It is one thing for a given proposition to follow or to not follow from a given set of propositions and it is quite another thing for it to be shown either that the given proposition follows or that it does not follow.* Using a formal deduction to show that a conclusion follows and using a countermodel to show that a conclusion does not follow are both traditional practices recognized by Aristotle and used down through the history of logic. These (...) practices presuppose, respectively, a criterion of validity and a criterion of invalidity each of which has been extended and refined by modern logicians: deductions are studied in formal syntax (proof theory) and coun¬termodels are studied in formal semantics (model theory). The purpose of this paper is to compare these two criteria to the corresponding criteria employed in Boole’s first logical work, The Mathematical Analysis of Logic (1847). In particular, this paper presents a detailed study of the relevant metalogical passages and an analysis of Boole’s symbolic derivations. It is well known, of course, that Boole’s logical analysis of compound terms (involving ‘not’, ‘and’, ‘or’, ‘except’, etc.) contributed to the enlargement of the class of propositions and arguments formally treatable in logic. The present study shows, in addition, that Boole made significant contributions to the study of deduc¬tive reasoning. He identified the role of logical axioms (as opposed to inference rules) in formal deductions, he conceived of the idea of an axiomatic deductive sys¬tem (which yields logical truths by itself and which yields consequences when ap¬plied to arbitrary premises). Nevertheless, surprisingly, Boole’s attempt to imple¬ment his idea of an axiomatic deductive system involved striking omissions: Boole does not use his own formal deductions to establish validity. Boole does give symbolic derivations, several of which are vitiated by “Boole’s Solutions Fallacy”: the fallacy of supposing that a solution to an equation is necessarily a logical consequence of the equation. This fallacy seems to have led Boole to confuse equational calculi (i.e., methods for gen-erating solutions) with deduction procedures (i.e., methods for generating consequences). The methodological confusion is closely related to the fact, shown in detail below, that Boole had adopted an unsound criterion of validity. It is also shown that Boole totally ignored the countermodel criterion of invalid¬ity. Careful examination of the text does not reveal with certainty a test for invalidity which was adopted by Boole. However, we have isolated a test that he seems to use in this way and we show that this test is ineffectual in the sense that it does not serve to identify invalid arguments. We go beyond the simple goal stated above. Besides comparing Boole’s earliest criteria of validity and invalidity with those traditionally (and still generally) employed, this paper also investigates the framework and details of THE MATHEMATICAL ANALYSIS OF LOGIC. (shrink)
2006. George Boole. Encyclopedia of Philosophy. 2nd edition. Detroit: Macmillan Reference USA. -/- George Boole (1815-1864), whose name lives among modern computer-related sciences in Boolean Algebra, Boolean Logic, Boolean Operations, and the like, is one of the most celebrated logicians of all time. Ironically, his actual writings often go unread and his actual contributions to logic are virtually unknown—despite the fact that he was one of the clearest writers in the field. Working with various students including Susan Wood (...) and Sriram Nambiar, I have written several publications trying to set the record straight—but so far to little avail. This encyclopedia entry is one more attempt to set the record straight in a way that can be appreciated by non-experts.Also see https://www.academia.edu/10161999/Booles_criteria_of_validity_and_invalidity . (shrink)
Prior Analytics by the Greek philosopher Aristotle (384 – 322 BCE) and Laws of Thought by the English mathematician George Boole (1815 – 1864) are the two most important surviving original logical works from before the advent of modern logic. This article has a single goal: to compare Aristotle’s system with the system that Boole constructed over twenty-two centuries later intending to extend and perfect what Aristotle had started. This comparison merits an article itself. Accordingly, this article does (...) not discuss many other historically and philosophically important aspects of Boole’s book, e.g. his confused attempt to apply differential calculus to logic, his misguided effort to make his system of ‘class logic’ serve as a kind of ‘truth-functional logic’, his now almost forgotten foray into probability theory, or his blindness to the fact that a truth-functional combination of equations that follows from a given truth-functional combination of equations need not follow truth-functionally. One of the main conclusions is that Boole’s contribution widened logic and changed its nature to such an extent that he fully deserves to share with Aristotle the status of being a founding figure in logic. By setting forth in clear and systematic fashion the basic methods for establishing validity and for establishing invalidity, Aristotle became the founder of logic as formal epistemology. By making the first unmistakable steps toward opening logic to the study of ‘laws of thought’—tautologies and laws such as excluded middle and non-contradiction—Boole became the founder of logic as formal ontology. (shrink)
