Results for 'Frege Arithmetic'

912 found
Order:
  1. Ramified Frege Arithmetic.Richard G. Heck - 2011 - Journal of Philosophical Logic 40 (6):715-735.
    Øystein Linnebo has recently shown that the existence of successors cannot be proven in predicative Frege arithmetic, using Frege’s definitions of arithmetical notions. By contrast, it is shown here that the existence of successor can be proven in ramified predicative Frege arithmetic.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  2. Predicative Frege Arithmetic and ‘Everyday’ Mathematics.Richard Heck - 2014 - Philosophia Mathematica 22 (3):279-307.
    The primary purpose of this note is to demonstrate that predicative Frege arithmetic naturally interprets certain weak but non-trivial arithmetical theories. It will take almost as long to explain what this means and why it matters as it will to prove the results.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  3. Two-Sorted Frege Arithmetic is Not Conservative.Stephen Mackereth & Jeremy Avigad - 2022 - Review of Symbolic Logic 16 (4):1199-1232.
    Neo-Fregean logicists claim that Hume’s Principle (HP) may be taken as an implicit definition of cardinal number, true simply by fiat. A long-standing problem for neo-Fregean logicism is that HP is not deductively conservative over pure axiomatic second-order logic. This seems to preclude HP from being true by fiat. In this paper, we study Richard Kimberly Heck’s Two-Sorted Frege Arithmetic (2FA), a variation on HP which has been thought to be deductively conservative over second-order logic. We show that (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  4. Frege, Dedekind, and the Modern Epistemology of Arithmetic.Markus Pantsar - 2016 - Acta Analytica 31 (3):297-318.
    In early analytic philosophy, one of the most central questions concerned the status of arithmetical objects. Frege argued against the popular conception that we arrive at natural numbers with a psychological process of abstraction. Instead, he wanted to show that arithmetical truths can be derived from the truths of logic, thus eliminating all psychological components. Meanwhile, Dedekind and Peano developed axiomatic systems of arithmetic. The differences between the logicist and axiomatic approaches turned out to be philosophical as well (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5. Arithmetic, Logicism, and Frege’s Definitions.Timothy Perrine - 2021 - International Philosophical Quarterly 61 (1):5-25.
    This paper describes both an exegetical puzzle that lies at the heart of Frege’s writings—how to reconcile his logicism with his definitions and claims about his definitions—and two interpretations that try to resolve that puzzle, what I call the “explicative interpretation” and the “analysis interpretation.” This paper defends the explicative interpretation primarily by criticizing the most careful and sophisticated defenses of the analysis interpretation, those given my Michael Dummett and Patricia Blanchette. Specifically, I argue that Frege’s text either (...)
    Download  
     
    Export citation  
     
    Bookmark  
  6. Three Kantian Strands in Frege’s View of Arithmetic.Gilead Bar-Elli - 2014 - Journal for the History of Analytical Philosophy 2 (7).
    On the background of explaining their different notions of analyticity, their different views on definitions, and some aspects of Frege’s notion of sense, three important Kantian strands that interweave into Frege’s view are exposed. First, Frege’s remarkable view that arithmetic, though analytic, contains truths that “extend our knowledge”, and by Kant’s use of the term, should be regarded synthetic. Secondly, that our arithmetical (and logical) knowledge depends on a sort of a capacity to recognize and identify (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  7. Book Review: Gottlob Frege, Basic Laws of Arithmetic[REVIEW]Kevin C. Klement - 2016 - Studia Logica 104 (1):175-180.
    Review of Basic Laws of Arithmetic, ed. and trans. by P. Ebert and M. Rossberg (Oxford 2013).
    Download  
     
    Export citation  
     
    Bookmark  
  8. Frege, Hankel, and Formalism in the Foundations.Richard Lawrence - 2021 - Journal for the History of Analytical Philosophy 9 (11).
    Frege says, at the end of a discussion of formalism in the Foundations of Arithmetic, that his own foundational program “could be called formal” but is “completely different” from the view he has just criticized. This essay examines Frege’s relationship to Hermann Hankel, his main formalist interlocutor in the Foundations, in order to make sense of these claims. The investigation reveals a surprising result: Frege’s foundational program actually has quite a lot in common with Hankel’s. This (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  9. Frege on Referentiality and Julius Caesar in Grundgesetze Section 10.Bruno Bentzen - 2019 - Notre Dame Journal of Formal Logic 60 (4):617-637.
    This paper aims to answer the question of whether or not Frege's solution limited to value-ranges and truth-values proposed to resolve the "problem of indeterminacy of reference" in section 10 of Grundgesetze is a violation of his principle of complete determination, which states that a predicate must be defined to apply for all objects in general. Closely related to this doubt is the common allegation that Frege was unable to solve a persistent version of the Caesar problem for (...)
    Download  
     
