Results for 'Bayesian Probability'

999 found
Order:
  1.  15
    Bayesian Epistemic Values: Focus on Surprise, Measure Probability!J. M. Stern & C. A. De Braganca Pereira - 2014 - Logic Journal of the IGPL 22 (2):236-254.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  2. Bayesian Decision Theory and Stochastic Independence.Philippe Mongin - 2020 - Philosophy of Science 87 (1):152-178.
    As stochastic independence is essential to the mathematical development of probability theory, it seems that any foundational work on probability should be able to account for this property. Bayesian decision theory appears to be wanting in this respect. Savage’s postulates on preferences under uncertainty entail a subjective expected utility representation, and this asserts only the existence and uniqueness of a subjective probability measure, regardless of its properties. What is missing is a preference condition corresponding to stochastic (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  3. The Bayesian and the Dogmatist.Brian Weatherson - 2007 - Proceedings of the Aristotelian Society 107 (1pt2):169-185.
    Dogmatism is sometimes thought to be incompatible with Bayesian models of rational learning. I show that the best model for updating imprecise credences is compatible with dogmatism.
    Download  
     
    Export citation  
     
    Bookmark   61 citations  
  4. Bayesian Decision Theory and Stochastic Independence.Philippe Mongin - 2017 - TARK 2017.
    Stochastic independence has a complex status in probability theory. It is not part of the definition of a probability measure, but it is nonetheless an essential property for the mathematical development of this theory. Bayesian decision theorists such as Savage can be criticized for being silent about stochastic independence. From their current preference axioms, they can derive no more than the definitional properties of a probability measure. In a new framework of twofold uncertainty, we introduce preference (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  5. Intuitionistc Probability and the Bayesian Objection to Dogmatism.Martin Smith - 2017 - Synthese 194 (10):3997-4009.
    Given a few assumptions, the probability of a conjunction is raised, and the probability of its negation is lowered, by conditionalising upon one of the conjuncts. This simple result appears to bring Bayesian confirmation theory into tension with the prominent dogmatist view of perceptual justification – a tension often portrayed as a kind of ‘Bayesian objection’ to dogmatism. In a recent paper, David Jehle and Brian Weatherson observe that, while this crucial result holds within classical (...) theory, it fails within intuitionistic probability theory. They conclude that the dogmatist who is willing to take intuitionistic logic seriously can make a convincing reply to the Bayesian objection. In this paper, I argue that this conclusion is premature – the Bayesian objection can survive the transition from classical to intuitionistic probability, albeit in a slightly altered form. I shall conclude with some general thoughts about what the Bayesian objection to dogmatism does and doesn’t show. (shrink)
    Download  
     