“There’s Plenty of Room at the Bottom”, said the title of Richard Feynman’s 1959 seminal conference at the California Institute of Technology. Fifty years on, nanotechnologies have led computer scientists to pay close attention to the links between physical reality and information processing. Not all the physical requirements of optimal computation are captured by traditional models—one still largely missing is reversibility. The dynamic laws of physics are reversible at microphysical level, distinct initial states of a system leading to distinct final (...) states. On the other hand, as von Neumann already conjectured, irreversible information processing is expensive: to erase a single bit of information costs ~3 × 10−21 joules at room temperature. Information entropy is a thermodynamic cost, to be paid in non-computational energy dissipation. This paper addresses the problem drawing on Edward Fredkin’s Finite Nature hypothesis: the ultimate nature of the universe is discrete and finite, satisfying the axioms of classical, atomistic mereology. The chosen model is a cellular automaton with reversible dynamics, capable of retaining memory of the information present at the beginning of the universe. Such a CA can implement the Boolean logical operations and the other building bricks of computation: it can develop and host all-purpose computers. The model is a candidate for the realization of computational systems, capable of exploiting the resources of the physical world in an efficient way, for they can host logical circuits with negligible internal energy dissipation. (shrink)
O presente artigo busca debater a posição de Charles Sanders Peirce e dos primeiros estudantes peirceanos de Lógica (Christine Ladd e O. H. Mitchell nos Studies in Logic, 1883) dentro do debate inspirador da visão da linguagem dentro da Filosofia Analítica, conhecido como “Lingua Universalis contra Calculus Ratiocinator”, cujos primórdios podem ser traçados desde a filosofia de Gottfried Leibniz. Para isso, comparamos esse campo do pensamento peirceano com o debate crucial entre a conceitografia de Gottlob Frege (Begriffsschrift, 1879) e a (...) lógica algébrica de George Boole (An investigation of the Laws of Thought on which are founded the mathematical theories of Logic and Probabilities, 1854). O nosso objetivo principal é observar que esse momento da filosofia peirceana pode ser comparado com o pensamento wittgensteiniano, especialmente em sua nova vertente, chamada New Wittgenstein, que tenta superar a tradicional divisão entre Tractatus Logico-Philosophicus e Investigações Filosóficas. Pela comparação entre pensadores influenciados por C. S. Peirce e a filosofia de Ludwig Wittgenstein, pretendemos abrir caminhos na compreensão do conceito de jogo de linguagem, especialmente em sua gramática e em seus operadores simbólicos, através da observação das funções de verdade [truth functions] e as tabelas de verdade [truth tables] enquanto lógica algébrica. (shrink)
George Boole emerged from the British tradition of the “New Analytic”, known for the view that the laws of logic are laws of thought. Logicians in the New Analytic tradition were influenced by the work of Immanuel Kant, and by the German logicians Wilhelm Traugott Krug and Wilhelm Esser, among others. In his 1854 work An Investigation of the Laws of Thought on Which are Founded the Mathematical Theories of Logic and Probabilities, Boole argues that the laws of (...) thought acquire normative force when constrained to mathematical reasoning. Boole’s motivation is, first, to address issues in the foundations of mathematics, including the relationship between arithmetic and algebra, and the study and application of differential equations (Durand-Richard, van Evra, Panteki). Second, Boole intended to derive the laws of logic from the laws of the operation of the human mind, and to show that these laws were valid of algebra and of logic both, when applied to a restricted domain. Boole’s thorough and flexible work in these areas influenced the development of model theory (see Hodges, forthcoming), and has much in common with contemporary inferentialist approaches to logic (found in, e.g., Peregrin and Resnik). (shrink)
