Switch to: Citations

References in:

Indispensability arguments in the philosophy of mathematics

Stanford Encyclopedia of Philosophy (2008)

Add references

You must login to add references.
  1. Realism, Mathematics & Modality.Hartry H. Field - 1989 - New York, NY, USA: Blackwell.
    Download  
     
    Export citation  
     
    Bookmark   458 citations  
  • Word and Object.Willard Van Orman Quine - 1960 - Les Etudes Philosophiques 17 (2):278-279.
    Download  
     
    Export citation  
     
    Bookmark   2965 citations  
  • The Indispensability of Mathematics.Mark Colyvan - 2001 - Oxford, England: Oxford University Press.
    This book not only outlines the indispensability argument in considerable detail but also defends it against various challenges.
    Download  
     
    Export citation  
     
    Bookmark   277 citations  
  • The nature of mathematical knowledge.Philip Kitcher - 1983 - Oxford: Oxford University Press.
    This book argues against the view that mathematical knowledge is a priori,contending that mathematics is an empirical science and develops historically,just as ...
    Download  
     
    Export citation  
     
    Bookmark   277 citations  
  • Naturalism in mathematics.Penelope Maddy - 1997 - New York: Oxford University Press.
    Naturalism in Mathematics investigates how the most fundamental assumptions of mathematics can be justified. One prevalent philosophical approach to the problem--realism--is examined and rejected in favor of another approach--naturalism. Penelope Maddy defines this naturalism, explains the motivation for it, and shows how it can be successfully applied in set theory. Her clear, original treatment of this fundamental issue is informed by current work in both philosophy and mathematics, and will be accessible and enlightening to readers from both disciplines.
    Download  
     
    Export citation  
     
    Bookmark   254 citations  
  • Mathematics as a science of patterns.Michael David Resnik - 1997 - New York ;: Oxford University Press.
    This book expounds a system of ideas about the nature of mathematics which Michael Resnik has been elaborating for a number of years. In calling mathematics a science he implies that it has a factual subject-matter and that mathematical knowledge is on a par with other scientific knowledge; in calling it a science of patterns he expresses his commitment to a structuralist philosophy of mathematics. He links this to a defense of realism about the metaphysics of mathematics--the view that mathematics (...)
    Download  
     
    Export citation  
     
    Bookmark   244 citations  
  • Because Without Cause: Non-Causal Explanations in Science and Mathematics.Marc Lange - 2016 - Oxford, England: Oxford University Press USA.
    Not all scientific explanations work by describing causal connections between events or the world's overall causal structure. In addition, mathematicians regard some proofs as explaining why the theorems being proved do in fact hold. This book proposes new philosophical accounts of many kinds of non-causal explanations in science and mathematics.
    Download  
     
    Export citation  
     
    Bookmark   104 citations  
  • What is Mathematical Truth?Hilary Putnam - 1979 - In Philosophical Papers: Volume 1, Mathematics, Matter and Method. New York: Cambridge University Press. pp. 60--78.
    Download  
     
    Export citation  
     
    Bookmark   295 citations  
  • Deflating Existential Consequence: A Case for Nominalism.Jody Azzouni - 2004 - Oxford, England: Oup Usa.
    If we must take mathematical statements to be true, must we also believe in the existence of abstract eternal invisible mathematical objects accessible only by the power of pure thought? Jody Azzouni says no, and he claims that the way to escape such commitments is to accept true statements which are about objects that don't exist in any sense at all. Azzouni illustrates what the metaphysical landscape looks like once we avoid a militant Realism which forces our commitment to anything (...)
    Download  
     
    Export citation  
     
    Bookmark   123 citations  
  • Are there genuine mathematical explanations of physical phenomena?Alan Baker - 2005 - Mind 114 (454):223-238.
    Many explanations in science make use of mathematics. But are there cases where the mathematical component of a scientific explanation is explanatory in its own right? This issue of mathematical explanations in science has been for the most part neglected. I argue that there are genuine mathematical explanations in science, and present in some detail an example of such an explanation, taken from evolutionary biology, involving periodical cicadas. I also indicate how the answer to my title question impacts on broader (...)
    Download  
     