    Export citation  
     
    Bookmark  
  6. Bayesian Epistemology.Alan Hájek & Stephan Hartmann - 2010 - In DancyJ (ed.), A Companion to Epistemology. Blackwell.
    Bayesianism is our leading theory of uncertainty. Epistemology is defined as the theory of knowledge. So “Bayesian Epistemology” may sound like an oxymoron. Bayesianism, after all, studies the properties and dynamics of degrees of belief, understood to be probabilities. Traditional epistemology, on the other hand, places the singularly non-probabilistic notion of knowledge at centre stage, and to the extent that it traffics in belief, that notion does not come in degrees. So how can there be a Bayesian epistemology?
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  7. The Structure of Epistemic Probabilities.Nevin Climenhaga - 2020 - Philosophical Studies 177 (11):3213-3242.
    The epistemic probability of A given B is the degree to which B evidentially supports A, or makes A plausible. This paper is a first step in answering the question of what determines the values of epistemic probabilities. I break this question into two parts: the structural question and the substantive question. Just as an object’s weight is determined by its mass and gravitational acceleration, some probabilities are determined by other, more basic ones. The structural question asks what probabilities (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark   11 citations  
  8. Can There Be a Bayesian Explanationism? On the Prospects of a Productive Partnership.Frank Cabrera - 2017 - Synthese 194 (4):1245–1272.
    In this paper, I consider the relationship between Inference to the Best Explanation and Bayesianism, both of which are well-known accounts of the nature of scientific inference. In Sect. 2, I give a brief overview of Bayesianism and IBE. In Sect. 3, I argue that IBE in its most prominently defended forms is difficult to reconcile with Bayesianism because not all of the items that feature on popular lists of “explanatory virtues”—by means of which IBE ranks competing explanations—have confirmational import. (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  9. Subjective Probabilities Need Not Be Sharp.Jake Chandler - 2014 - Erkenntnis 79 (6):1273-1286.
    It is well known that classical, aka ‘sharp’, Bayesian decision theory, which models belief states as single probability functions, faces a number of serious difficulties with respect to its handling of agnosticism. These difficulties have led to the increasing popularity of so-called ‘imprecise’ models of decision-making, which represent belief states as sets of probability functions. In a recent paper, however, Adam Elga has argued in favour of a putative normative principle of sequential choice that he claims to (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  10. Evidential Probabilities and Credences.Anna-Maria Eder - 2019 - British Journal for the Philosophy of Science:1-21.
    Enjoying great popularity in decision theory, epistemology, and philosophy of science, Bayesianism as understood here is fundamentally concerned with epistemically ideal rationality. It assumes a tight connection between evidential probability and ideally rational credence, and usually interprets evidential probability in terms of such credence. Timothy Williamson challenges Bayesianism by arguing that evidential probabilities cannot be adequately interpreted as the credences of an ideal agent. From this and his assumption that evidential probabilities cannot be interpreted as the actual credences (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  11. Imprecise Probability and Higher Order Vagueness.Susanna Rinard - 2017 - Res Philosophica 94 (2):257-273.
    There is a trade-off between specificity and accuracy in existing models of belief. Descriptions of agents in the tripartite model, which recognizes only three doxastic attitudes—belief, disbelief, and suspension of judgment—are typically accurate, but not sufficiently specific. The orthodox Bayesian model, which requires real-valued credences, is perfectly specific, but often inaccurate: we often lack precise credences. I argue, first, that a popular attempt to fix the Bayesian model by using sets of functions is also inaccurate, since it requires (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  12.  44
    Bayesian Representation of a Prolonged Archaeological Debate.Efraim Wallach - 2018 - Synthese 195 (1):401-431.
    This article examines the effect of material evidence upon historiographic hypotheses. Through a series of successive Bayesian conditionalizations, I analyze the extended competition among several hypotheses that offered different accounts of the transition between the Bronze Age and the Iron Age in Palestine and in particular to the “emergence of Israel”. The model reconstructs, with low sensitivity to initial assumptions, the actual outcomes including a complete alteration of the scientific consensus. Several known issues of Bayesian confirmation, including the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  13. Bayesian Variations: Essays on the Structure, Object, and Dynamics of Credence.Aron Vallinder - 2018 - Dissertation, London School of Economics
    According to the traditional Bayesian view of credence, its structure is that of precise probability, its objects are descriptive propositions about the empirical world, and its dynamics are given by conditionalization. Each of the three essays that make up this thesis deals with a different variation on this traditional picture. The first variation replaces precise probability with sets of probabilities. The resulting imprecise Bayesianism is sometimes motivated on the grounds that our beliefs should not be more precise (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  14. A Classic of Bayesian Confirmation Theory: Paul Horwich: Probability and Evidence . Cambridge: Cambridge University Press, 2016, 147pp, £14.99 PB. [REVIEW]Finnur Dellsén - 2017 - Metascience 26 (2):237-240.
    Book review of Paul Horwich, Probability and Evidence (Cambridge Philosophy Classics edition), Cambridge: Cambridge University Press, 2016, 147pp, £14.99 (paperback).
    Download  
     
