Results for 'Ethics of Artificial Intelligence, Machine Learning, Mental Health, Participatory Science'

970 found
Order:
  1. Persons or datapoints?: Ethics, artificial intelligence, and the participatory turn in mental health research.Joshua August Skorburg, Kieran O'Doherty & Phoebe Friesen - 2024 - American Psychologist 79 (1):137-149.
    This article identifies and examines a tension in mental health researchers’ growing enthusiasm for the use of computational tools powered by advances in artificial intelligence and machine learning (AI/ML). Although there is increasing recognition of the value of participatory methods in science generally and in mental health research specifically, many AI/ML approaches, fueled by an ever-growing number of sensors collecting multimodal data, risk further distancing participants from research processes and rendering them as mere vectors (...)
    Download  
     
    Export citation  
     
    Bookmark  
  2. (1 other version)AI Extenders and the Ethics of Mental Health.Karina Vold & Jose Hernandez-Orallo - forthcoming - In Marcello Ienca & Fabrice Jotterand (eds.), Ethics of Artificial Intelligence in Brain and Mental Health.
    The extended mind thesis maintains that the functional contributions of tools and artefacts can become so essential for our cognition that they can be constitutive parts of our minds. In other words, our tools can be on a par with our brains: our minds and cognitive processes can literally ‘extend’ into the tools. Several extended mind theorists have argued that this ‘extended’ view of the mind offers unique insights into how we understand, assess, and treat certain cognitive conditions. In this (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  3. The emergence of “truth machines”?: Artificial intelligence approaches to lie detection.Jo Ann Oravec - 2022 - Ethics and Information Technology 24 (1):1-10.
    This article analyzes emerging artificial intelligence (AI)-enhanced lie detection systems from ethical and human resource (HR) management perspectives. I show how these AI enhancements transform lie detection, followed with analyses as to how the changes can lead to moral problems. Specifically, I examine how these applications of AI introduce human rights issues of fairness, mental privacy, and bias and outline the implications of these changes for HR management. The changes that AI is making to lie detection are altering (...)
    Download  
     
    Export citation  
     
    Bookmark  
  4. Digital psychiatry: ethical risks and opportunities for public health and well-being.Christopher Burr, Jessica Morley, Mariarosaria Taddeo & Luciano Floridi - 2020 - IEEE Transactions on Technology and Society 1 (1):21–33.
    Common mental health disorders are rising globally, creating a strain on public healthcare systems. This has led to a renewed interest in the role that digital technologies may have for improving mental health outcomes. One result of this interest is the development and use of artificial intelligence for assessing, diagnosing, and treating mental health issues, which we refer to as ‘digital psychiatry’. This article focuses on the increasing use of digital psychiatry outside of clinical settings, in (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  5. Philosophy and theory of artificial intelligence 2017.Vincent C. Müller (ed.) - 2017 - Berlin: Springer.
    This book reports on the results of the third edition of the premier conference in the field of philosophy of artificial intelligence, PT-AI 2017, held on November 4 - 5, 2017 at the University of Leeds, UK. It covers: advanced knowledge on key AI concepts, including complexity, computation, creativity, embodiment, representation and superintelligence; cutting-edge ethical issues, such as the AI impact on human dignity and society, responsibilities and rights of machines, as well as AI threats to humanity and AI (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  6. Detection and Mathematical Modeling of Anxiety Disorder Based on Socioeconomic Factors Using Machine Learning Techniques.Razan Ibrahim Alsuwailem & Surbhi Bhatia - 2022 - Human-Centric Computing and Information Sciences 12:52.
    The mental risk poses a high threat to the individuals, especially overseas demographic, including expatriates in comparison to the general Arab demographic. Since Arab countries are renowned for their multicultural environment with half of the population of students and faculties being international, this paper focuses on a comprehensive analysis of mental health problems such as depression, stress, anxiety, isolation, and other unfortunate conditions. The dataset is developed from a web-based survey. The detailed exploratory data analysis is conducted on (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7. The Use and Misuse of Counterfactuals in Ethical Machine Learning.Atoosa Kasirzadeh & Andrew Smart - 2021 - In Atoosa Kasirzadeh & Andrew Smart (eds.), ACM Conference on Fairness, Accountability, and Transparency (FAccT 21).
    The use of counterfactuals for considerations of algorithmic fairness and explainability is gaining prominence within the machine learning community and industry. This paper argues for more caution with the use of counterfactuals when the facts to be considered are social categories such as race or gender. We review a broad body of papers from philosophy and social sciences on social ontology and the semantics of counterfactuals, and we conclude that the counterfactual approach in machine learning fairness and social (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  8. Ethics of Artificial Intelligence.Vincent C. Müller - 2021 - In Anthony Elliott (ed.), The Routledge Social Science Handbook of Ai. Routledge. pp. 122-137.
    Artificial intelligence (AI) is a digital technology that will be of major importance for the development of humanity in the near future. AI has raised fundamental questions about what we should do with such systems, what the systems themselves should do, what risks they involve and how we can control these. - After the background to the field (1), this article introduces the main debates (2), first on ethical issues that arise with AI systems as objects, i.e. tools made (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  9.  38
    همگرایی حریم خصوصی و شفافیت، محدودیت‌های طراحی هوش مصنوعی (Convergence of privacy and transparency, limitations of artificial intelligence design).Mohammad Ali Ashouri Kisomi - 2024 - Wisdom and Philosophy 20 (78):45-73.
    هدف از این پژوهش نقد به رویکردی است که راهکار برطرف شدن چالش‌هایِ اخلاقیِ هوشِ مصنوعیِ را محدود به طراحی و اصلاحات فنی می‌داند. برخی پژوهش‌گران چالش‌های اخلاقی در هوش مصنوعی را همگرا تلقی می‌کنند و معتقدند این چالش‌ها همانطور که با ظهور سیستم هوش مصنوعی پدید آمدند، با پیشرفت و اصلاحات فنی آن مرتفع خواهند شد. در مباحثِ اخلاقِ هوش مصنوعی، موضوعاتی همچون حفاظت از حریم خصوصی و شفافیت در بیشتر پژوهش‏ها مورد توجه قرار گرفته است. در پژوهش حاضر (...)
    Download  
     
