Switch to: Citations

Add references

You must login to add references.
  1. Categories for the Working Mathematician.Saunders Maclane - 1971 - Springer.
    Category Theory has developed rapidly. This book aims to present those ideas and methods which can now be effectively used by Mathe­ maticians working in a variety of other fields of Mathematical research. This occurs at several levels. On the first level, categories provide a convenient conceptual language, based on the notions of category, functor, natural transformation, contravariance, and functor category. These notions are presented, with appropriate examples, in Chapters I and II. Next comes the fundamental idea of an adjoint (...)
    Download  
     
    Export citation  
     
    Bookmark   173 citations  
  • Topos Theory.P. T. Johnstone - 1982 - Journal of Symbolic Logic 47 (2):448-450.
    Download  
     
    Export citation  
     
    Bookmark   52 citations  
  • Elements of Set Theory.Herbert B. Enderton - 1981 - Journal of Symbolic Logic 46 (1):164-165.
    Download  
     
    Export citation  
     
    Bookmark   65 citations  
  • Category Theory.Steve Awodey - 2006 - Oxford, England: Oxford University Press.
    A comprehensive reference to category theory for students and researchers in mathematics, computer science, logic, cognitive science, linguistics, and philosophy. Useful for self-study and as a course text, the book includes all basic definitions and theorems, as well as numerous examples and exercises.
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Naturalism in mathematics.Penelope Maddy - 1997 - New York: Oxford University Press.
    Naturalism in Mathematics investigates how the most fundamental assumptions of mathematics can be justified. One prevalent philosophical approach to the problem--realism--is examined and rejected in favor of another approach--naturalism. Penelope Maddy defines this naturalism, explains the motivation for it, and shows how it can be successfully applied in set theory. Her clear, original treatment of this fundamental issue is informed by current work in both philosophy and mathematics, and will be accessible and enlightening to readers from both disciplines.
    Download  
     
    Export citation  
     
    Bookmark   244 citations  
  • Hilbert's program then and now.Richard Zach - 2002 - In Dale Jacquette (ed.), Philosophy of Logic. Malden, Mass.: North Holland. pp. 411–447.
    Hilbert’s program was an ambitious and wide-ranging project in the philosophy and foundations of mathematics. In order to “dispose of the foundational questions in mathematics once and for all,” Hilbert proposed a two-pronged approach in 1921: first, classical mathematics should be formalized in axiomatic systems; second, using only restricted, “finitary” means, one should give proofs of the consistency of these axiomatic systems. Although Gödel’s incompleteness theorems show that the program as originally conceived cannot be carried out, it had many partial (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Does category theory provide a framework for mathematical structuralism?Geoffrey Hellman - 2003 - Philosophia Mathematica 11 (2):129-157.
    Category theory and topos theory have been seen as providing a structuralist framework for mathematics autonomous vis-a-vis set theory. It is argued here that these theories require a background logic of relations and substantive assumptions addressing mathematical existence of categories themselves. We propose a synthesis of Bell's many-topoi view and modal-structuralism. Surprisingly, a combination of mereology and plural quantification suffices to describe hypothetical large domains, recovering the Grothendieck method of universes. Both topos theory and set theory can be carried out (...)
    Download  
     
    Export citation  
     
    Bookmark   58 citations  
  • An answer to Hellman's question: ‘Does category theory provide a framework for mathematical structuralism?’.Steve Awodey - 2004 - Philosophia Mathematica 12 (1):54-64.
    An affirmative answer is given to the question quoted in the title.
    Download  
     
    Export citation  
     
    Bookmark   62 citations  
  • Elementary Categories, Elementary Toposes.Colin McLarty - 1991 - Oxford, England: Oxford University Press.
    Now available in paperback, this acclaimed book introduces categories and elementary toposes in a manner requiring little mathematical background. It defines the key concepts and gives complete elementary proofs of theorems, including the fundamental theorem of toposes and the sheafification theorem. It ends with topos theoretic descriptions of sets, of basic differential geometry, and of recursive analysis.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • From absolute to local mathematics.J. L. Bell - 1986 - Synthese 69 (3):409 - 426.
    In this paper (a sequel to [4]) I put forward a "local" interpretation of mathematical concepts based on notions derived from category theory. The fundamental idea is to abandon the unique absolute universe of sets central to the orthodox set-theoretic account of the foundations of mathematics, replacing it by a plurality of local mathematical frameworks - elementary toposes - defined in category-theoretic terms.
    Download  
     
    Export citation  
     
    Bookmark   49 citations  
  • What numbers could not be.Paul Benacerraf - 1965 - Philosophical Review 74 (1):47-73.
    Download  
     
    Export citation  
     
    Bookmark   590 citations  
  • Mathematics, Form and Function.Saunders MacLane - 1986 - Journal of Philosophy 84 (1):33-37.
    Download  
     