    Export citation  
     
    Bookmark   259 citations  
  • Does Ontology Rest on a Mistake?Stephen Yablo - 1998 - Aristotelian Society Supplementary Volume 72 (1):229 - 283.
    [Stephen Yablo] The usual charge against Carnap's internal/external distinction is one of 'guilt by association with analytic/synthetic'. But it can be freed of this association, to become the distinction between statements made within make-believe games and those made outside them-or, rather, a special case of it with some claim to be called the metaphorical/literal distinction. Not even Quine considers figurative speech committal, so this turns the tables somewhat. To determine our ontological commitments, we have to ferret out all traces of (...)
    Download  
     
    Export citation  
     
    Bookmark   184 citations  
  • Platonism and Anti-Platonism in Mathematics.Mark Balaguer - 1998 - Bulletin of Symbolic Logic 8 (4):516-518.
    This book does three main things. First, it defends mathematical platonism against the main objections to that view (most notably, the epistemological objection and the multiple-reductions objection). Second, it defends anti-platonism (in particular, fictionalism) against the main objections to that view (most notably, the Quine-Putnam indispensability objection and the objection from objectivity). Third, it argues that there is no fact of the matter whether abstract mathematical objects exist and, hence, no fact of the matter whether platonism or anti-platonism is true.
    Download  
     
    Export citation  
     
    Bookmark   276 citations  
  • Mathematical Explanation in Science.Alan Baker - 2009 - British Journal for the Philosophy of Science 60 (3):611-633.
    Does mathematics ever play an explanatory role in science? If so then this opens the way for scientific realists to argue for the existence of mathematical entities using inference to the best explanation. Elsewhere I have argued, using a case study involving the prime-numbered life cycles of periodical cicadas, that there are examples of indispensable mathematical explanations of purely physical phenomena. In this paper I respond to objections to this claim that have been made by various philosophers, and I discuss (...)
    Download  
     
    Export citation  
     
    Bookmark   176 citations  
  • There is No Easy Road to Nominalism.M. Colyvan - 2010 - Mind 119 (474):285-306.
    Hartry Field has shown us a way to be nominalists: we must purge our scientific theories of quantification over abstracta and we must prove the appropriate conservativeness results. This is not a path for the faint hearted. Indeed, the substantial technical difficulties facing Field's project have led some to explore other, easier options. Recently, Jody Azzouni, Joseph Melia, and Stephen Yablo have argued that it is a mistake to read our ontological commitments simply from what the quantifiers of our best (...)
    Download  
     
    Export citation  
     
    Bookmark   111 citations  
  • Weaseling away the indispensability argument.Joseph Melia - 2000 - Mind 109 (435):455-480.
    According to the indispensability argument, the fact that we quantify over numbers, sets and functions in our best scientific theories gives us reason for believing that such objects exist. I examine a strategy to dispense with such quantification by simply replacing any given platonistic theory by the set of sentences in the nominalist vocabulary it logically entails. I argue that, as a strategy, this response fails: for there is no guarantee that the nominalist world that go beyond the set of (...)
    Download  
     
    Export citation  
     
    Bookmark   207 citations  
  • On the explanatory role of mathematics in empirical science.Robert W. Batterman - 2010 - British Journal for the Philosophy of Science 61 (1):1-25.
    This paper examines contemporary attempts to explicate the explanatory role of mathematics in the physical sciences. Most such approaches involve developing so-called mapping accounts of the relationships between the physical world and mathematical structures. The paper argues that the use of idealizations in physical theorizing poses serious difficulties for such mapping accounts. A new approach to the applicability of mathematics is proposed.
    Download  
     
    Export citation  
     
    Bookmark   129 citations  
  • (2 other versions)Philosophy of mathematics: selected readings.Paul Benacerraf & Hilary Putnam (eds.) - 1983 - New York: Cambridge University Press.
    The twentieth century has witnessed an unprecedented 'crisis in the foundations of mathematics', featuring a world-famous paradox (Russell's Paradox), a challenge to 'classical' mathematics from a world-famous mathematician (the 'mathematical intuitionism' of Brouwer), a new foundational school (Hilbert's Formalism), and the profound incompleteness results of Kurt Gödel. In the same period, the cross-fertilization of mathematics and philosophy resulted in a new sort of 'mathematical philosophy', associated most notably (but in different ways) with Bertrand Russell, W. V. Quine, and Gödel himself, (...)
    Download  
     