    Export citation  
     
    Bookmark  
  10. The Rhetoric and Reality of Anthropomorphism in Artificial Intelligence.David Watson - 2019 - Minds and Machines 29 (3):417-440.
    Artificial intelligence has historically been conceptualized in anthropomorphic terms. Some algorithms deploy biomimetic designs in a deliberate attempt to effect a sort of digital isomorphism of the human brain. Others leverage more general learning strategies that happen to coincide with popular theories of cognitive science and social epistemology. In this paper, I challenge the anthropomorphic credentials of the neural network algorithm, whose similarities to human cognition I argue are vastly overstated and narrowly construed. I submit that three alternative (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  11. Diagnosing Diabetic Retinopathy With Artificial Intelligence: What Information Should Be Included to Ensure Ethical Informed Consent?Frank Ursin, Cristian Timmermann, Marcin Orzechowski & Florian Steger - 2021 - Frontiers in Medicine 8:695217.
    Purpose: The method of diagnosing diabetic retinopathy (DR) through artificial intelligence (AI)-based systems has been commercially available since 2018. This introduces new ethical challenges with regard to obtaining informed consent from patients. The purpose of this work is to develop a checklist of items to be disclosed when diagnosing DR with AI systems in a primary care setting. -/- Methods: Two systematic literature searches were conducted in PubMed and Web of Science databases: a narrow search focusing on DR (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  12. Levels of explicability for medical artificial intelligence: What do we normatively need and what can we technically reach?Frank Ursin, Felix Lindner, Timo Ropinski, Sabine Salloch & Cristian Timmermann - 2023 - Ethik in der Medizin 35 (2):173-199.
    Definition of the problem The umbrella term “explicability” refers to the reduction of opacity of artificial intelligence (AI) systems. These efforts are challenging for medical AI applications because higher accuracy often comes at the cost of increased opacity. This entails ethical tensions because physicians and patients desire to trace how results are produced without compromising the performance of AI systems. The centrality of explicability within the informed consent process for medical AI systems compels an ethical reflection on the trade-offs. (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  13. The Use of Machine Learning Methods for Image Classification in Medical Data.Destiny Agboro - forthcoming - International Journal of Ethics.
    Integrating medical imaging with computing technologies, such as Artificial Intelligence (AI) and its subsets: Machine learning (ML) and Deep Learning (DL) has advanced into an essential facet of present-day medicine, signaling a pivotal role in diagnostic decision-making and treatment plans (Huang et al., 2023). The significance of medical imaging is escalated by its sustained growth within the realm of modern healthcare (Varoquaux and Cheplygina, 2022). Nevertheless, the ever-increasing volume of medical images compared to the availability of imaging experts. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  14. The debate on the ethics of AI in health care: a reconstruction and critical review.Jessica Morley, Caio C. V. Machado, Christopher Burr, Josh Cowls, Indra Joshi, Mariarosaria Taddeo & Luciano Floridi - manuscript
    Healthcare systems across the globe are struggling with increasing costs and worsening outcomes. This presents those responsible for overseeing healthcare with a challenge. Increasingly, policymakers, politicians, clinical entrepreneurs and computer and data scientists argue that a key part of the solution will be ‘Artificial Intelligence’ (AI) – particularly Machine Learning (ML). This argument stems not from the belief that all healthcare needs will soon be taken care of by “robot doctors.” Instead, it is an argument that rests on (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  15. An Introduction to Artificial Psychology Application Fuzzy Set Theory and Deep Machine Learning in Psychological Research using R.Farahani Hojjatollah - 2023 - Springer Cham. Edited by Hojjatollah Farahani, Marija Blagojević, Parviz Azadfallah, Peter Watson, Forough Esrafilian & Sara Saljoughi.
    Artificial Psychology (AP) is a highly multidisciplinary field of study in psychology. AP tries to solve problems which occur when psychologists do research and need a robust analysis method. Conventional statistical approaches have deep rooted limitations. These approaches are excellent on paper but often fail to model the real world. Mind researchers have been trying to overcome this by simplifying the models being studied. This stance has not received much practical attention recently. Promoting and improving artificial intelligence helps (...)
    Download  
     