    Export citation  
     
    Bookmark  
  10. Frege's attack on Husserl and Cantor.Claire Ortiz Hill - 1994 - The Monist 77 (3):345 - 357.
    By drawing attention to these facts and to the relationship between Cantor’s and Husserl's ideas, I have tried to contribute to putting Frege's attack on Husserl "in the proper light" by providing some insight into some of the issues underling criticisms which Frege himself suggested were not purely aimed at Husserl's book. I have tried to undermine the popular idea that Frege's review of the Philosophy of Arithmetic is a straightforward, objective assessment of Husserl’s book, and (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  11. Frege, Carnap, and Explication: ‘Our Concern Here Is to Arrive at a Concept of Number Usable for the Purpose of Science’.Gregory Lavers - 2013 - History and Philosophy of Logic 34 (3):225-41.
    This paper argues that Carnap both did not view and should not have viewed Frege's project in the foundations of mathematics as misguided metaphysics. The reason for this is that Frege's project was to give an explication of number in a very Carnapian sense — something that was not lost on Carnap. Furthermore, Frege gives pragmatic justification for the basic features of his system, especially where there are ontological considerations. It will be argued that even on the (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  12. Frege, Thomae, and Formalism: Shifting Perspectives.Richard Lawrence - 2023 - Journal for the History of Analytical Philosophy 11 (2):1-23.
    Mathematical formalism is the the view that numbers are "signs" and that arithmetic is like a game played with such signs. Frege's colleague Thomae defended formalism using an analogy with chess, and Frege's critique of this analogy has had a major influence on discussions in analytic philosophy about signs, rules, meaning, and mathematics. Here I offer a new interpretation of formalism as defended by Thomae and his predecessors, paying close attention to the mathematical details and historical context. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  13. Frege's Changing Conception of Number.Kevin C. Klement - 2012 - Theoria 78 (2):146-167.
    I trace changes to Frege's understanding of numbers, arguing in particular that the view of arithmetic based in geometry developed at the end of his life (1924–1925) was not as radical a deviation from his views during the logicist period as some have suggested. Indeed, by looking at his earlier views regarding the connection between numbers and second-level concepts, his understanding of extensions of concepts, and the changes to his views, firstly, in between Grundlagen and Grundgesetze, and, later, (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  14. Frege, Kant e le Vorstellungen.Gabriele Tomasi & Alberto Vanzo - 2006 - Rivista di Storia Della Filosofia 61 (supplement):227-238.
    Gottlob Frege criticized Kant's use of the term "representation" in a footnote in the Foundations of Arithmetics. According to Frege, Kant used the term "representation" for mental images, which are private and incommunicable, and also for objects and concepts. Kant thereby gave "a strongly subjectivistic and idealistic coloring" to his thought. The paper argues that Kant avoided the kind of subjectivism and idealism which Frege hints in his remark. For Kant, having "Vorstellungen" requires the capacity of synthesis, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15. What Frege asked Alex the Parrot: Inferentialism, Number Concepts, and Animal Cognition.Erik Nelson - 2020 - Philosophical Psychology 33 (2):206-227.
    While there has been significant philosophical debate on whether nonlinguistic animals can possess conceptual capabilities, less time has been devoted to considering 'talking' animals, such as parrots. When they are discussed, their capabilities are often downplayed as mere mimicry. The most explicit philosophical example of this can be seen in Brandom's frequent comparisons of parrots and thermostats. Brandom argues that because parrots (like thermostats) cannot grasp the implicit inferential connections between concepts, their vocal articulations do not actually have any conceptual (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  16. Frege meets Belnap: Basic Law V in a Relevant Logic.Shay Logan & Francesca Boccuni - 2024 - In Andrew Tedder, Shawn Standefer & Igor Sedlar (eds.), New Directions in Relevant Logic. Springer. pp. 381-404.
