosophers who attempted to apply Husserl’s phenomenological ideas to the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Maddy On The Multiverse.Claudio Ternullo - 2019 - In Stefania Centrone, Deborah Kant & Deniz Sarikaya (eds.), Reflections on the Foundations of Mathematics: Univalent Foundations, Set Theory and General Thoughts. Springer Verlag. pp. 43-78.
    Penelope Maddy has recently addressed the set-theoretic multiverse, and expressed reservations on its status and merits ([Maddy, 2017]). The purpose of the paper is to examine her concerns, by using the interpretative framework of set-theoretic naturalism. I first distinguish three main forms of 'multiversism', and then I proceed to analyse Maddy's concerns. Among other things, I take into account salient aspects of multiverse-related mathematics , in particular, research programmes in set theory for which the use of the multiverse seems to (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The entanglement of logic and set theory, constructively.Laura Crosilla - 2022 - Inquiry: An Interdisciplinary Journal of Philosophy 65 (6).
    ABSTRACT Theories of sets such as Zermelo Fraenkel set theory are usually presented as the combination of two distinct kinds of principles: logical and set-theoretic principles. The set-theoretic principles are imposed ‘on top’ of first-order logic. This is in agreement with a traditional view of logic as universally applicable and topic neutral. Such a view of logic has been rejected by the intuitionists, on the ground that quantification over infinite domains requires the use of intuitionistic rather than classical logic. In (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Predicativity and Feferman.Laura Crosilla - 2017 - In Gerhard Jäger & Wilfried Sieg (eds.), Feferman on Foundations: Logic, Mathematics, Philosophy. Cham: Springer. pp. 423-447.
    Predicativity is a notable example of fruitful interaction between philosophy and mathematical logic. It originated at the beginning of the 20th century from methodological and philosophical reflections on a changing concept of set. A clarification of this notion has prompted the development of fundamental new technical instruments, from Russell's type theory to an important chapter in proof theory, which saw the decisive involvement of Kreisel, Feferman and Schütte. The technical outcomes of predica-tivity have since taken a life of their own, (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Husserl's Logical Grammar.Ansten Klev - 2018 - History and Philosophy of Logic 39 (3):232-269.
    Lecture notes from Husserl's logic lectures published during the last 20 years offer a much better insight into his doctrine of the forms of meaning than does the fourth Logical Investigation or any other work published during Husserl's lifetime. This paper provides a detailed reconstruction, based on all the sources now available, of Husserl's system of logical grammar. After having explained the notion of meaning that Husserl assumes in his later logic lectures as well as the notion of form of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (3 other versions)Truth­-Makers.Kevin Mulligan, Peter Simons & Barry Smith - 2009 - Swiss Philosophical Preprints.
    During the realist revival in the early years of this century, philosophers of various persuasions were concerned to investigate the ontology of truth. That is, whether or not they viewed truth as a correspondence, they were interested in the extent to which one needed to assume the existence of entities serving some role in accounting for the truth of sentences. Certain of these entities, such as the Sätze an sich of Bolzano, the Gedanken of Frege, or the propositions of Russell (...)
    Download  
     
    Export citation  
     
    Bookmark   172 citations  
  • A Normative Model of Classical Reasoning in Higher Order Languages.Peter Zahn - 2006 - Synthese 148 (2):309-343.
    The present paper is concerned with a ramified type theory (cf. (Lorenzen 1955), (Russell), (Schütte), (Weyl), e.g.,) in a cumulative version. §0 deals with reasoning in first order languages. is introduced as a first order set.
    Download  
     