    Export citation  
     
    Bookmark  
  16. Investigating some ethical issues of artificial intelligence in art (طرح و بررسی برخی از مسائلِ اخلاقیِ هوش مصنوعی در هنر).Ashouri Kisomi Mohammad Ali - 2024 - Metaphysics 16 (1):93-110.
    هدف از پژوهش حاضر، بررسی مسائل اخلاق هوش مصنوعی در حوزۀ هنر است. به‌این‌منظور، با تکیه بر فلسفه و اخلاق هوش مصنوعی، موضوعات اخلاقی که می‌تواند در حوزۀ هنر تأثیرگذار باشد، بررسی شده است. باتوجه‌به رشد و توسعۀ استفاده از هوش مصنوعی و ورود آن به حوزۀ هنر، نیاز است تا مباحث اخلاقی دقیق‌تر مورد توجه پژوهشگران هنر و فلسفه قرار گیرد. برای دست‌یابی به هدف پژوهش، با استفاده از روش تحلیلی‌ـ‌توصیفی، مفاهیمی همچون هوش مصنوعی، برخی تکنیک‌های آن و موضوعات (...)
    Download  
     
    Export citation  
     
    Bookmark  
  17. Explicability of artificial intelligence in radiology: Is a fifth bioethical principle conceptually necessary?Frank Ursin, Cristian Timmermann & Florian Steger - 2022 - Bioethics 36 (2):143-153.
    Recent years have witnessed intensive efforts to specify which requirements ethical artificial intelligence (AI) must meet. General guidelines for ethical AI consider a varying number of principles important. A frequent novel element in these guidelines, that we have bundled together under the term explicability, aims to reduce the black-box character of machine learning algorithms. The centrality of this element invites reflection on the conceptual relation between explicability and the four bioethical principles. This is important because the application of (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  18. The effective and ethical development of artificial intelligence: An opportunity to improve our wellbeing.James Maclaurin, Toby Walsh, Neil Levy, Genevieve Bell, Fiona Wood, Anthony Elliott & Iven Mareels - 2019 - Melbourne VIC, Australia: Australian Council of Learned Academies.
    This project has been supported by the Australian Government through the Australian Research Council (project number CS170100008); the Department of Industry, Innovation and Science; and the Department of Prime Minister and Cabinet. ACOLA collaborates with the Australian Academy of Health and Medical Sciences and the New Zealand Royal Society Te Apārangi to deliver the interdisciplinary Horizon Scanning reports to government. The aims of the project which produced this report are: 1. Examine the transformative role that artificial intelligence may (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  19. Mind and Machine: A Philosophical Examination of Matt Carter’s “Minds & Computers: An Introduction to the Philosophy of Artificial Intelligence”.R. L. Tripathi - 2024 - Open Access Journal of Data Science and Artificial Intelligence 2 (1):3.
    In his book “Minds and Computers: An Introduction to the Philosophy of Artificial Intelligence”, Matt Carter presents a comprehensive exploration of the philosophical questions surrounding artificial intelligence (AI). Carter argues that the development of AI is not merely a technological challenge but fundamentally a philosophical one. He delves into key issues like the nature of mental states, the limits of introspection, the implications of memory decay, and the functionalist framework that allows for the possibility of AI. Carter (...)
    Download  
     