ABSTRACT: In its strongest unqualified form, the principle of wholistic reference is that in any given discourse, each proposition refers to the whole universe of that discourse, regardless of how limited the referents of its non-logical or content terms. According to this principle every proposition of number theory, even an equation such as "5 + 7 = 12", refers not only to the individual numbers that it happens to mention but to the whole universe of numbers. This principle, its history, (...) and its relevance to some of Oswaldo Chateaubriand's work are discussed in my 2004 paper "The Principle of Wholistic Reference" in Essays on Chateaubriand's "Logical Forms". In Chateaubriand's réplica (reply), which is printed with my paper, he raised several important additional issues including the three I focus on in this tréplica (reply to his reply): truth-values, universes of discourse, and formal ontology. This paper is self-contained: it is not necessary to have read the above-mentioned works. The principle of wholistic reference (PWR) was first put forth by George Boole in 1847 when he espoused a monistic fixed-universe viewpoint similar to the one Frege and Russell espoused throughout their careers. Later, Boole elaborated PWR in 1854 from the pluralistic multiple-universes perspective. (shrink)
In its strongest, unqualified form the principle of wholistic reference is that each and every proposition refers to the whole universe of discourse as such, regardless how limited the referents of its non-logical or content terms. Even though Boole changed from a monistic fixed-universe framework in his earlier works of 1847 and 1848 to a pluralistic multiple-universe framework in his mature treatise of 1854, he never wavered in his frank avowal of the principle of wholistic reference, possibly in a (...) slightly weaker form. Indeed, he took it as an essential accompaniment to his theory of concept formation and proposition formation. Similar views are found in later logicians, and some of the most recent formulations of standard, one-sorted first-order logic seem to be in accord with a form of it, if they do not actually imply the principle itself. (shrink)
In its strongest, unqualified form the principle of wholistic reference is that each and every proposition refers to the whole universe of discourse as such, regardless how limited the referents of its non-logical or content terms. Even though Boole changed from a monistic fixed-universe framework in his earlier works of 1847 and 1848 to a pluralistic multiple-universe framework in his mature treatise of 1854, he never wavered in his frank avowal of the principle of wholistic reference, possibly in a (...) slightly weaker form. Indeed, he took it as an essential accompaniment to his theory of concept formation and proposition formation. Similar views are found in later logicians, and some of the most recent formulations of standard, one-sorted first-order logic seem to be in accord with a form of it, if they do not actually imply the principle itself.Em sua forma mais forte e geral, o princípio da referência universalista afirma que toda proposição refere-se ao universo completo do discurso propriamente dito, independentemente de quão limitados sejam os referentes de seus termos não-lógicos ou com conteúdo. Embora Boole mudasse de um modelo monístico de universo-fixo nos seus trabalhos iniciais de 1847 e 1848 para um modelo pluralista de universo-múltiplo no seu tratado maduro de 1854, ele nunca hesitou em sua aceitação franca do princípio da referência universalista, possivelmente em uma forma ligeiramente mais fraca. De fato, ele considerou este princípio como um acompanhamento essencial para a sua teoria de formação de conceitos e de proposições. Visões semelhantes são encontradas em lógicos posteriores, e algumas das mais recentes formulações da lógica clássica de primeira ordem parecem estar de acordo com uma forma deste, se é que elas não implicam, de fato, o próprio princípio. (shrink)
As George Boole saw it, the laws of logic are the laws of thought, and by this he meant, not that human thought is actually governed by the laws of logic, but, rather, that it should be. Boole’s view that the laws of logic have normative implications for how we ought to think is anything but an outlier. The idea that violating the laws of logic involves epistemic impropriety has seemed to many to be just obvious. It has (...) seemed especially obvious to those who see propositional justification as more fundamental than doxastic justification. Whatever other principles are required for defining propositional justification, the laws of logic seem indispensable. The idea that violation of the laws of logic involves some sort of epistemic impropriety—whatever the peculiarities of our psychology may be—has served as a fixed point around which defenders of the fundamentality of propositional justification are united, whatever their other differences. This paper challenges that common thread in defenses of the fundamentality of propositional justification. It is argued that the laws of logic have no bearing whatever on epistemic justification. Once we see why this should be so, the way is paved for seeing why it is that doxastic justification is more fundamental than propositional justification. (shrink)