    Export citation  
     
    Bookmark  
  • Hilbert’s Finitism: Historical, Philosophical, and Metamathematical Perspectives.Richard Zach - 2001 - Dissertation, University of California, Berkeley
    In the 1920s, David Hilbert proposed a research program with the aim of providing mathematics with a secure foundation. This was to be accomplished by first formalizing logic and mathematics in their entirety, and then showing---using only so-called finitistic principles---that these formalizations are free of contradictions. ;In the area of logic, the Hilbert school accomplished major advances both in introducing new systems of logic, and in developing central metalogical notions, such as completeness and decidability. The analysis of unpublished material presented (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The identity of strong indiscernibility.Horst Wessel - 1994 - Logic and Logical Philosophy 2 (5):117-134.
    The following considerations are to be seen in the framework of nontraditional theory of predication (NTP), which stems in its basic features from Sinowjew (cf. Sinowjew 1970, Sinowjew/Wessel 1975), and which is described in detail in Wessel 1989.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Vérifacteurs.Kevin Mulligan, Peter Simons & Barry Smith - 2008-2011 - Etudes de Philosophie 9:104-138.
    French translation of "Truth-Makers" (1984). A realist theory of truth for a class of sentence holds that there are entities in virtue of which these sentences are true or false. We call such entities ‘truthmakers’ and contend that those for a wide range of sentences about the real world are moments (dependent particulars). Since moments are unfamiliar we provide a definition and a brief philosophical history, anchoring them in our ontology by showing that they are objects of perception. The core (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Wahrmacher.Kevin Mulligan, Peter Simons & Barry Smith - 1987 - In L. Bruno Puntel (ed.), Der Wahrheitsbegriff. Neue Explikationsversuche. Wissenschaftliche Buchgesellschaft. pp. 210-255.
    Als zu Beginn des Jahrhunderts der Realismus wieder ernst genommen wurde, gab es viele Philosophen, die sich mit der Ontologie der Wahrheit befaßten. Unabhängig von der Bestimmung der Wahrheit als Korrespondenzbeziehung wollten sie herausfinden, inwieweit zur Erklärung der Wahrheit von Sätzen besondere Entitäten herangezogen werden müssen. Einige dieser Entitäten, so zum Beispiel Bolzanos ‘Sätze an sich’, Freges ‘Gedanken’ oder die ‘propositions’ von Russell und Moore, wurden als Träger der Eigenschaften Wahrheit und Falschheit aufgefaßt. Einige Philosophen jedoch, wie Russell, Wittgenstein im (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The self and its brain.Stan Klein - 2012 - Social Cognition 30 (4):474-518.
    In this paper I argue that much of the confusion and mystery surrounding the concept of "self" can be traced to a failure to appreciate the distinction between the self as a collection of diverse neural components that provide us with our beliefs, memories, desires, personality, emotions, etc (the epistemological self) and the self that is best conceived as subjective, unified awareness, a point of view in the first person (ontological self). While the former can, and indeed has, been extensively (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Mathematics and the Good Life.Stephen Pollard - 2013 - Philosophia Mathematica 21 (1):93-109.
    We mathematical animals should be grateful that mathematics is instrumentally useful. We should not, however, forget its other contributions to human happiness. Bertrand Russell and John Dewey offer timely reminders that provide insight into the role of non-mathematicians in the evaluation of mathematics.
    Download  
     