    Export citation  
     
    Bookmark  
  20. Disease Identification using Machine Learning and NLP.S. Akila - 2022 - Journal of Science Technology and Research (JSTAR) 3 (1):78-92.
    Artificial Intelligence (AI) technologies are now widely used in a variety of fields to aid with knowledge acquisition and decision-making. Health information systems, in particular, can gain the most from AI advantages. Recently, symptoms-based illness prediction research and manufacturing have grown in popularity in the healthcare business. Several scholars and organisations have expressed an interest in applying contemporary computational tools to analyse and create novel approaches for rapidly and accurately predicting illnesses. In this study, we present a paradigm for (...)
    Download  
     
    Export citation  
     
    Bookmark  
  21. Artificial Intelligence: Machine Translation Accuracy in Translating French-Indonesian Culinary Texts.Hasyim Muhammad - 2021 - International Journal of Advanced Computer Science and Applications 12 (3):186-191.
    The use of machine translation as artificial intelligence (AI) keeps increasing and the world’s most popular a translation tool is Google Translate (GT). This tool is not merely used for the benefits of learning and obtaining information from foreign languages through translation but has also been used as a medium of interaction and communication in hospitals, airports and shopping centres. This paper aims to explore machine translation accuracy in translating French-Indonesian culinary texts (recipes). The samples of culinary (...)
    Download  
     
    Export citation  
     
    Bookmark  
  22. (1 other version)Artificial virtuous agents: from theory to machine implementation.Jakob Stenseke - 2021 - AI and Society:1-20.
    Virtue ethics has many times been suggested as a promising recipe for the construction of artificial moral agents due to its emphasis on moral character and learning. However, given the complex nature of the theory, hardly any work has de facto attempted to implement the core tenets of virtue ethics in moral machines. The main goal of this paper is to demonstrate how virtue ethics can be taken all the way from theory to machine implementation. (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  23.  67
    A global taxonomy of interpretable AI: unifying the terminology for the technical and social sciences.Lode Lauwaert - 2023 - Artificial Intelligence Review 56:3473–3504.
    Since its emergence in the 1960s, Artifcial Intelligence (AI) has grown to conquer many technology products and their felds of application. Machine learning, as a major part of the current AI solutions, can learn from the data and through experience to reach high performance on various tasks. This growing success of AI algorithms has led to a need for interpretability to understand opaque models such as deep neural networks. Various requirements have been raised from diferent domains, together with numerous (...)
    Download  
     