    Export citation  
     
    Bookmark   78 citations  
  • How Mathematics Can Make a Difference.Sam Baron, Mark Colyvan & David Ripley - 2017 - Philosophers' Imprint 17.
    Standard approaches to counterfactuals in the philosophy of explanation are geared toward causal explanation. We show how to extend the counterfactual theory of explanation to non-causal cases, involving extra-mathematical explanation: the explanation of physical facts by mathematical facts. Using a structural equation framework, we model impossible perturbations to mathematics and the resulting differences made to physical explananda in two important cases of extra-mathematical explanation. We address some objections to our approach.
    Download  
     
    Export citation  
     
    Bookmark   56 citations  
  • The explanatory power of phase spaces.Aidan Lyon & Mark Colyvan - 2008 - Philosophia Mathematica 16 (2):227-243.
    David Malament argued that Hartry Field's nominalisation program is unlikely to be able to deal with non-space-time theories such as phase-space theories. We give a specific example of such a phase-space theory and argue that this presentation of the theory delivers explanations that are not available in the classical presentation of the theory. This suggests that even if phase-space theories can be nominalised, the resulting theory will not have the explanatory power of the original. Phase-space theories thus raise problems for (...)
    Download  
     
    Export citation  
     
    Bookmark   110 citations  
  • Indispensability and Practice.Penelope Maddy - 1992 - Journal of Philosophy 89 (6):275.
    Download  
     
    Export citation  
     
    Bookmark   132 citations  
  • Mathematics and reality.Mary Leng - 2010 - Bulletin of Symbolic Logic 17 (2):267-268.
    Download  
     
    Export citation  
     
    Bookmark   120 citations  
  • The Enhanced Indispensability Argument: Representational versus Explanatory Role of Mathematics in Science.Juha Saatsi - 2011 - British Journal for the Philosophy of Science 62 (1):143-154.
    The Enhanced Indispensability Argument (Baker [ 2009 ]) exemplifies the new wave of the indispensability argument for mathematical Platonism. The new wave capitalizes on mathematics' role in scientific explanations. I will criticize some analyses of mathematics' explanatory function. In turn, I will emphasize the representational role of mathematics, and argue that the debate would significantly benefit from acknowledging this alternative viewpoint to mathematics' contribution to scientific explanations and knowledge.
    Download  
     
    Export citation  
     
    Bookmark   78 citations  
  • The myth of the seven.Stephen Yablo - 2005 - In Mark Eli Kalderon (ed.), Fictionalism in Metaphysics. New York: Oxford University Press UK. pp. 88--115.
    Download  
     
    Export citation  
     
    Bookmark   97 citations  
  • Mathematical explanation.Mark Steiner - 1978 - Philosophical Studies 34 (2):135 - 151.
    Download  
     
    Export citation  
     
    Bookmark   120 citations  
  • Mathematical Explanations Of Empirical Facts, And Mathematical Realism.Aidan Lyon - 2012 - Australasian Journal of Philosophy 90 (3):559-578.
    A main thread of the debate over mathematical realism has come down to whether mathematics does explanatory work of its own in some of our best scientific explanations of empirical facts. Realists argue that it does; anti-realists argue that it doesn't. Part of this debate depends on how mathematics might be able to do explanatory work in an explanation. Everyone agrees that it's not enough that there merely be some mathematics in the explanation. Anti-realists claim there is nothing mathematics can (...)
    Download  
     
    Export citation  
     
    Bookmark   78 citations  
  • Ontology and the vicious-circle principle.Charles S. Chihara - 1973 - Ithaca [N.Y.]: Cornell University Press.
    Download  
     
    Export citation  
     
    Bookmark   52 citations  
  • (2 other versions)A Subject with No Object: Strategies for Nominalistic Interpretation of Mathematics.John Burgess & Gideon Rosen - 1997 - Philosophical Quarterly 50 (198):124-126.
    Download  
     
    Export citation  
     
    Bookmark   123 citations  
  • The applicability of mathematics in science: indispensability and ontology.Sorin Bangu - 2012 - New York: Palgrave-Macmillan.
    Suppose we are asked to draw up a list of things we take to exist. Certain items seem unproblematic choices, while others (such as God) are likely to spark controversy. The book sets the grand theological theme aside and asks a less dramatic question: should mathematical objects (numbers, sets, functions, etc.) be on this list? In philosophical jargon this is the ‘ontological’ question for mathematics; it asks whether we ought to include mathematicalia in our ontology. The goal of this work (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Explanation, Extrapolation, and Existence.Stephen Yablo - 2012 - Mind 121 (484):1007-1029.
    Mark Colyvan (2010) raises two problems for ‘easy road’ nominalism about mathematical objects. The first is that a theory’s mathematical commitments may run too deep to permit the extraction of nominalistic content. Taking the math out is, or could be, like taking the hobbits out of Lord of the Rings. I agree with the ‘could be’, but not (or not yet) the ‘is’. A notion of logical subtraction is developed that supports the possibility, questioned by Colyvan, of bracketing a theory’s (...)
    Download  
     