    Export citation  
     
    Bookmark  
  • Objectivity Sans Intelligibility. Hermann Weyl's Symbolic Constructivism.Iulian D. Toader - 2011 - Dissertation, University of Notre Dame
    A new form of skepticism is described, which holds that objectivity and understanding are incompossible ideals of modern science. This is attributed to Weyl, hence its name: Weylean skepticism. Two general defeat strategies are then proposed, one of which is rejected.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Is the Continuum Hypothesis a definite mathematical problem?Solomon Feferman - manuscript
    The purpose of this article is to explain why I believe that the Continuum Hypothesis (CH) is not a definite mathematical problem. My reason for that is that the concept of arbitrary set essential to its formulation is vague or underdetermined and there is no way to sharpen it without violating what it is supposed to be about. In addition, there is considerable circumstantial evidence to support the view that CH is not definite.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • On arbitrary sets and ZFC.José Ferreirós - 2011 - Bulletin of Symbolic Logic 17 (3):361-393.
    Set theory deals with the most fundamental existence questions in mathematics—questions which affect other areas of mathematics, from the real numbers to structures of all kinds, but which are posed as dealing with the existence of sets. Especially noteworthy are principles establishing the existence of some infinite sets, the so-called “arbitrary sets.” This paper is devoted to an analysis of the motivating goal of studying arbitrary sets, usually referred to under the labels of quasi-combinatorialism or combinatorial maximality. After explaining what (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Comments on “Predicativity as a philosophical position” by G. Hellman.Solomon Feferman - 2004 - Revue Internationale de Philosophie 3:313-323.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Why a Little Bit Goes a Long Way: Logical Foundations of Scientifically Applicable Mathematics.Solomon Feferman - 1992 - PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1992:442 - 455.
    Does science justify any part of mathematics and, if so, what part? These questions are related to the so-called indispensability arguments propounded, among others, by Quine and Putnam; moreover, both were led to accept significant portions of set theory on that basis. However, set theory rests on a strong form of Platonic realism which has been variously criticized as a foundation of mathematics and is at odds with scientific realism. Recent logical results show that it is possible to directly formalize (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Conceptions of the continuum.Solomon Feferman - unknown
    Key words: the continuum, structuralism, conceptual structuralism, basic structural conceptions, Euclidean geometry, Hilbertian geometry, the real number system, settheoretical conceptions, phenomenological conceptions, foundational conceptions, physical conceptions.
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • The philosophy of alternative logics.Andrew Aberdein & Stephen Read - 2009 - In Leila Haaparanta (ed.), The development of modern logic. New York: Oxford University Press. pp. 613-723.
    This chapter focuses on alternative logics. It discusses a hierarchy of logical reform. It presents case studies that illustrate particular aspects of the logical revisionism discussed in the chapter. The first case study is of intuitionistic logic. The second case study turns to quantum logic, a system proposed on empirical grounds as a resolution of the antinomies of quantum mechanics. The third case study is concerned with systems of relevance logic, which have been the subject of an especially detailed reform (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • The development of mathematical logic from Russell to Tarski, 1900-1935.Paolo Mancosu, Richard Zach & Calixto Badesa - 2009 - In Leila Haaparanta (ed.), The development of modern logic. New York: Oxford University Press.
    The period from 1900 to 1935 was particularly fruitful and important for the development of logic and logical metatheory. This survey is organized along eight "itineraries" concentrating on historically and conceptually linked strands in this development. Itinerary I deals with the evolution of conceptions of axiomatics. Itinerary II centers on the logical work of Bertrand Russell. Itinerary III presents the development of set theory from Zermelo onward. Itinerary IV discusses the contributions of the algebra of logic tradition, in particular, Löwenheim (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • (1 other version)Predicativity.Solomon Feferman - 2005 - In Stewart Shapiro (ed.), Oxford Handbook of Philosophy of Mathematics and Logic. Oxford and New York: Oxford University Press. pp. 590-624.
    What is predicativity? While the term suggests that there is a single idea involved, what the history will show is that there are a number of ideas of predicativity which may lead to different logical analyses, and I shall uncover these only gradually. A central question will then be what, if anything, unifies them. Though early discussions are often muddy on the concepts and their employment, in a number of important respects they set the stage for the further developments, and (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Thomas Ryckman: The reign of relativity. Philosophy in physics 1915–1925. [REVIEW]Mark van Atten - 2008 - Husserl Studies 24 (1):73-78.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Hilbert's program sixty years later.Wilfried Sieg - 1988 - Journal of Symbolic Logic 53 (2):338-348.
    On June 4, 1925, Hilbert delivered an address to the Westphalian Mathematical Society in Miinster; that was, as a quick calculation will convince you, almost exactly sixty years ago. The address was published in 1926 under the title Über dasUnendlicheand is perhaps Hilbert's most comprehensive presentation of his ideas concerning the finitist justification of classical mathematics and the role his proof theory was to play in it. But what has become of the ambitious program for securing all of mathematics, once (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Peter Schroeder-Heister on Proof-Theoretic Semantics.Thomas Piecha & Kai F. Wehmeier (eds.) - 2024 - Springer.
    This open access book is a superb collection of some fifteen chapters inspired by Schroeder-Heister's groundbreaking work, written by leading experts in the field, plus an extensive autobiography and comments on the various contributions by Schroeder-Heister himself. For several decades, Peter Schroeder-Heister has been a central figure in proof-theoretic semantics, a field of study situated at the interface of logic, theoretical computer science, natural-language semantics, and the philosophy of language. -/- The chapters of which this book is composed discuss the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • From Philosophical Traditions to Scientific Developments: Reconsidering the Response to Brouwer’s Intuitionism.Kati Kish Bar-On - 2022 - Synthese 200 (6):1–25.
    Brouwer’s intuitionistic program was an intriguing attempt to reform the foundations of mathematics that eventually did not prevail. The current paper offers a new perspective on the scientific community’s lack of reception to Brouwer’s intuitionism by considering it in light of Michael Friedman’s model of parallel transitions in philosophy and science, specifically focusing on Friedman’s story of Einstein’s theory of relativity. Such a juxtaposition raises onto the surface the differences between Brouwer’s and Einstein’s stories and suggests that contrary to Einstein’s (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Choice Sequences and the Continuum.Casper Storm Hansen - 2020 - Erkenntnis 87 (2):517-534.
    According to L.E.J. Brouwer, there is room for non-definable real numbers within the intuitionistic ontology of mental constructions. That room is allegedly provided by freely proceeding choice sequences, i.e., sequences created by repeated free choices of elements by a creating subject in a potentially infinite process. Through an analysis of the constitution of choice sequences, this paper argues against Brouwer’s claim.
    Download  
     