    Export citation  
     
    Bookmark  
  24. Ethical Issues in Text Mining for Mental Health.Joshua Skorburg & Phoebe Friesen - forthcoming - In Morteza Dehghani & Ryan Boyd (eds.), The Atlas of Language Analysis in Psychology. Guilford Press.
    A recent systematic review of Machine Learning (ML) approaches to health data, containing over 100 studies, found that the most investigated problem was mental health (Yin et al., 2019). Relatedly, recent estimates suggest that between 165,000 and 325,000 health and wellness apps are now commercially available, with over 10,000 of those designed specifically for mental health (Carlo et al., 2019). In light of these trends, the present chapter has three aims: (1) provide an informative overview of some (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  25. Artificial virtuous agents in a multi-agent tragedy of the commons.Jakob Stenseke - 2022 - AI and Society:1-18.
    Although virtue ethics has repeatedly been proposed as a suitable framework for the development of artificial moral agents, it has been proven difficult to approach from a computational perspective. In this work, we present the first technical implementation of artificial virtuous agents in moral simulations. First, we review previous conceptual and technical work in artificial virtue ethics and describe a functionalistic path to AVAs based on dispositional virtues, bottom-up learning, and top-down eudaimonic reward. We then (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  26. Detection of Brain Tumor Using Deep Learning.Hamza Rafiq Almadhoun & Samy S. Abu-Naser - 2022 - International Journal of Academic Engineering Research (IJAER) 6 (3):29-47.
    Artificial intelligence (AI) is an area of computer science that emphasizes the creation of intelligent machines or software that work and reacts like humans, some of the computer activities with artificial intelligence are designed to include speech, recognition, learning, planning and problem solving. Deep learning is a collection of algorithms used in machine learning, it is part of a broad family of methods used for machine learning that are based on learning representations of data. Deep (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  27. “Just” accuracy? Procedural fairness demands explainability in AI‑based medical resource allocation.Jon Rueda, Janet Delgado Rodríguez, Iris Parra Jounou, Joaquín Hortal-Carmona, Txetxu Ausín & David Rodríguez-Arias - 2022 - AI and Society:1-12.
    The increasing application of artificial intelligence (AI) to healthcare raises both hope and ethical concerns. Some advanced machine learning methods provide accurate clinical predictions at the expense of a significant lack of explainability. Alex John London has defended that accuracy is a more important value than explainability in AI medicine. In this article, we locate the trade-off between accurate performance and explainable algorithms in the context of distributive justice. We acknowledge that accuracy is cardinal from outcome-oriented justice because (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  28. ARTIFICIAL INTELLIGENT BASED COMPUTATIONAL MODEL FOR DETECTING CHRONIC-KIDNEY DISEASE.K. Jothimani & S. Thangamani - 2022 - Journal of Science Technology and Research (JSTAR) 3 (1):15-27.
    Chronic kidney disease (CKD) is a global health problem with high morbidity and mortality rate, and it induces other diseases. There are no obvious incidental effects during the starting periods of CKD, patients routinely disregard to see the sickness. Early disclosure of CKD enables patients to seek helpful treatment to improve the development of this disease. AI models can effectively assist clinical with achieving this objective on account of their fast and exact affirmation execution. In this appraisal, proposed a Logistic (...)
    Download  
     
    Export citation  
     
    Bookmark  
  29. Invisible Influence: Artificial Intelligence and the Ethics of Adaptive Choice Architectures.Daniel Susser - 2019 - Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society 1.
    For several years, scholars have (for good reason) been largely preoccupied with worries about the use of artificial intelligence and machine learning (AI/ML) tools to make decisions about us. Only recently has significant attention turned to a potentially more alarming problem: the use of AI/ML to influence our decision-making. The contexts in which we make decisions—what behavioral economists call our choice architectures—are increasingly technologically-laden. Which is to say: algorithms increasingly determine, in a wide variety of contexts, both the (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  30. Ethics of Artificial Intelligence and Robotics.Vincent C. Müller - 2020 - In Edward N. Zalta (ed.), Stanford Encylopedia of Philosophy. pp. 1-70.
    Artificial intelligence (AI) and robotics are digital technologies that will have significant impact on the development of humanity in the near future. They have raised fundamental questions about what we should do with these systems, what the systems themselves should do, what risks they involve, and how we can control these. - After the Introduction to the field (§1), the main themes (§2) of this article are: Ethical issues that arise with AI systems as objects, i.e., tools made and (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  31. NHS AI Lab: why we need to be ethically mindful about AI for healthcare.Jessica Morley & Luciano Floridi - unknown
    On 8th August 2019, Secretary of State for Health and Social Care, Matt Hancock, announced the creation of a £250 million NHS AI Lab. This significant investment is justified on the belief that transforming the UK’s National Health Service (NHS) into a more informationally mature and heterogeneous organisation, reliant on data-based and algorithmically-driven interactions, will offer significant benefit to patients, clinicians, and the overall system. These opportunities are realistic and should not be wasted. However, they may be missed (one may (...)
    Download  
     