    Export citation  
     
    Bookmark   80 citations  
  • (1 other version)Categories in context: Historical, foundational, and philosophical.Elaine Landry & Jean-Pierre Marquis - 2005 - Philosophia Mathematica 13 (1):1-43.
    The aim of this paper is to put into context the historical, foundational and philosophical significance of category theory. We use our historical investigation to inform the various category-theoretic foundational debates and to point to some common elements found among those who advocate adopting a foundational stance. We then use these elements to argue for the philosophical position that category theory provides a framework for an algebraic in re interpretation of mathematical structuralism. In each context, what we aim to show (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Categories, Structures, and the Frege-Hilbert Controversy: The Status of Meta-mathematics.Stewart Shapiro - 2005 - Philosophia Mathematica 13 (1):61-77.
    There is a parallel between the debate between Gottlob Frege and David Hilbert at the turn of the twentieth century and at least some aspects of the current controversy over whether category theory provides the proper framework for structuralism in the philosophy of mathematics. The main issue, I think, concerns the place and interpretation of meta-mathematics in an algebraic or structuralist approach to mathematics. Can meta-mathematics itself be understood in algebraic or structural terms? Or is it an exception to the (...)
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • Exploring Categorical Structuralism.C. Mclarty - 2004 - Philosophia Mathematica 12 (1):37-53.
    Hellman [2003] raises interesting challenges to categorical structuralism. He starts citing Awodey [1996] which, as Hellman sees, is not intended as a foundation for mathematics. It offers a structuralist framework which could denned in any of many different foundations. But Hellman says Awodey's work is 'naturally viewed in the context of Mac Lane's repeated claim that category theory provides an autonomous foundation for mathematics as an alternative to set theory' (p. 129). Most of Hellman's paper 'scrutinizes the formulation of category (...)
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • Logic as calculus and logic as language.Jean Heijenoort - 1967 - Synthese 17 (1):324 - 330.
    Download  
     
    Export citation  
     
    Bookmark   74 citations  
  • Numbers can be just what they have to.Colin McLarty - 1993 - Noûs 27 (4):487-498.
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • Structure in mathematics and logic: A categorical perspective.S. Awodey - 1996 - Philosophia Mathematica 4 (3):209-237.
    A precise notion of ‘mathematical structure’ other than that given by model theory may prove fruitful in the philosophy of mathematics. It is shown how the language and methods of category theory provide such a notion, having developed out of a structural approach in modern mathematical practice. As an example, it is then shown how the categorical notion of a topos provides a characterization of ‘logical structure’, and an alternative to the Pregean approach to logic which is continuous with the (...)
    Download  
     
    Export citation  
     
    Bookmark   69 citations  
  • Categorical Foundations and Foundations of Category Theory.Solomon Feferman - 1980 - In R. E. Butts & J. Hintikka (eds.), Logic, Foundations of Mathematics, and Computability Theory. Springer. pp. 149-169.
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • Structures and structuralism in contemporary philosophy of mathematics.Erich H. Reck & Michael P. Price - 2000 - Synthese 125 (3):341-383.
    In recent philosophy of mathematics avariety of writers have presented ``structuralist''views and arguments. There are, however, a number ofsubstantive differences in what their proponents take``structuralism'' to be. In this paper we make explicitthese differences, as well as some underlyingsimilarities and common roots. We thus identifysystematically and in detail, several main variants ofstructuralism, including some not often recognized assuch. As a result the relations between thesevariants, and between the respective problems theyface, become manifest. Throughout our focus is onsemantic and metaphysical issues, (...)
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • Structure in mathematics.Saunders Lane - 1996 - Philosophia Mathematica 4 (2):174-183.
    The article considers structuralism as a philosophy of mathematics, as based on the commonly accepted explicit mathematical concept of a structure. Such a structure consists of a set with specified functions and relations satisfying specified axioms, which describe the type of the structure. Examples of such structures such as groups and spaces, are described. The viewpoint is now dominant in organizing much of mathematics, but does not cover all mathematics, in particular most applications. It does not explain why certain structures (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • (1 other version)Review: F. William Lawvere, An Elementary Theory of the Category of sets. [REVIEW]Calvin C. Elgot - 1972 - Journal of Symbolic Logic 37 (1):191-192.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Book Review. Basic Set Theory. Azriel Levy. [REVIEW]Harold T. Hodes - 1981 - Philosophical Review 90 (2):298-300.
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • (1 other version)Category Theory.S. Awodey - 2007 - Bulletin of Symbolic Logic 13 (3):371-372.
    Download  
     
    Export citation  
     
    Bookmark   72 citations  
  • Learning from questions on categorical foundations.Colin McLarty - 2005 - Philosophia Mathematica 13 (1):44-60.
    We can learn from questions as well as from their answers. This paper urges some things to learn from questions about categorical foundations for mathematics raised by Geoffrey Hellman and from ones he invokes from Solomon Feferman.
    Download  
     
    Export citation  
     
    Bookmark   8 citations