    Export citation  
     
    Bookmark  
  • Philosophy of Mathematical Practice — Motivations, Themes and Prospects†.Jessica Carter - 2019 - Philosophia Mathematica 27 (1):1-32.
    A number of examples of studies from the field ‘The Philosophy of Mathematical Practice’ (PMP) are given. To characterise this new field, three different strands are identified: an agent-based, a historical, and an epistemological PMP. These differ in how they understand ‘practice’ and which assumptions lie at the core of their investigations. In the last part a general framework, capturing some overall structure of the field, is proposed.
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Three Paradoxes Concerning Causality and Time: Parmenides, Leibniz, Einstein/Schrödinger.David Hyder - 2018 - The European Legacy 23 (5):490-509.
    Parmenides’ Poem on Nature contains a proof that the world could not have come into being in time, because no explanation could be given for why it would do so at a given time. This same proof reappears in the Leibniz-Clarke Correspondence, where it is directed against Newtonian absolute time. Newtonians, Leibniz explains, believe that time is homogeneous and absolute, but this makes it inexplicable how God could have chosen to create the world on a given day. Similarly, in his (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Wahrmacher.Kevin Mulligan, Peter Simons & Barry Smith - 2009 - Swiss Philosophical Preprints.
    Als zu Beginn des Jahrhunderts der Realismus wieder ernst genommen wurde, gab es viele Philosophen, die sich mit der Ontologie der Wahrheit befaßten. Unabhängig von der Bestimmung der Wahrheit als Korrespondenzbeziehung wollten sie herausfinden, inwieweit zur Erklärung der Wahrheit von Sätzen besondere Entitäten herangezogen werden müssen. Einige dieser Entitäten, so zum Beispiel Bolzanos ‘Sätze an sich’, Freges ‘Gedanken’ oder die ‘propositions’ von Russell und Moore, wurden als Träger der Eigenschaften Wahrheit und Falschheit aufgefaßt. Einige Philosophen jedoch, wie Russell, Wittgenstein im (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Predicativity, the Russell-Myhill Paradox, and Church’s Intensional Logic.Sean Walsh - 2016 - Journal of Philosophical Logic 45 (3):277-326.
    This paper sets out a predicative response to the Russell-Myhill paradox of propositions within the framework of Church’s intensional logic. A predicative response places restrictions on the full comprehension schema, which asserts that every formula determines a higher-order entity. In addition to motivating the restriction on the comprehension schema from intuitions about the stability of reference, this paper contains a consistency proof for the predicative response to the Russell-Myhill paradox. The models used to establish this consistency also model other axioms (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • How are Concepts of Infinity Acquired?Kazimierz Trzęsicki - 2015 - Studies in Logic, Grammar and Rhetoric 40 (1):179-217.
    Concepts of infinity have been subjects of dispute since antiquity. The main problems of this paper are: is the mind able to acquire a concept of infinity? and: how are concepts of infinity acquired? The aim of this paper is neither to say what the meanings of the word “infinity” are nor what infinity is and whether it exists. However, those questions will be mentioned, but only in necessary extent.
    Download  
     