    Export citation  
     
    Bookmark  
  32. Diachronic and synchronic variation in the performance of adaptive machine learning systems: the ethical challenges.Joshua Hatherley & Robert Sparrow - 2023 - Journal of the American Medical Informatics Association 30 (2):361-366.
    Objectives: Machine learning (ML) has the potential to facilitate “continual learning” in medicine, in which an ML system continues to evolve in response to exposure to new data over time, even after being deployed in a clinical setting. In this article, we provide a tutorial on the range of ethical issues raised by the use of such “adaptive” ML systems in medicine that have, thus far, been neglected in the literature. -/- Target audience: The target audiences for this tutorial (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  33.  68
    Privacy and Machine Learning- Based Artificial Intelligence: Philosophical, Legal, and Technical Investigations.Haleh Asgarinia - 2024 - Dissertation, Department of Philisophy, University of Twente
    This dissertation consists of five chapters, each written as independent research papers that are unified by an overarching concern regarding information privacy and machine learning-based artificial intelligence (AI). This dissertation addresses the issues concerning privacy and AI by responding to the following three main research questions (RQs): RQ1. ‘How does an AI system affect privacy?’; RQ2. ‘How effectively does the General Data Protection Regulation (GDPR) assess and address privacy issues concerning both individuals and groups?’; and RQ3. ‘How can (...)
    Download  
     
    Export citation  
     
    Bookmark  
  34. Shared decision-making and maternity care in the deep learning age: Acknowledging and overcoming inherited defeaters.Keith Begley, Cecily Begley & Valerie Smith - 2021 - Journal of Evaluation in Clinical Practice 27 (3):497–503.
    In recent years there has been an explosion of interest in Artificial Intelligence (AI) both in health care and academic philosophy. This has been due mainly to the rise of effective machine learning and deep learning algorithms, together with increases in data collection and processing power, which have made rapid progress in many areas. However, use of this technology has brought with it philosophical issues and practical problems, in particular, epistemic and ethical. In this paper the authors, with (...)
    Download  
     
    Export citation  
     
    Bookmark  
  35. Artificial Intelligence in Agriculture: Enhancing Productivity and Sustainability.Mohammed A. Hamed, Mohammed F. El-Habib, Raed Z. Sababa, Mones M. Al-Hanjor, Basem S. Abunasser & Samy S. Abu-Naser - 2024 - International Journal of Engineering and Information Systems (IJEAIS) 8 (8):1-8.
    Abstract: Artificial Intelligence (AI) is revolutionizing the agricultural sector by enhancing productivity and sustainability. This paper explores the transformative impact of AI technologies on agriculture, focusing on their applications in precision farming, predictive analytics, and automation. AI-driven tools enable more efficient management of crops and resources, leading to improved yields and reduced environmental impact. The paper examines key AI technologies, including machine learning algorithms for crop monitoring, robotics for automated planting and harvesting, and data analytics for optimizing resource (...)
    Download  
     
    Export citation  
     
    Bookmark  
  36.  49
    (1 other version)Institutional Trust in Medicine in the Age of Artificial Intelligence.Michał Klincewicz - 2023 - In David Collins, Iris Vidmar Jovanović, Mark Alfano & Hale Demir-Doğuoğlu (eds.), The Moral Psychology of Trust. Lexington Books.
    It is easier to talk frankly to a person whom one trusts. It is also easier to agree with a scientist whom one trusts. Even though in both cases the psychological state that underlies the behavior is called ‘trust’, it is controversial whether it is a token of the same psychological type. Trust can serve an affective, epistemic, or other social function, and comes to interact with other psychological states in a variety of ways. The way that the functional role (...)
    Download  
     
    Export citation  
     
    Bookmark  
  37.  78
    Harnessing Artificial Intelligence to Enhance Medical Image Analysis.Malak S. Hamad, Mohammed H. Aldeeb, Mohammed M. Almzainy, Shahd J. Albadrasawi, Musleh M. Musleh, Bassem S. Abu-Nasser & Samy S. Abu-Naser - 2024 - International Journal of Academic Health and Medical Research (IJAHMR) 8 (9):1-7.
    Abstract: The integration of Artificial Intelligence (AI) into medical imaging marks a transformative advancement in healthcare, significantly enhancing diagnostic accuracy, efficiency, and patient outcomes. This paper delves into the application of AI technologies in medical image analysis, with a particular focus on techniques such as convolutional neural networks (CNNs) and deep learning models. We examine how these technologies are employed across various imaging modalities, including X-rays, MRIs, and CT scans, to improve disease detection, image segmentation, and diagnostic support. Furthermore, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  38. Understanding Biology in the Age of Artificial Intelligence.Adham El Shazly, Elsa Lawerence, Srijit Seal, Chaitanya Joshi, Matthew Greening, Pietro Lio, Shantung Singh, Andreas Bender & Pietro Sormanni - manuscript
    Modern life sciences research is increasingly relying on artificial intelligence (AI) approaches to model biological systems, primarily centered around the use of machine learning (ML) models. Although ML is undeniably useful for identifying patterns in large, complex data sets, its widespread application in biological sciences represents a significant deviation from traditional methods of scientific inquiry. As such, the interplay between these models and scientific understanding in biology is a topic with important implications for the future of scientific research, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  39. From what to how: an initial review of publicly available AI ethics tools, methods and research to translate principles into practices.Jessica Morley, Luciano Floridi, Libby Kinsey & Anat Elhalal - 2020 - Science and Engineering Ethics 26 (4):2141-2168.
    The debate about the ethical implications of Artificial Intelligence dates from the 1960s :741–742, 1960; Wiener in Cybernetics: or control and communication in the animal and the machine, MIT Press, New York, 1961). However, in recent years symbolic AI has been complemented and sometimes replaced by Neural Networks and Machine Learning techniques. This has vastly increased its potential utility and impact on society, with the consequence that the ethical debate has gone mainstream. Such a debate has primarily (...)
    Download  
     