    Export citation  
     
    Bookmark  
  15. Bayesian Confirmation of Theories That Incorporate Idealizations.Michael J. Shaffer - 2001 - Philosophy of Science 68 (1):36-52.
    Following Nancy Cartwright and others, I suggest that most (if not all) theories incorporate, or depend on, one or more idealizing assumptions. I then argue that such theories ought to be regimented as counterfactuals, the antecedents of which are simplifying assumptions. If this account of the logic form of theories is granted, then a serious problem arises for Bayesians concerning the prior probabilities of theories that have counterfactual form. If no such probabilities can be assigned, the the posterior probabilities will (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  16. Conditional Degree of Belief and Bayesian Inference.Jan Sprenger - 2020 - Philosophy of Science 87 (2):319-335.
    Why are conditional degrees of belief in an observation E, given a statistical hypothesis H, aligned with the objective probabilities expressed by H? After showing that standard replies are not satisfactory, I develop a suppositional analysis of conditional degree of belief, transferring Ramsey’s classical proposal to statistical inference. The analysis saves the alignment, explains the role of chance-credence coordination, and rebuts the charge of arbitrary assessment of evidence in Bayesian inference. Finally, I explore the implications of this analysis for (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  17. Perception and Probability.Alex Byrne - 2021 - Philosophy and Phenomenological Research:1-21.
    One very popular framework in contemporary epistemology is Bayesian. The central epistemic state is subjective confidence, or credence. Traditional epistemic states like belief and knowledge tend to be sidelined, or even dispensed with entirely. Credences are often introduced as familiar mental states, merely in need of a special label for the purposes of epistemology. But whether they are implicitly recognized by the folk or posits of a sophisticated scientific psychology, they do not appear to fit well with perception, as (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  18. Is There a Place in Bayesian Confirmation Theory for the Reverse Matthew Effect?William Roche - 2018 - Synthese 195 (4):1631-1648.
    Bayesian confirmation theory is rife with confirmation measures. Many of them differ from each other in important respects. It turns out, though, that all the standard confirmation measures in the literature run counter to the so-called “Reverse Matthew Effect” (“RME” for short). Suppose, to illustrate, that H1 and H2 are equally successful in predicting E in that p(E | H1)/p(E) = p(E | H2)/p(E) > 1. Suppose, further, that initially H1 is less probable than H2 in that p(H1) < (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  19. Deontic Modals and Probability: One Theory to Rule Them All?Fabrizio Cariani - forthcoming - In Nate Charlow & Matthew Chrisman (eds.), Deontic Modality. Oxford University Press.
    This paper motivates and develops a novel semantic framework for deontic modals. The framework is designed to shed light on two things: the relationship between deontic modals and substantive theories of practical rationality and the interaction of deontic modals with conditionals, epistemic modals and probability operators. I argue that, in order to model inferential connections between deontic modals and probability operators, we need more structure than is provided by classical intensional theories. In particular, we need probabilistic structure that (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  20.  14
    Bayesian Evidence Test for Precise Hypotheses.Julio Michael Stern - 2003 - Journal of Statistical Planning and Inference 117 (2):185-198.
    The full Bayesian signi/cance test (FBST) for precise hypotheses is presented, with some illustrative applications. In the FBST we compute the evidence against the precise hypothesis. We discuss some of the theoretical properties of the FBST, and provide an invariant formulation for coordinate transformations, provided a reference density has been established. This evidence is the probability of the highest relative surprise set, “tangential” to the sub-manifold (of the parameter space) that defines the null hypothesis.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  21. Subjective Probabilities as Basis for Scientific Reasoning?Franz Huber - 2005 - British Journal for the Philosophy of Science 56 (1):101-116.
    Bayesianism is the position that scientific reasoning is probabilistic and that probabilities are adequately interpreted as an agent's actual subjective degrees of belief, measured by her betting behaviour. Confirmation is one important aspect of scientific reasoning. The thesis of this paper is the following: if scientific reasoning is at all probabilistic, the subjective interpretation has to be given up in order to get right confirmation—and thus scientific reasoning in general. The Bayesian approach to scientific reasoning Bayesian confirmation theory (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  22.  97
    The Objective Bayesian Conceptualisation of Proof and Reference Class Problems.James Franklin - 2011 - Sydney Law Review 33 (3):545-561.
    The objective Bayesian view of proof (or logical probability, or evidential support) is explained and defended: that the relation of evidence to hypothesis (in legal trials, science etc) is a strictly logical one, comparable to deductive logic. This view is distinguished from the thesis, which had some popularity in law in the 1980s, that legal evidence ought to be evaluated using numerical probabilities and formulas. While numbers are not always useful, a central role is played in uncertain reasoning (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  23. Obligation, Permission, and Bayesian Orgulity.Michael Nielsen & Rush T. Stewart - 2019 - Ergo: An Open Access Journal of Philosophy 6.
