Switch to: Citations

Add references

You must login to add references.
  1. The number sense represents (rational) numbers.Sam Clarke & Jacob Beck - 2021 - Behavioral and Brain Sciences 44:1-57.
    On a now orthodox view, humans and many other animals possess a “number sense,” or approximate number system, that represents number. Recently, this orthodox view has been subject to numerous critiques that question whether the ANS genuinely represents number. We distinguish three lines of critique – the arguments from congruency, confounds, and imprecision – and show that none succeed. We then provide positive reasons to think that the ANS genuinely represents numbers, and not just non-numerical confounds or exotic substitutes for (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • IX*—Saving Frege from Contradiction.George Boolos - 1987 - Proceedings of the Aristotelian Society 87 (1):137-152.
    George Boolos; IX*—Saving Frege from Contradiction, Proceedings of the Aristotelian Society, Volume 87, Issue 1, 1 June 1987, Pages 137–152, https://doi.org/10.
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Open questions and a proposal: A critical review of the evidence on infant numerical abilities.Lisa Cantrell & Linda B. Smith - 2013 - Cognition 128 (3):331-352.
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Exact and Approximate Arithmetic in an Amazonian Indigene Group.Pierre Pica, Cathy Lemer, Véronique Izard & Stanislas Dehaene - 2004 - Science 306 (5695):499-503.
    Is calculation possible without language? Or is the human ability for arithmetic dependent on the language faculty? To clarify the relation between language and arithmetic, we studied numerical cognition in speakers of Mundurukú, an Amazonian language with a very small lexicon of number words. Although the Mundurukú lack words for numbers beyond 5, they are able to compare and add large approximate numbers that are far beyond their naming range. However, they fail in exact arithmetic with numbers larger than 4 (...)
    Download  
     
    Export citation  
     
    Bookmark   175 citations  
  • Core systems of number.Stanislas Dehaene, Elizabeth Spelke & Lisa Feigenson - 2004 - Trends in Cognitive Sciences 8 (7):307-314.
    Download  
     
    Export citation  
     
    Bookmark   297 citations  
  • Linguistic Determinism and the Innate Basis of Number.Stephen Laurence & Eric Margolis - 2005 - In Peter Carruthers, Stephen Laurence & Stephen P. Stich (eds.), The Innate Mind: Structure and Contents. New York, US: Oxford University Press on Demand.
    Strong nativist views about numerical concepts claim that human beings have at least some innate precise numerical representations. Weak nativist views claim only that humans, like other animals, possess an innate system for representing approximate numerical quantity. We present a new strong nativist model of the origins of numerical concepts and defend the strong nativist approach against recent cross-cultural studies that have been interpreted to show that precise numerical concepts are dependent on language and that they are restricted to speakers (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Cardinality, Counting, and Equinumerosity.Richard G. Heck - 2000 - Notre Dame Journal of Formal Logic 41 (3):187-209.
    Frege, famously, held that there is a close connection between our concept of cardinal number and the notion of one-one correspondence, a connection enshrined in Hume's Principle. Husserl, and later Parsons, objected that there is no such close connection, that our most primitive conception of cardinality arises from our grasp of the practice of counting. Some empirical work on children's development of a concept of number has sometimes been thought to point in the same direction. I argue, however, that Frege (...)
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • Is Hume's principle analytic?Crispin Wright - 1999 - Notre Dame Journal of Formal Logic 40 (1):307-333.
    This paper is a reply to George Boolos's three papers (Boolos (1987a, 1987b, 1990a)) concerned with the status of Hume's Principle. Five independent worries of Boolos concerning the status of Hume's Principle as an analytic truth are identified and discussed. Firstly, the ontogical concern about the commitments of Hume's Principle. Secondly, whether Hume's Principle is in fact consistent and whether the commitment to the universal number by adopting Hume's Principle might be problematic. Also the so-called `surplus content' worry is discussed, (...)
    Download  
     
    Export citation  
     
    Bookmark   52 citations  
  • Verbal counting and spatial strategies in numerical tasks: Evidence from indigenous australia.Brian Butterworth & Robert Reeve - 2008 - Philosophical Psychology 21 (4):443 – 457.
    In this study, we test whether children whose culture lacks CWs and counting practices use a spatial strategy to support enumeration tasks. Children from two indigenous communities in Australia whose native and only language (Warlpiri or Anindilyakwa) lacked CWs and were tested on classical number development tasks, and the results were compared with those of children reared in an English-speaking environment. We found that Warlpiri- and Anindilyakwa-speaking children performed equivalently to their English-speaking counterparts. However, in tasks in which they were (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Idea of an Exact Number: Children's Understanding of Cardinality and Equinumerosity.Barbara W. Sarnecka & Charles E. Wright - 2013 - Cognitive Science 37 (8):1493-1506.
    Understanding what numbers are means knowing several things. It means knowing how counting relates to numbers (called the cardinal principle or cardinality); it means knowing that each number is generated by adding one to the previous number (called the successor function or succession), and it means knowing that all and only sets whose members can be placed in one-to-one correspondence have the same number of items (called exact equality or equinumerosity). A previous study (Sarnecka & Carey, 2008) linked children's understanding (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Preschool children master the logic of number word meanings.Jennifer S. Lipton & Elizabeth S. Spelke - 2006 - Cognition 98 (3):57-66.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Preverbal and verbal counting and computation.C. R. Gallistel & Rochel Gelman - 1992 - Cognition 44 (1-2):43-74.
    Download  
     