    Export citation  
     
    Bookmark   86 citations  
  40. Natural morphological computation as foundation of learning to learn in humans, other living organisms, and intelligent machines.Gordana Dodig-Crnkovic - 2020 - Philosophies 5 (3):17-32.
    The emerging contemporary natural philosophy provides a common ground for the integrative view of the natural, the artificial, and the human-social knowledge and practices. Learning process is central for acquiring, maintaining, and managing knowledge, both theoretical and practical. This paper explores the relationships between the present advances in understanding of learning in the sciences of the artificial, natural sciences, and philosophy. The question is, what at this stage of the development the inspiration from nature, specifically its computational models (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  41. Elements of Cognitive Sciences and Artificial Intelligence in Gayatri Mantra.Varanasi Ramabrahmam - 2006 - In Ramabrahmam Varanasi (ed.), Proceedings of National seminar on Bharatiya Heritage in Engineering and Technology, May 11-13, 2006, at Department of Metallurgy and Inorganic Chemistry, I.I.Sc., Bangalore, India. pp. 249-254.
    The syllables and series of sounds composing Gayatri Mantra, and the sense and meaning attached to them are analyzed using Upanishadic Wisdom, Advaitha Philosophy and Sabdabrahma Siddhanta. The physical structure of mind as revealed by this analysis is presented. An insight of various phases of mind, their rise and set, their significance and implications to cognitive sciences and natural language comprehension branch of artificial intelligence are discussed. The possible applications of such an insight in the fields of cognitive sciences, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  42. Interdisciplinary Confusion and Resolution in the Context of Moral Machines.Jakob Stenseke - 2022 - Science and Engineering Ethics 28 (3):1-17.
    Recent advancements in artificial intelligence have fueled widespread academic discourse on the ethics of AI within and across a diverse set of disciplines. One notable subfield of AI ethics is machine ethics, which seeks to implement ethical considerations into AI systems. However, since different research efforts within machine ethics have discipline-specific concepts, practices, and goals, the resulting body of work is pestered with conflict and confusion as opposed to fruitful synergies. The aim of (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  43. Learning to Discriminate: The Perfect Proxy Problem in Artificially Intelligent Criminal Sentencing.Benjamin Davies & Thomas Douglas - 2022 - In Jesper Ryberg & Julian V. Roberts (eds.), Sentencing and Artificial Intelligence. Oxford: OUP.
    It is often thought that traditional recidivism prediction tools used in criminal sentencing, though biased in many ways, can straightforwardly avoid one particularly pernicious type of bias: direct racial discrimination. They can avoid this by excluding race from the list of variables employed to predict recidivism. A similar approach could be taken to the design of newer, machine learning-based (ML) tools for predicting recidivism: information about race could be withheld from the ML tool during its training phase, ensuring that (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  44. The purpose of qualia: What if human thinking is not (only) information processing?Martin Korth - manuscript
    Despite recent breakthroughs in the field of artificial intelligence (AI) – or more specifically machine learning (ML) algorithms for object recognition and natural language processing – it seems to be the majority view that current AI approaches are still no real match for natural intelligence (NI). More importantly, philosophers have collected a long catalogue of features which imply that NI works differently from current AI not only in a gradual sense, but in a more substantial way: NI is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  45. Diagnosis of Pneumonia Using Deep Learning.Alaa M. A. Barhoom & Samy S. Abu-Naser - 2022 - International Journal of Academic Engineering Research (IJAER) 6 (2):48-68.
    Artificial intelligence (AI) is an area of computer science that emphasizes the creation of intelligent machines or software that work and react like humans. Some of the activities computers with artificial intelligence are designed for include, Speech, recognition, Learning, Planning and Problem solving. Deep learning is a collection of algorithms used in machine learning, It is part of a broad family of methods used for machine learning that are based on learning representations of data. Deep (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  46. Guilty Artificial Minds: Folk Attributions of Mens Rea and Culpability to Artificially Intelligent Agents.Michael T. Stuart & Markus Https://Orcidorg Kneer - 2021 - Proceedings of the ACM on Human-Computer Interaction 5 (CSCW2).
    While philosophers hold that it is patently absurd to blame robots or hold them morally responsible [1], a series of recent empirical studies suggest that people do ascribe blame to AI systems and robots in certain contexts [2]. This is disconcerting: Blame might be shifted from the owners, users or designers of AI systems to the systems themselves, leading to the diminished accountability of the responsible human agents [3]. In this paper, we explore one of the potential underlying reasons for (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  47. Machine Medical Ethics.Simon Peter van Rysewyk & Matthijs Pontier (eds.) - 2014 - Springer.
    In medical settings, machines are in close proximity with human beings: with patients who are in vulnerable states of health, who have disabilities of various kinds, with the very young or very old, and with medical professionals. Machines in these contexts are undertaking important medical tasks that require emotional sensitivity, knowledge of medical codes, human dignity, and privacy. -/- As machine technology advances, ethical concerns become more urgent: should medical machines be programmed to follow a code of medical (...)? What theory or theories should constrain medical machine conduct? What design features are required? Should machines share responsibility with humans for the ethical consequences of medical actions? How ought clinical relationships involving machines to be modeled? Is a capacity for empathy and emotion detection necessary? What about consciousness? -/- The essays in this collection by researchers from both humanities and science describe various theoretical and experimental approaches to adding medical ethics to a machine, what design features are necessary in order to achieve this, philosophical and practical questions concerning justice, rights, decision-making and responsibility, and accurately modeling essential physician-machine-patient relationships. -/- This collection is the first book to address these 21st-century concerns. (shrink)
    Download  
     