    Export citation  
     
    Bookmark  
  • Klassinen matematiikka ja logiikka.Panu Raatikainen - 1996 - In Christoffer Gefwert (ed.), Logiikka, matematiikka ja tietokone – Perusteet: historiaa, filosofiaa ja sovelluksia. Finnish Artificial Intelligence Society.
    Toisaalta ennennäkemätön äärettömien joukko-opillisten menetelmien hyödyntäminen sekä toisaalta epäilyt niiden hyväksyttävyydestä ja halu oikeuttaa niiden käyttö ovat ratkaisevasti muovanneet vuosisatamme matematiikkaa ja logiikkaa. Tämän kehityksen vaikutus nykyajan filosofiaan on myös ollut valtaisa; merkittävää osaa siitä ei voi edes ymmärtää tuntematta sen yhteyttä tähän matematiikan ja logiikan vallankumoukseen. Lähestymistapoja, jotka tavalla tai toisella hyväksyvät äärettömän matematiikan ja perinteisten logiikan sääntöjen (erityisesti kolmannen poissuljetun lain) soveltamisen myös sen piirissä, on tullut tavaksi kutsua klassiseksi matematiikaksi ja logiikaksi erotuksena nämä hylkäävistä radikaaleista intuitionistisista ja (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Zermelo: definiteness and the universe of definable sets.Heinz-Dieter Ebbinghaus - 2003 - History and Philosophy of Logic 24 (3):197-219.
    Using hitherto unpublished manuscripts from the Zermelo Nachlass, I describe the development of the notion of definiteness and the discussion about it, giving a conclusive picture of Zermelo's thoughts up to the late thirties. As it turns out, Zermelo's considerations about definiteness are intimately related to his concept of a Cantorian universe of categorically definable sets that may be considered an inner model of set theory in an ideationally given universe of classes.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Russell’s Notion of Scope.Saul A. Kripke - 2005 - Mind 114 (456):1005-1037.
    Despite the renown of ‘On Denoting’, much criticism has ignored or misconstrued Russell's treatment of scope, particularly in intensional, but also in extensional contexts. This has been rectified by more recent commentators, yet it remains largely unnoticed that the examples Russell gives of scope distinctions are questionable or inconsistent with his own philosophy. Nevertheless, Russell is right: scope does matter in intensional contexts. In Principia Mathematica, Russell proves a metatheorem to the effect that the scope of a single occurrence of (...)
    Download  
     
    Export citation  
     
    Bookmark   53 citations  
  • Russell's 1925 logic.A. P. Hazen & J. M. Davoren - 2000 - Australasian Journal of Philosophy 78 (4):534 – 556.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • No Easy Road to Impredicative Definabilism.Øystein Linnebo & Sam Roberts - 2024 - Philosophia Mathematica 32 (1):21-33.
    Bob Hale has defended a new conception of properties that is broadly Fregean in two key respects. First, like Frege, Hale insists that every property can be defined by an open formula. Second, like Frege, but unlike later definabilists, Hale seeks to justify full impredicative property comprehension. The most innovative part of his defense, we think, is a “definability constraint” that can serve as an implicit definition of the domain of properties. We make this constraint formally precise and prove that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Why Did Weyl Think That Emmy Noether Made Algebra the Eldorado of Axiomatics?Iulian D. Toader - 2021 - Hopos: The Journal of the International Society for the History of Philosophy of Science 11 (1):122-142.
    This paper argues that Noether's axiomatic method in algebra cannot be assimilated to Weyl's late view on axiomatics, for his acquiescence to a phenomenological epistemology of correctness led Weyl to resist Noether's principle of detachment.
    Download  
     