    Export citation  
     
    Bookmark   61 citations  
  • A Counterfactual Approach to Explanation in Mathematics.Sam Baron, Mark Colyvan & David Ripley - 2020 - Philosophia Mathematica 28 (1):1-34.
    ABSTRACT Our goal in this paper is to extend counterfactual accounts of scientific explanation to mathematics. Our focus, in particular, is on intra-mathematical explanations: explanations of one mathematical fact in terms of another. We offer a basic counterfactual theory of intra-mathematical explanations, before modelling the explanatory structure of a test case using counterfactual machinery. We finish by considering the application of counterpossibles to mathematical explanation, and explore a second test case along these lines.
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Mathematics and indispensability.Elliott Sober - 1993 - Philosophical Review 102 (1):35-57.
    Realists persuaded by indispensability arguments af- firm the existence of numbers, genes, and quarks. Van Fraassen's empiricism remains agnostic with respect to all three. The point of agreement is that the posits of mathematics and the posits of biology and physics stand orfall together. The mathematical Platonist can take heart from this consensus; even if the existence of num- bers is still problematic, it seems no more problematic than the existence of genes or quarks. If the two positions just described (...)
    Download  
     
    Export citation  
     
    Bookmark   93 citations  
  • Inference to the best explanation and mathematical realism.Sorin Ioan Bangu - 2008 - Synthese 160 (1):13-20.
    Arguing for mathematical realism on the basis of Field’s explanationist version of the Quine–Putnam Indispensability argument, Alan Baker has recently claimed to have found an instance of a genuine mathematical explanation of a physical phenomenon. While I agree that Baker presents a very interesting example in which mathematics plays an essential explanatory role, I show that this example, and the argument built upon it, begs the question against the mathematical nominalist.
    Download  
     
    Export citation  
     
    Bookmark   55 citations  
  • Mathematics and aesthetic considerations in science.Mark Colyvan - 2002 - Mind 111 (441):69-74.
    Download  
     
    Export citation  
     
    Bookmark   83 citations  
  • Conservativeness and incompleteness.Stewart Shapiro - 1983 - Journal of Philosophy 80 (9):521-531.
    Download  
     
    Export citation  
     
    Bookmark   76 citations  
  • Road Work Ahead: Heavy Machinery on the Easy Road.M. Colyvan - 2012 - Mind 121 (484):1031-1046.
    In this paper I reply to Jody Azzouni, Otávio Bueno, Mary Leng, David Liggins, and Stephen Yablo, who offer defences of so-called ‘ easy road ’ nominalist strategies in the philosophy of mathematics.
    Download  
     
    Export citation  
     
    Bookmark   50 citations  
  • Can the Eleatic Principle be Justified?Mark Colyvan - 1998 - Canadian Journal of Philosophy 28 (3):313-335.
    The Eleatic Principle or causal criterion is a causal test that entities must pass in order to gain admission to some philosophers’ ontology.1 This principle justifies belief in only those entities to which causal power can be attributed, that is, to those entities which can bring about changes in the world. The idea of such a test is rather important in modern ontology, since it is neither without intuitive appeal nor without influential supporters. Its supporters have included David Armstrong (1978, (...)
    Download  
     
    Export citation  
     
    Bookmark   48 citations  
  • Why I am not a nominalist.John P. Burgess - 1983 - Notre Dame Journal of Formal Logic 24 (1):93-105.
    Download  
     
    Export citation  
     
    Bookmark   70 citations  
  • Reply to Charles Parsons.W. V. O. Quine - 1986 - In Lewis Edwin Hahn & Paul Arthur Schilpp (eds.), The Philosophy of W.V. Quine. Chicago: Open Court. pp. 396-404.
    Download  
     
    Export citation  
     
    Bookmark   73 citations  
  • Response to Colyvan.Joseph Melia - 2002 - Mind 111 (441):75-80.
    Download  
     