    Export citation  
     
    Bookmark  
  48. Ethical Implications of Alzheimer’s Disease Prediction in Asymptomatic Individuals Through Artificial Intelligence.Frank Ursin, Cristian Timmermann & Florian Steger - 2021 - Diagnostics 11 (3):440.
    Biomarker-based predictive tests for subjectively asymptomatic Alzheimer’s disease (AD) are utilized in research today. Novel applications of artificial intelligence (AI) promise to predict the onset of AD several years in advance without determining biomarker thresholds. Until now, little attention has been paid to the new ethical challenges that AI brings to the early diagnosis in asymptomatic individuals, beyond contributing to research purposes, when we still lack adequate treatment. The aim of this paper is to explore the ethical arguments put (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  49. (1 other version)Ethical foresight analysis: what it is and why it is needed?Luciano Floridi & Andrew Strait - 2020 - Minds and Machines 30 (1):77-97.
    An increasing number of technology firms are implementing processes to identify and evaluate the ethical risks of their systems and products. A key part of these review processes is to foresee potential impacts of these technologies on different groups of users. In this article, we use the expression Ethical Foresight Analysis to refer to a variety of analytical strategies for anticipating or predicting the ethical issues that new technological artefacts, services, and applications may raise. This article examines several existing EFA (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  50. Is There an App for That?: Ethical Issues in the Digital Mental Health Response to COVID-19.Joshua August Skorburg & Josephine Yam - 2022 - American Journal of Bioethics Neuroscience 13 (3):177-190.
    As COVID-19 spread, clinicians warned of mental illness epidemics within the coronavirus pandemic. Funding for digital mental health is surging and researchers are calling for widespread adoption to address the mental health sequalae of COVID-19. -/- We consider whether these technologies improve mental health outcomes and whether they exacerbate existing health inequalities laid bare by the pandemic. We argue the evidence for efficacy is weak and the likelihood of increasing inequalities is high. -/- First, we review (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
1 — 50 / 970