The discussions which follow rest on a distinction, first expounded by Husserl, between formal logic and formal ontology. The former concerns itself with (formal) meaning-structures; the latter with formal structures amongst objects and their parts. The paper attempts to show how, when formal ontological considerations are brought into play, contemporary extensionalist theories of part and whole, and above all the mereology of Leniewski, can be generalised to embrace not only relations between concrete objects and object-pieces, but also relations between what (...) we shall call dependent parts or moments. A two-dimensional formal language is canvassed for the resultant ontological theory, a language which owes more to the tradition of Euler, Boole and Venn than to the quantifier-centred languages which have predominated amongst analytic philosophers since the time of Frege and Russell. Analytic philosophical arguments against moments, and against the entire project of a formal ontology, are considered and rejected. The paper concludes with a brief account of some applications of the theory presented. (shrink)
Classical logic is usually interpreted as the logic of propositions. But from Boole's original development up to modern categorical logic, there has always been the alternative interpretation of classical logic as the logic of subsets of any given (nonempty) universe set. Partitions on a universe set are dual to subsets of a universe set in the sense of the reverse-the-arrows category-theoretic duality--which is reflected in the duality between quotient objects and subobjects throughout algebra. Hence the idea arises of a (...) dual logic of partitions. That dual logic is described here. Partition logic is at the same mathematical level as subset logic since models for both are constructed from (partitions on or subsets of) arbitrary unstructured sets with no ordering relations, compatibility or accessibility relations, or topologies on the sets. Just as Boole developed logical finite probability theory as a quantitative treatment of subset logic, applying the analogous mathematical steps to partition logic yields a logical notion of entropy so that information theory can be refounded on partition logic. But the biggest application is that when partition logic and the accompanying logical information theory are "lifted" to complex vector spaces, then the mathematical framework of quantum mechanics is obtained. Partition logic models indefiniteness (i.e., numerical attributes on a set become more definite as the inverse-image partition becomes more refined) while subset logic models the definiteness of classical physics (an entity either definitely has a property or definitely does not). Hence partition logic provides the backstory so the old idea of "objective indefiniteness" in QM can be fleshed out to a full interpretation of quantum mechanics. (shrink)
This book treats ancient logic: the logic that originated in Greece by Aristotle and the Stoics, mainly in the hundred year period beginning about 350 BCE. Ancient logic was never completely ignored by modern logic from its Boolean origin in the middle 1800s: it was prominent in Boole’s writings and it was mentioned by Frege and by Hilbert. Nevertheless, the first century of mathematical logic did not take it seriously enough to study the ancient logic texts. A renaissance in (...) ancient logic studies occurred in the early 1950s with the publication of the landmark Aristotle’s Syllogistic by Jan Łukasiewicz, Oxford UP 1951, 2nd ed. 1957. Despite its title, it treats the logic of the Stoics as well as that of Aristotle. Łukasiewicz was a distinguished mathematical logician. He had created many-valued logic and the parenthesis-free prefix notation known as Polish notation. He co-authored with Alfred Tarski’s an important paper on metatheory of propositional logic and he was one of Tarski’s the three main teachers at the University of Warsaw. Łukasiewicz’s stature was just short of that of the giants: Aristotle, Boole, Frege, Tarski and Gödel. No mathematical logician of his caliber had ever before quoted the actual teachings of ancient logicians. -/- Not only did Łukasiewicz inject fresh hypotheses, new concepts, and imaginative modern perspectives into the field, his enormous prestige and that of the Warsaw School of Logic reflected on the whole field of ancient logic studies. Suddenly, this previously somewhat dormant and obscure field became active and gained in respectability and importance in the eyes of logicians, mathematicians, linguists, analytic philosophers, and historians. Next to Aristotle himself and perhaps the Stoic logician Chrysippus, Łukasiewicz is the most prominent figure in ancient logic studies. A huge literature traces its origins to Łukasiewicz. -/- This Ancient Logic and Its Modern Interpretations, is based on the 1973 Buffalo Symposium on Modernist Interpretations of Ancient Logic, the first conference devoted entirely to critical assessment of the state of ancient logic studies. (shrink)