    This essay has two aims. The first is to correct an increasingly popular way of misunderstanding Belot's Orgulity Argument. The Orgulity Argument charges Bayesianism with defect as a normative epistemology. For concreteness, our argument focuses on Cisewski et al.'s recent rejoinder to Belot. The conditions that underwrite their version of the argument are too strong and Belot does not endorse them on our reading. A more compelling version of the Orgulity Argument than Cisewski et al. present is available, however---a point (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  24. From Classical to Intuitionistic Probability.Brian Weatherson - 2003 - Notre Dame Journal of Formal Logic 44 (2):111-123.
    We generalize the Kolmogorov axioms for probability calculus to obtain conditions defining, for any given logic, a class of probability functions relative to that logic, coinciding with the standard probability functions in the special case of classical logic but allowing consideration of other classes of "essentially Kolmogorovian" probability functions relative to other logics. We take a broad view of the Bayesian approach as dictating inter alia that from the perspective of a given logic, rational degrees (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  25. The New Tweety Puzzle: Arguments Against Monistic Bayesian Approaches in Epistemology and Cognitive Science.Matthias Unterhuber & Gerhard Schurz - 2013 - Synthese 190 (8):1407-1435.
    In this paper we discuss the new Tweety puzzle. The original Tweety puzzle was addressed by approaches in non-monotonic logic, which aim to adequately represent the Tweety case, namely that Tweety is a penguin and, thus, an exceptional bird, which cannot fly, although in general birds can fly. The new Tweety puzzle is intended as a challenge for probabilistic theories of epistemic states. In the first part of the paper we argue against monistic Bayesians, who assume that epistemic states can (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  26.  9
    Paraconsistent Sensitivity Analysis for Bayesian Significance Tests.Julio Michael Stern - 2004 - Lecture Notes in Artificial Intelligence 3171:134-143.
    In this paper, the notion of degree of inconsistency is introduced as a tool to evaluate the sensitivity of the Full Bayesian Significance Test (FBST) value of evidence with respect to changes in the prior or reference density. For that, both the definition of the FBST, a possibilistic approach to hypothesis testing based on Bayesian probability procedures, and the use of bilattice structures, as introduced by Ginsberg and Fitting, in paraconsistent logics, are reviewed. The computational and theoretical (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  27. Less is More for Bayesians, Too.Gregory Wheeler - forthcoming - In Routledge Handbook on Bounded Rationality.
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark   2 citations  
  28. A Dual Approach to Bayesian Inference and Adaptive Control.Leigh Tesfatsion - 1982 - Theory and Decision 14 (2):177-194.
    Probability updating via Bayes' rule often entails extensive informational and computational requirements. In consequence, relatively few practical applications of Bayesian adaptive control techniques have been attempted. This paper discusses an alternative approach to adaptive control, Bayesian in spirit, which shifts attention from the updating of probability distributions via transitional probability assessments to the direct updating of the criterion function, itself, via transitional utility assessments. Results are illustrated in terms of an adaptive reinvestment two-armed bandit problem.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  29.  52
    Probabilities on Sentences in an Expressive Logic.Marcus Hutter, John W. Lloyd, Kee Siong Ng & William T. B. Uther - 2013 - Journal of Applied Logic 11 (4):386-420.
    Automated reasoning about uncertain knowledge has many applications. One difficulty when developing such systems is the lack of a completely satisfactory integration of logic and probability. We address this problem directly. Expressive languages like higher-order logic are ideally suited for representing and reasoning about structured knowledge. Uncertain knowledge can be modeled by using graded probabilities rather than binary truth-values. The main technical problem studied in this paper is the following: Given a set of sentences, each having some probability (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  30. Bayesian Perspectives on Mathematical Practice.James Franklin - 2020 - Handbook of the History and Philosophy of Mathematical Practice.
    Mathematicians often speak of conjectures as being confirmed by evidence that falls short of proof. For their own conjectures, evidence justifies further work in looking for a proof. Those conjectures of mathematics that have long resisted proof, such as the Riemann hypothesis, have had to be considered in terms of the evidence for and against them. In recent decades, massive increases in computer power have permitted the gathering of huge amounts of numerical evidence, both for conjectures in pure mathematics and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  31.  4
    Full Bayesian Significance Test Applied to Multivariate Normal Structure Models.Marcelo de Souza Lauretto, Carlos Alberto de Braganca Pereira, Julio Michael Stern & Shelemiahu Zacks - 2003 - Brazilian Journal of Probability and Statistics 17:147-168.
    Abstract: The Pull Bayesian Significance Test (FBST) for precise hy- potheses is applied to a Multivariate Normal Structure (MNS) model. In the FBST we compute the evidence against the precise hypothesis. This evi- dence is the probability of the Highest Relative Surprise Set (HRSS) tangent to the sub-manifold (of the parameter space) that defines the null hypothesis. The MNS model we present appears when testing equivalence conditions for genetic expression measurements, using micro-array technology.
    Download  
     