    Export citation  
     
    Bookmark   175 citations  
  • Nature and culture of finger counting: Diversity and representational effects of an embodied cognitive tool.Andrea Bender & Sieghard Beller - 2012 - Cognition 124 (2):156-182.
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • On the limits of infants' quantification of small object arrays.Lisa Feigenson & Susan Carey - 2005 - Cognition 97 (3):295-313.
    Download  
     
    Export citation  
     
    Bookmark   45 citations  
  • The generative basis of natural number concepts.Alan M. Leslie, Rochel Gelman & C. R. Gallistel - 2008 - Trends in Cognitive Sciences 12 (6):213-218.
    Number concepts must support arithmetic inference. Using this principle, it can be argued that the integer concept of exactly ONE is a necessary part of the psychological foundations of number, as is the notion of the exact equality - that is, perfect substitutability. The inability to support reasoning involving exact equality is a shortcoming in current theories about the development of numerical reasoning. A simple innate basis for the natural number concepts can be proposed that embodies the arithmetic principle, supports (...)
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • Numerosity and number signs in deaf Nicaraguan adults.Molly Flaherty & Ann Senghas - 2011 - Cognition 121 (3):427-436.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)Indexing and the object concept: developing `what' and `where' systems.Alan M. Leslie, Fei Xu, Patrice D. Tremoulet & Brian J. Scholl - 1998 - Trends in Cognitive Sciences 2 (1):10-18.
    Download  
     
    Export citation  
     
    Bookmark   75 citations  
  • Quantity Recognition Among Speakers of an Anumeric Language.Caleb Everett & Keren Madora - 2012 - Cognitive Science 36 (1):130-141.
    Recent research has suggested that the Pirahã, an Amazonian tribe with a number-less language, are able to match quantities > 3 if the matching task does not require recall or spatial transposition. This finding contravenes previous work among the Pirahã. In this study, we re-tested the Pirahãs’ performance in the crucial one-to-one matching task utilized in the two previous studies on their numerical cognition, as well as in control tasks requiring recall and mental transposition. We also conducted a novel quantity (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • (1 other version)Indexing and the object concept:” what” and” where” in infancy.Alan M. Leslie, Fei Xu, Patrice D. Tremoulet & Brian J. Scholl - 1998 - Trends in Cognitive Sciences 2 (1):10-18.
    Download  
     
    Export citation  
     
    Bookmark   50 citations  
  • Questions for future research.Rochel Gelman & Brian Butterworth - 2005 - Trends in Cognitive Sciences 9 (1):6-10.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • How counting represents number: What children must learn and when they learn it.Barbara W. Sarnecka & Susan Carey - 2008 - Cognition 108 (3):662-674.
    Download  
     
    Export citation  
     
    Bookmark   64 citations  
  • Number as a cognitive technology: Evidence from Pirahã language and cognition.Michael C. Frank, Daniel L. Everett, Evelina Fedorenko & Edward Gibson - 2008 - Cognition 108 (3):819-824.
    Download  
     
    Export citation  
     
    Bookmark   89 citations  
  • Does learning to count involve a semantic induction?Kathryn Davidson, Kortney Eng & David Barner - 2012 - Cognition 123 (1):162-173.
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • Conservation accidents.James McGarrigle & Margaret Donaldson - 1974 - Cognition 3 (4):341-350.
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Children's understanding of counting.Karen Wynn - 1990 - Cognition 36 (2):155-193.
    Download  
     
    Export citation  
     
    Bookmark   144 citations  
  • Six does not just mean a lot: preschoolers see number words as specific.B. Sarnecka - 2004 - Cognition 92 (3):329-352.
    Download  
     
    Export citation  
     
    Bookmark   45 citations  
  • The conceptual basis of numerical abilities: One-to-one correspondence versus the successor relation.Lieven Decock - 2008 - Philosophical Psychology 21 (4):459 – 473.
    In recent years, neologicists have demonstrated that Hume's principle, based on the one-to-one correspondence relation, suffices to construct the natural numbers. This formal work is shown to be relevant for empirical research on mathematical cognition. I give a hypothetical account of how nonnumerate societies may acquire arithmetical knowledge on the basis of the one-to-one correspondence relation only, whereby the acquisition of number concepts need not rely on enumeration (the stable-order principle). The existing empirical data on the role of the one-to-one (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Performance of expert abacus operators.Giyoo Hatano, Yoshio Miyake & Martin G. Binks - 1977 - Cognition 5 (1):47-55.
    Download  
     
    Export citation  
     
    Bookmark   20 citations