This paper shows how the classical finite probability theory (with equiprobable outcomes) can be reinterpreted and recast as the quantum probability calculus of a pedagogical or toy model of quantum mechanics over sets (QM/sets). There have been several previous attempts to develop a quantum-like model with the base field of ℂ replaced by ℤ₂. Since there are no inner products on vector spaces over finite fields, the problem is to define the Dirac brackets and the probability calculus. The previous attempts (...) all required the brackets to take values in ℤ₂. But the usual QM brackets <ψ|ϕ> give the "overlap" between states ψ and ϕ, so for subsets S,T⊆U, the natural definition is <S|T>=|S∩T| (taking values in the natural numbers). This allows QM/sets to be developed with a full probability calculus that turns out to be a non-commutative extension of classical Laplace-Boole finite probability theory. The pedagogical model is illustrated by giving simple treatments of the indeterminacy principle, the double-slit experiment, Bell's Theorem, and identical particles in QM/Sets. A more technical appendix explains the mathematics behind carrying some vector space structures between QM over ℂ and QM/Sets over ℤ₂. (shrink)
We attempt here to trace the evolution of Frege’s thought about truth. What most frames the way we approach the problem is a recognition that hardly any of Frege’s most familiar claims about truth appear in his earliest work. We argue that Frege’s mature views about truth emerge from a fundamental re-thinking of the nature of logic instigated, in large part, by a sustained engagement with the work of George Boole and his followers, after the publication of Begriffsschrift and (...) the appearance of critical reviews by members of the Boolean school. (shrink)
This review concludes that if the authors know what mathematical logic is they have not shared their knowledge with the readers. This highly praised book is replete with errors and incoherency.
John Venn has the “uneasy suspicion” that the stagnation in mathematical logic between J. H. Lambert and George Boole was due to Kant’s “disastrous effect on logical method,” namely the “strictest preservation [of logic] from mathematical encroachment.” Kant’s actual position is more nuanced, however. In this chapter, I tease out the nuances by examining his use of Leonhard Euler’s circles and comparing it with Euler’s own use. I do so in light of the developments in logical calculus from G. (...) W. Leibniz to Lambert and Gottfried Ploucquet. While Kant is evidently open to using mathematical tools in logic, his main concern is to clarify what mathematical tools can be used to achieve. For without such clarification, all efforts at introducing mathematical tools into logic would be blind if not complete waste of time. In the end, Kant would stress, the means provided by formal logic at best help us to express and order what we already know in some sense. No matter how much mathematical notations may enhance the precision of this function of formal logic, it does not change the fact that no truths can, strictly speaking, be revealed or established by means of those notations. (shrink)
Recent developments in pure mathematics and in mathematical logic have uncovered a fundamental duality between "existence" and "information." In logic, the duality is between the Boolean logic of subsets and the logic of quotient sets, equivalence relations, or partitions. The analogue to an element of a subset is the notion of a distinction of a partition, and that leads to a whole stream of dualities or analogies--including the development of new logical foundations for information theory parallel to Boole's development (...) of logical finite probability theory. After outlining these dual concepts in mathematical terms, we turn to a more metaphysical speculation about two dual notions of reality, a fully definite notion using Boolean logic and appropriate for classical physics, and the other objectively indefinite notion using partition logic which turns out to be appropriate for quantum mechanics. The existence-information duality is used to intuitively illustrate these two dual notions of reality. The elucidation of the objectively indefinite notion of reality leads to the "killer application" of the existence-information duality, namely the interpretation of quantum mechanics. (shrink)