    Export citation  
     
    Bookmark  
  32. Hempel's Raven Paradox: A Lacuna in the Standard Bayesian Solution.Peter B. M. Vranas - 2004 - British Journal for the Philosophy of Science 55 (3):545-560.
    According to Hempel's paradox, evidence (E) that an object is a nonblack nonraven confirms the hypothesis (H) that every raven is black. According to the standard Bayesian solution, E does confirm H but only to a minute degree. This solution relies on the almost never explicitly defended assumption that the probability of H should not be affected by evidence that an object is nonblack. I argue that this assumption is implausible, and I propose a way out for Bayesians. (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  33. Sleeping Beauty and the Forgetful Bayesian.Bradley Monton - 2002 - Analysis 62 (1):47–53.
    Adam Elga takes the Sleeping Beauty example to provide a counter-example to Reflection, since on Sunday Beauty assigns probability 1/2 to H, and she is certain that on Monday she will assign probability 1/3. I will show that there is a natural way for Bas van Fraassen to defend Reflection in the case of Sleeping Beauty, building on van Fraassen’s treatment of forgetting. This will allow me to identify a lacuna in Elga’s argument for 1/3. I will then (...)
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  34. Religious Experience and the Probability of Theism: Comments on Swinburne.Christoph Jäger - 2017 - Religious Studies 53 (3):353-370.
    I discuss Richard Swinburne’s account of religious experience in his probabilistic case for theism. I argue, pace Swinburne, that even if cosmological considerations render theism not too improbable, religious experience does not render it more probable than not.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  35. The Science of Conjecture: Evidence and Probability Before Pascal.James Franklin - 2001 - Baltimore, USA: Johns Hopkins University Press.
    How were reliable predictions made before Pascal and Fermat's discovery of the mathematics of probability in 1654? What methods in law, science, commerce, philosophy, and logic helped us to get at the truth in cases where certainty was not attainable? The book examines how judges, witch inquisitors, and juries evaluated evidence; how scientists weighed reasons for and against scientific theories; and how merchants counted shipwrecks to determine insurance rates. Also included are the problem of induction before Hume, design arguments (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  36. Persistent Disagreement and Polarization in a Bayesian Setting.Michael Nielsen & Rush T. Stewart - 2021 - British Journal for the Philosophy of Science 72 (1):51-78.
    For two ideally rational agents, does learning a finite amount of shared evidence necessitate agreement? No. But does it at least guard against belief polarization, the case in which their opinions get further apart? No. OK, but are rational agents guaranteed to avoid polarization if they have access to an infinite, increasing stream of shared evidence? No.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  37. On Probability and Cosmology: Inference Beyond Data?Martin Sahlen - 2017 - In K. Chamcham, J. Silk, J. D. Barrow & S. Saunders (eds.), The Philosophy of Cosmology. Cambridge, UK:
    Modern scientific cosmology pushes the boundaries of knowledge and the knowable. This is prompting questions on the nature of scientific knowledge. A central issue is what defines a 'good' model. When addressing global properties of the Universe or its initial state this becomes a particularly pressing issue. How to assess the probability of the Universe as a whole is empirically ambiguous, since we can examine only part of a single realisation of the system under investigation: at some point, data (...)
    Download  
     