    Export citation  
     
    Bookmark   71 citations  
  • Science-Driven Mathematical Explanation.Alan Baker - 2012 - Mind 121 (482):243-267.
    Philosophers of mathematics have become increasingly interested in the explanatory role of mathematics in empirical science, in the context of new versions of the Quinean ‘Indispensability Argument’ which employ inference to the best explanation for the existence of abstract mathematical objects. However, little attention has been paid to analysing the nature of the explanatory relation involved in these mathematical explanations in science (MES). In this paper, I attack the only articulated account of MES in the literature (an account sketched by (...)
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • Mathematics, explanation, and scientific knowledge.Mark Steiner - 1978 - Noûs 12 (1):17-28.
    Download  
     
    Export citation  
     
    Bookmark   72 citations  
  • X*—Mathematical Intuition.Charles Parsons - 1980 - Proceedings of the Aristotelian Society 80 (1):145-168.
    Charles Parsons; X*—Mathematical Intuition, Proceedings of the Aristotelian Society, Volume 80, Issue 1, 1 June 1980, Pages 145–168, https://doi.org/10.1093/ari.
    Download  
     
    Export citation  
     
    Bookmark   57 citations  
  • Mathematical explanation: Why it matters.Paolo Mancosu - 2008 - In The Philosophy of Mathematical Practice. Oxford, England: Oxford University Press. pp. 134--149.
    Download  
     
    Export citation  
     
    Bookmark   60 citations  
  • Can Mathematics Explain Physical Phenomena?Otávio Bueno & Steven French - 2012 - British Journal for the Philosophy of Science 63 (1):85-113.
    Batterman raises a number of concerns for the inferential conception of the applicability of mathematics advocated by Bueno and Colyvan. Here, we distinguish the various concerns, and indicate how they can be assuaged by paying attention to the nature of the mappings involved and emphasizing the significance of interpretation in this context. We also indicate how this conception can accommodate the examples that Batterman draws upon in his critique. Our conclusion is that ‘asymptotic reasoning’ can be straightforwardly accommodated within the (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Optimisation and mathematical explanation: doing the Lévy Walk.Sam Baron - 2014 - Synthese 191 (3).
    The indispensability argument seeks to establish the existence of mathematical objects. The success of the indispensability argument turns on finding cases of genuine extra- mathematical explanation. In this paper, I identify a new case of extra- mathematical explanation, involving the search patterns of fully-aquatic marine predators. I go on to use this case to predict the prevalence of extra- mathematical explanation in science.
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • The philosophy of mathematics.Wilbur Dyre Hart (ed.) - 1996 - New York: Oxford University Press.
    This volume offers a selection of the most interesting and important work from recent years in the philosophy of mathematics, which has always been closely linked to, and has exerted a significant influence upon, the main stream of analytical philosophy. The issues discussed are of interest throughout philosophy, and no mathematical expertise is required of the reader. Contributors include W.V. Quine, W.D. Hart, Michael Dummett, Charles Parsons, Paul Benacerraf, Penelope Maddy, W.W. Tait, Hilary Putnam, George Boolos, Daniel Isaacson, Stewart Shapiro, (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Explaining Mathematical Explanation.Sam Baron - 2016 - Philosophical Quarterly 66 (264):458-480.
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Magicicada, Mathematical Explanation and Mathematical Realism.Davide Rizza - 2011 - Erkenntnis 74 (1):101-114.
    Baker claims to provide an example of mathematical explanation of an empirical phenomenon which leads to ontological commitment to mathematical objects. This is meant to show that the positing of mathematical entities is necessary for satisfactory scientific explanations and thus that the application of mathematics to science can be used, at least in some cases, to support mathematical realism. In this paper I show that the example of explanation Baker considers can actually be given without postulating mathematical objects and thus (...)
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • Weaseling and the Content of Science.David Liggins - 2012 - Mind 121 (484):997-1005.
    I defend Joseph Melia’s nominalist account of mathematics from an objection raised by Mark Colyvan.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Mathematical recreation versus mathematical knowledge.Mark Colyvan - 2007 - In Mary Leng, Alexander Paseau & Michael D. Potter (eds.), Mathematical Knowledge. Oxford, England: Oxford University Press. pp. 109--122.
    Download  
     
    Export citation  
     
    Bookmark   27 citations