The notion of a partition on a set is mathematically dual to the notion of a subset of a set, so there is a logic of partitions dual to Boole's logic of subsets (Boolean logic is usually mis-specified as "propositional" logic). The notion of an element of a subset has as its dual the notion of a distinction of a partition (a pair of elements in different blocks). Boole developed finite logical probability as the normalized counting measure on (...) elements of subsets so there is a dual concept of logical entropy which is the normalized counting measure on distinctions of partitions. Thus the logical notion of information is a measure of distinctions. Classical logical entropy naturally extends to the notion of quantum logical entropy which provides a more natural and informative alternative to the usual Von Neumann entropy in quantum information theory. The quantum logical entropy of a post-measurement density matrix has the simple interpretation as the probability that two independent measurements of the same state using the same observable will have different results. The main result of the paper is that the increase in quantum logical entropy due to a projective measurement of a pure state is the sum of the absolute squares of the off-diagonal entries ("coherences") of the pure state density matrix that are zeroed ("decohered") by the measurement, i.e., the measure of the distinctions ("decoherences") created by the measurement. (shrink)
Corcoran, John. 2005. Meanings of word: type-occurrence-token. Bulletin of Symbolic Logic 11(2005) 117. -/- Once we are aware of the various senses of ‘word’, we realize that self-referential statements use ambiguous sentences. If a statement is made using the sentence ‘this is a pronoun’, is the speaker referring to an interpreted string, a string-type, a string-occurrence, a string-token, or what? The listeners can wonder “this what?”. -/- John Corcoran, Meanings of word: type-occurrence-token Philosophy, University at Buffalo, Buffalo, NY 14260-4150 E-mail: (...)[email protected] The four-letter written-English expression ‘word’, which plays important roles in applications and expositions of logic and philosophy of logic, is ambiguous (multisense, or polysemic) in that it has multiple normal meanings (senses, or definitions). Several of its meanings are vague (imprecise, or indefinite) in that they admit of borderline (marginal, or fringe) cases. This paper juxtaposes, distinguishes, and analyses several senses of ‘word’ focusing on a constellation of senses analogous to constellations of senses of other expression words such as ‘expression’, ‘symbol’, ‘character’, ‘letter’, ‘term’, ‘phrase’, ‘formula’, ‘sentence’, ‘derivation’, ‘paragraph’, and ‘discourse’. Consider, e.g., the word ‘letter’. In one sense there are exactly twenty-six letters (letter-types or ideal letters) in the English alphabet and there are exactly four letters in the word ‘letter’. In another sense, there are exactly six letters (letter-repetitions or letter-occurrences) in the word-type ‘letter’. In yet another sense, every new inscription (act of writing or printing) of ‘letter’ brings into existence six new letters (letter-tokens or ink-letters) and one new word that had not previously existed. The number of letter-occurrences (occurrences of a letter-type) in a given word-type is the same as the number of letter-tokens (tokens of a letter-type) in a single token of the given word. Many logicians fail to distinguish “token” from “occurrence” and a few actually confuse the two concepts. Epistemological and ontological problems concerning word-types, word-occurrences, and word-tokens are described in philosophically neutral terms. This paper presents a theoretical framework of concepts and principles concerning logicography, including use of English in logic. The framework is applied to analytical exposition and critical evaluation of classic passages in the works of philosophers and logicians including Boole, Peirce, Frege, Russell, Tarski, Church and Quine. This paper is intended as a philosophical sequel to Corcoran et al. “String Theory”, Journal of Symbolic Logic 39(1974) 625-637. https://www.academia.edu/s/cdfa6c854e?source=link -/- . (shrink)
John Corcoran and George Boger. Aristotelian logic and Euclidean geometry. Bulletin of Symbolic Logic. 20 (2014) 131. -/- By an Aristotelian logic we mean any system of direct and indirect deductions, chains of reasoning linking conclusions to premises—complete syllogisms, to use Aristotle’s phrase—1) intended to show that their conclusions follow logically from their respective premises and 2) resembling those in Aristotle’s Prior Analytics. Such systems presuppose existence of cases where it is not obvious that the conclusion follows from the premises: (...) there must be something deductions can show. Corcoran calls a proposition that follows from given premises a hidden consequence of those premises if it is not obvious that the proposition follows from those premises. By a Euclidean geometry we mean an extended discourse beginning with basic premises—axioms, postulates, definitions—1) treating a universe of geometrical figures and 2) resembling Euclid’s Elements. There were Euclidean geometries before Euclid (fl. 300 BCE), even before Aristotle (384–322 BCE). Bochenski, Lukasiewicz, Patzig and others never new this or if they did they found it inconvenient to mention. Euclid shows no awareness of Aristotle. It is obvious today—as it should have been