    Export citation  
     
    Bookmark  
  38. Serious Theories and Skeptical Theories: Why You Are Probably Not a Brain in a Vat.Michael Huemer - 2016 - Philosophical Studies 173 (4):1031-1052.
    Skeptical hypotheses such as the brain-in-a-vat hypothesis provide extremely poor explanations for our sensory experiences. Because these scenarios accommodate virtually any possible set of evidence, the probability of any given set of evidence on the skeptical scenario is near zero; hence, on Bayesian grounds, the scenario is not well supported by the evidence. By contrast, serious theories make reasonably specific predictions about the evidence and are then well supported when these predictions are satisfied.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  39. Homeostatic Epistemology : Reliability, Coherence and Coordination in a Bayesian Virtue Epistemology.Susannah Kate Devitt - 2013 - Dissertation,
    How do agents with limited cognitive capacities flourish in informationally impoverished or unexpected circumstances? Aristotle argued that human flourishing emerged from knowing about the world and our place within it. If he is right, then the virtuous processes that produce knowledge, best explain flourishing. Influenced by Aristotle, virtue epistemology defends an analysis of knowledge where beliefs are evaluated for their truth and the intellectual virtue or competences relied on in their creation. However, human flourishing may emerge from how degrees of (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  40. A Condition for Transitivity in High Probability.William Roche - 2017 - European Journal for Philosophy of Science 7 (3):435-444.
    There are many scientific and everyday cases where each of Pr and Pr is high and it seems that Pr is high. But high probability is not transitive and so it might be in such cases that each of Pr and Pr is high and in fact Pr is not high. There is no issue in the special case where the following condition, which I call “C1”, holds: H 1 entails H 2. This condition is sufficient for transitivity in (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  41.  62
    The Paradox of the Bayesian Experts.Philippe Mongin - 2001 - In David Corfield & Jon Williamson (eds.), Foundations of Bayesianism. Kluwer Academic Publishers. pp. 309-338.
    This paper (first published under the same title in Journal of Mathematical Economics, 29, 1998, p. 331-361) is a sequel to "Consistent Bayesian Aggregation", Journal of Economic Theory, 66, 1995, p. 313-351, by the same author. Both papers examine mathematically whether the the following assumptions are compatible: the individuals and the group both form their preferences according to Subjective Expected Utility (SEU) theory, and the preferences of the group satisfy the Pareto principle with respect to those of the individuals. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  42. Confirmation, Increase in Probability, and the Likelihood Ratio Measure: A Reply to Glass and McCartney.William Roche - 2017 - Acta Analytica 32 (4):491-513.
    Bayesian confirmation theory is rife with confirmation measures. Zalabardo focuses on the probability difference measure, the probability ratio measure, the likelihood difference measure, and the likelihood ratio measure. He argues that the likelihood ratio measure is adequate, but each of the other three measures is not. He argues for this by setting out three adequacy conditions on confirmation measures and arguing in effect that all of them are met by the likelihood ratio measure but not by any (...)
    Download  
     
    Export citation  
     
    Bookmark  
  43.  92
    Scientific Theories as Bayesian Nets: Structure and Evidence Sensitivity.Patrick Grim, Frank Seidl, Calum McNamara, Hinton Rago, Isabell Astor, Caroline Diaso & Peter Ryner - forthcoming - Philosophy of Science.
    We model scientific theories as Bayesian networks. Nodes carry credences and function as abstract representations of propositions within the structure. Directed links carry conditional probabilities and represent connections between those propositions. Updating is Bayesian across the network as a whole. The impact of evidence at one point within a scientific theory can have a very different impact on the network than does evidence of the same strength at a different point. A Bayesian model allows us to envisage (...)
    Download  
     