    Export citation  
     
    Bookmark  
  • Hilbert’s Program.Richard Zach - 2014 - In Edward N. Zalta (ed.), The Stanford Encyclopedia of Philosophy. Stanford, CA: The Metaphysics Research Lab.
    In the early 1920s, the German mathematician David Hilbert (1862–1943) put forward a new proposal for the foundation of classical mathematics which has come to be known as Hilbert's Program. It calls for a formalization of all of mathematics in axiomatic form, together with a proof that this axiomatization of mathematics is consistent. The consistency proof itself was to be carried out using only what Hilbert called “finitary” methods. The special epistemological character of finitary reasoning then yields the required justification (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Die signififchen Grundlagen der Mathematik.Gerrit Monoury - 1934 - Erkenntnis 4 (1):317-345.
    Download  
     
    Export citation  
     
    Bookmark  
  • What rests on what? The proof-theoretic analysis of mathematics.Solomon Feferman - 1993 - In J. Czermak (ed.), Philosophy of Mathematics. Hölder-Pichler-Tempsky. pp. 1--147.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Zermelo and set theory.Akihiro Kanamori - 2004 - Bulletin of Symbolic Logic 10 (4):487-553.
    Ernst Friedrich Ferdinand Zermelo transformed the set theory of Cantor and Dedekind in the first decade of the 20th century by incorporating the Axiom of Choice and providing a simple and workable axiomatization setting out generative set-existence principles. Zermelo thereby tempered the ontological thrust of early set theory, initiated the delineation of what is to be regarded as set-theoretic, drawing out the combinatorial aspects from the logical, and established the basic conceptual framework for the development of modern set theory. Two (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • The structure of mathematical experience according to Jean cavaillèst.Paul Cortois - 1996 - Philosophia Mathematica 4 (1):18-41.
    In this expository article one of the contributions of Jean Cavailles to the philosophy of mathematics is presented: the analysis of ‘mathematical experience’. The place of Cavailles on the logico-philosophical scene of the 30s and 40s is sketched. I propose a partial interpretation of Cavailles's epistemological program of so-called ‘conceptual dialectics’: mathematical holism, duality principles, the notion of formal contents, and the specific temporal structure of conceptual dynamics. The structure of mathematical abstraction is analysed in terms of its complementary dimensions: (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Kontinuum und Konstitution der Wirklichkeit.Julia Zink - unknown
    The work has two parts. The first part is about Peirce and his ideas about the continuum. There are considered the connection of his theory of continuity with his loic and his philosophy. In the second part Peirce's ideas are compared with models of todays logic and mathematics. There is considerd constructive mathematics, the logic of perception from Bell, Blau's Logic of reflection and a model of Myrvold. Then there is developed a new model.
    Download  
     
    Export citation  
     
    Bookmark  
  • Hilbert's Programs: 1917–1922.Wilfried Sieg - 1999 - Bulletin of Symbolic Logic 5 (1):1-44.
    Hilbert's finitist program was not created at the beginning of the twenties solely to counteract Brouwer's intuitionism, but rather emerged out of broad philosophical reflections on the foundations of mathematics and out of detailed logical work; that is evident from notes of lecture courses that were given by Hilbert and prepared in collaboration with Bernays during the period from 1917 to 1922. These notes reveal a dialectic progression from a critical logicism through a radical constructivism toward finitism; the progression has (...)
    Download  
     
    Export citation  
     
    Bookmark   44 citations