obvious in Euclid’s time, if anyone knew both—that Aristotle’s logic was insufficient for Euclid’s geometry: few if any geometrical theorems can be deduced from Euclid’s premises by means of Aristotle’s deductions. Aristotle’s writings don’t say whether his logic is sufficient for Euclidean geometry. But, there is not even one fully-presented example. However, Aristotle’s writings do make clear that he endorsed the goal of a sufficient system. Nevertheless, incredible as this is today, many logicians after Aristotle claimed that Aristotelian logics are sufficient for Euclidean geometries. This paper reviews and analyses such claims by Mill, Boole, De Morgan, Russell, Poincaré, and others. It also examines early contrary statements by Hintikka, Mueller, Smith, and others. Special attention is given to the argumentations pro or con and especially to their logical, epistemic, and ontological presuppositions. What methodology is necessary or sufficient to show that a given logic is adequate or inadequate to serve as the underlying logi of a given science. (shrink)
This self-contained lecture examines uses and misuses of the adverb conversely with special attention to logic and logic-related fields. Sometimes adding conversely after a conjunction such as and signals redundantly that a converse of what preceded will follow. -/- (1) Tarski read Church and, conversely, Church read Tarski. -/- In such cases, conversely serves as an extrapropositional constituent of the sentence in which it occurs: deleting conversely doesn’t change the proposition expressed. Nevertheless it does introduce new implicatures: a speaker would (...) implicate belief that the second sentence expresses a converse of what the first expresses. Perhaps because such usage is familiar, the word conversely can be used as “sentential pronoun”—or prosentence—representing a sentence expressing a converse of what the preceding sentence expresses. -/- (2) Tarski read Church and conversely. -/- This would be understood as expressing the proposition expressed by (1). Prosentential usage introduces ambiguity when the initial proposition has more than one converse. Confusion can occur if the initial proposition has non-equivalent converses. -/- Every proposition that is the negation of a false proposition is true and conversely. -/- One sense implies that every proposition that is the negation of a true proposition is false, which is true of course. But another sense, probably more likely, implies that every proposition that is true is the negation of a false proposition, which is false: the proposition that one precedes two is not a negation and thus is not the negation of a false proposition. The above also applies to synonyms of conversely such as vice versa. Although prosentence has no synonym, extrapropositional constituents are sometimes called redundant rhetoric, filler, or expletive. Authors discussed include Aristotle, Boole, De Morgan, Peirce, Frege, Russell, Tarski, and Church. END OF PUBLISHED ABSTRACT -/- See also: Corcoran, John. 2015. Converses, inner and outer. 2015. Cambridge Dictionary of Philosophy, third edition, Robert Audi (editor). Cambridge: Cambridge UP. https://www.academia.edu/10396347/Corcoran_s_27_entries_in_the_1999_second_edition_Audi_s_Cambridge_ Dictionary_of_Philosophy . (shrink)
This 4-page review-essay—which is entirely reportorial and philosophically neutral as are my other contributions to MATHEMATICAL REVIEWS—starts with a short introduction to the philosophy known as mathematical structuralism. The history of structuralism traces back to George Boole (1815–1864). By reference to a recent article various feature of structuralism are discussed with special attention to ambiguity and other terminological issues. The review-essay includes a description of the recent article. The article’s 4-sentence summary is quoted in full and then analyzed. The (...) point of the quotation is to make clear how murky, incompetent, and badly written the paper is. There is no way to determine from the article whether the editor or referees suggests improvements. (shrink)
Transformed RAVAL NOTATION solves Syllogism problems very quickly and accurately. This method solves any categorical syllogism problem with same ease and is as simple as ABC… In Transformed RAVAL NOTATION, each premise and conclusion is written in abbreviated form, and then conclusion is reached simply by connecting abbreviated premises.NOTATION: Statements (both premises and conclusions) are represented as follows: Statement Notation a) All S are P, SS-P b) Some S are P, S-P c) Some S are not P, S / PP (...) d) No S is P, SS / PP (- implies are and / implies are not) All is represented by double letters; Some is represented by single letter. No S is P implies No P is S so its notation contains double letters on both sides. -/- RULES: (1) Conclusions are reached by connecting Notations. Two notations can be linked only through common linking terms. When the common linking term