    Export citation  
     
    Bookmark  
  44.  9
    Unit Roots: Bayesian Significance Test.Julio Michael Stern, Marcio Alves Diniz & Carlos Alberto de Braganca Pereira - 2011 - Communications in Statistics 40 (23):4200-4213.
    The unit root problem plays a central role in empirical applications in the time series econometric literature. However, significance tests developed under the frequentist tradition present various conceptual problems that jeopardize the power of these tests, especially for small samples. Bayesian alternatives, although having interesting interpretations and being precisely defined, experience problems due to the fact that that the hypothesis of interest in this case is sharp or precise. The Bayesian significance test used in this article, for the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  45.  11
    Evidence and Credibility: Full Bayesian Significance Test for Precise Hypotheses.Julio Michael Stern & Carlos Alberto de Braganca Pereira - 1999 - Entropy 1 (1):69-80.
    A Bayesian measure of evidence for precise hypotheses is presented. The intention is to give a Bayesian alternative to significance tests or, equivalently, to p-values. In fact, a set is defined in the parameter space and the posterior probability, its credibility, is evaluated. This set is the “Highest Posterior Density Region” that is “tangent” to the set that defines the null hypothesis. Our measure of evidence is the complement of the credibility of the “tangent” region.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  46.  11
    Spencer-Brown Vs. Probability and Statistics: Entropy’s Testimony on Subjective and Objective Randomness.Julio Michael Stern - 2011 - Information 2 (2):277-301.
    This article analyzes the role of entropy in Bayesian statistics, focusing on its use as a tool for detection, recognition and validation of eigen-solutions. “Objects as eigen-solutions” is a key metaphor of the cognitive constructivism epistemological framework developed by the philosopher Heinz von Foerster. Special attention is given to some objections to the concepts of probability, statistics and randomization posed by George Spencer-Brown, a figure of great influence in the field of radical constructivism.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  47. Sudden Infant Death or Murder? A Royal Confusion About Probabilities.Neven Sesardic - 2007 - British Journal for the Philosophy of Science 58 (2):299-329.
    In this article I criticize the recommendations of some prominent statisticians about how to estimate and compare probabilities of the repeated sudden infant death and repeated murder. The issue has drawn considerable public attention in connection with several recent court cases in the UK. I try to show that when the three components of the Bayesian inference are carefully analyzed in this context, the advice of the statisticians turns out to be problematic in each of the steps.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  48.  10
    The Full Bayesian Significance Test for Mixture Models: Results in Gene Expression Clustering.Julio Michael Stern, Marcelo de Souza Lauretto & Carlos Alberto de Braganca Pereira - 2008 - Genetics and Molecular Research 7 (3):883-897.
    Gene clustering is a useful exploratory technique to group together genes with similar expression levels under distinct cell cycle phases or distinct conditions. It helps the biologist to identify potentially meaningful relationships between genes. In this study, we propose a clustering method based on multivariate normal mixture models, where the number of clusters is predicted via sequential hypothesis tests: at each step, the method considers a mixture model of m components (m = 2 in the first step) and tests if (...)
    Download  
     
    Export citation  
     
    Bookmark  
  49.  8
    Enviromental Genotoxicity Evaluation: Bayesian Approach for a Mixture Statistical Model.Julio Michael Stern, Angela Maria de Souza Bueno, Carlos Alberto de Braganca Pereira & Maria Nazareth Rabello-Gay - 2002 - Stochastic Environmental Research and Risk Assessment 16:267–278.
    The data analyzed in this paper are part of the results described in Bueno et al. (2000). Three cytogenetics endpoints were analyzed in three populations of a species of wild rodent – Akodon montensis – living in an industrial, an agricultural, and a preservation area at the Itajaí Valley, State of Santa Catarina, Brazil. The polychromatic/normochromatic ratio, the mitotic index, and the frequency of micronucleated polychromatic erythrocites were used in an attempt to establish a genotoxic profile of each area. It (...)
    Download  
     
    Export citation  
     
    Bookmark  
  50.  92
    Distention for Sets of Probabilities.Rush T. Stewart & Michael Nielsen - forthcoming - Philosophy of Science.
    A prominent pillar of Bayesian philosophy is that, relative to just a few constraints, priors “wash out” in the limit. Bayesians often appeal to such asymptotic results as a defense against charges of excessive subjectivity. But, as Seidenfeld and coauthors observe, what happens in the short run is often of greater interest than what happens in the limit. They use this point as one motivation for investigating the counterintuitive short run phenomenon of dilation since, it is alleged, “dilation contrasts (...)
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 999