multiplies (becomes double from single), divides (becomes single from double) or remains double then conclusion is arrived between terminal terms. (Aristotle’s rule: the middle term must be distributed at least once) -/- (2)If both statements linked are having – signs, resulting conclusion carries – sign (Aristotle’s rule: two affirmatives imply an affirmative) -/- (3) Whenever statements having – and / signs are linked, resulting conclusion carries / sign. (Aristotle’s rule: if one premise is negative, then the conclusion must be negative) -/- (4)Statement having / sign cannot be linked with another statement having / sign to derive any conclusion. (Aristotle’s rule: Two negative premises imply no valid conclusion) Syllogism conclusion by Tranformed Raval’s Notation is in accordance with Aristotle’s rules for the same. It is visually very transparent and conclusions can be deduced at a glance, moreover it solves syllogism problems with any number of statements and it is quickest of all available methods. By new Raval method for solving categorical syllogism, solving categorical syllogism is as simple as pronouncing ABC and it is just continuance of Aristotle work on categorical syllogism. It’s believed that Boole's system could handle multi-term propositions and arguments, whereas Aristotle could handle only two-termed subject-predicate propositions and arguments. For example, it’s claimed that Aristotle's system could not deduce: "No quadrangle that is a square is a rectangle that is a rhombus" from "No square that is a quadrangle is a rhombus that is a rectangle" or from "No rhombus that is a rectangle is a square that is a quadrangle". Above conclusion is reached at a glance with Raval's Notations (Symbolic Aristotle’s syllogism rules). Premise: "No (square that is a quadrangle) is a (rhombus that is a rectangle)" Raval's Representations: S – Q, S – Q / Rh – Re, Rh – Re Premise: "No (rhombus that is a rectangle) is a (square that is a quadrangle)". Raval's Representations: Rh – Re, Rh – Re / S – Q, S - Q Conclusion: "No (quadrangle that is a square) is a (rectangle that is a rhombus)" Raval’s Representations: Q – S, Q – S / Re – Rh, Re – Rh As “ Q – S” follows from “S – Q” and “Re – Rh” from “Rh – Re”. Given conclusion follows from the given premises. Author disregards existential fallacy, as subset of a null set has to be a null set. -/- . (shrink)
Corcoran, J. 2007. Psychologism. American Philosophy: an Encyclopedia. Eds. John Lachs and Robert Talisse. New York: Routledge. Pages 628-9. -/- Psychologism with respect to a given branch of knowledge, in the broadest neutral sense, is the view that the branch is ultimately reducible to, or at least is essentially dependent on, psychology. The parallel with logicism is incomplete. Logicism with respect to a given branch of knowledge is the view that the branch is ultimately reducible to logic. Every branch of (...) knowledge depends on logic. Psychologism is found in several fields including history, political science, economics, ethics, epistemology, linguistics, aesthetics, mathematics, and logic. Logicism is found mainly in branches of mathematics: number theory, analysis, and, more rarely, geometry. Although the ambiguous term ‘psychologism’ has senses with entirely descriptive connotations, it is widely used in senses that are derogatory. No writers with any appreciation of this point will label their own views as psychologistic. It is usually used pejoratively by people who disapprove of psychologism. The term ‘scientism’ is similar in that it too has both pejorative and descriptive senses but its descriptive senses are rarely used any more. It is almost a law of linguistics that the negative connotations tend to drive out the neutral and the positive. Dictionaries sometimes mark both words with a usage label such as “Usually disparaging”. In this article, the word is used descriptively mainly because there are many psychologistic views that are perfectly respectable and even endorsed by people who would be offended to have their views labeled psychologism. A person who subscribes to logicism is called a logicist, but there is no standard word for a person who subscribes to psychologism. ‘Psychologist’, which is not suitable, occurs in this sense. ‘Psychologician’, with stress on the second syllable as in ‘psychologist’, has been proposed. In the last century, some of the most prominent forms of psychologism pertained to logic; the rest of this article treats only such forms. Psychologism in logic is very “natural”. After all, logic studies reasoning, which is done by the mind, whose nature and functioning is studied in psychology—using the word ‘psychology’ in its broadest etymological sense. (shrink)
Create an account to enable off-campus access through your institution's proxy server.
Monitor this page
Be alerted of all new items appearing on this page. Choose how you want to monitor it:
Email
RSS feed
About us
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.