    Abstractionism in the philosophy of mathematics aims at deriving large fragments of mathematics by combining abstraction principles (i.e. the abstract objects $\S e_1, \S e_2$, are identical if, and only if, an equivalence relation $Eq_\S$ holds between the entities $e_1, e_2$) with logic. Still, as highlighted in work on the semantics for relevant logics, there are different ways theories might be combined. In exactly what ways must logic and abstraction be combined in order to get interesting mathematics? In this paper, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  17. Formal Arithmetic Before Grundgesetze.Richard Kimberly Heck - 2019 - In Philip A. Ebert & Marcus Rossberg (eds.), Essays on Frege's Basic Laws of Arithmetic. Oxford: Oxford University Press. pp. 497-537.
    A speculative investigation of how Frege's logical views change between Begriffsschrift and Grundgesetze and how this might have affected the formal development of logicism.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  18. Frege on the Foundation of Geometry in Intuition.Jeremy Shipley - 2015 - Journal for the History of Analytical Philosophy 3 (6).
    I investigate the role of geometric intuition in Frege’s early mathematical works and the significance of his view of the role of intuition in geometry to properly understanding the aims of his logicist project. I critically evaluate the interpretations of Mark Wilson, Jamie Tappenden, and Michael Dummett. The final analysis that I provide clarifies the relationship of Frege’s restricted logicist project to dominant trends in German mathematical research, in particular to Weierstrassian arithmetization and to the Riemannian conceptual/geometrical tradition (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  19. Is Frege's Definition of the Ancestral Adequate?Richard G. Heck - 2016 - Philosophia Mathematica 24 (1):91-116.
    Why should one think Frege's definition of the ancestral correct? It can be proven to be extensionally correct, but the argument uses arithmetical induction, and that seems to undermine Frege's claim to have justified induction in purely logical terms. I discuss such circularity objections and then offer a new definition of the ancestral intended to be intensionally correct; its extensional correctness then follows without proof. This new definition can be proven equivalent to Frege's without any use of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  20. A Phenomenology of Race in Frege's Logic.Joshua M. Hall - forthcoming - Humanities Bulletin.
    This article derives from a project attempting to show that Western formal logic, from Aristotle onward, has both been partially constituted by, and partially constitutive of, what has become known as racism. In the present article, I will first discuss, in light of Frege’s honorary role as founder of the philosophy of mathematics, Reuben Hersh’s What is Mathematics, Really? Second, I will explore how the infamous section of Frege’s 1924 diary (specifically the entries from March 10 to April (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  21. The Potential in Frege’s Theorem.Will Stafford - 2023 - Review of Symbolic Logic 16 (2):553-577.
    Is a logicist bound to the claim that as a matter of analytic truth there is an actual infinity of objects? If Hume’s Principle is analytic then in the standard setting the answer appears to be yes. Hodes’s work pointed to a way out by offering a modal picture in which only a potential infinity was posited. However, this project was abandoned due to apparent failures of cross-world predication. We re-explore this idea and discover that in the setting of the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  22. Logicism, Interpretability, and Knowledge of Arithmetic.Sean Walsh - 2014 - Review of Symbolic Logic 7 (1):84-119.
    A crucial part of the contemporary interest in logicism in the philosophy of mathematics resides in its idea that arithmetical knowledge may be based on logical knowledge. Here an implementation of this idea is considered that holds that knowledge of arithmetical principles may be based on two things: (i) knowledge of logical principles and (ii) knowledge that the arithmetical principles are representable in the logical principles. The notions of representation considered here are related to theory-based and structure-based notions of representation (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  23. Guía para una primera lectura de Los fundamentos de la aritmética de Gottlob Frege.Francisco Manuel Sauri-Mercader - manuscript
    El presente texto es una guía para una primera lectura de los Los fundamentos de la aritmética de Gottlob Frege para estudiantes del grado de Filosofía. -/- No pretende hacer ninguna aportación a la investigación sobre Frege sino ofrecer los instrumentos para hacer una primera lectura mediante la recopilación y la ordenación de los textos relevantes de los estudiosos de Frege, especialmente de la literatura en inglés. En la mayor parte de los casos, las referencias a otros (...)
    Download  
     
    Export citation  
     
    Bookmark  
  24. POTTER, M.-Reason's Nearest Kin. [REVIEW]S. G. Sterrett - 2003 - Philosophical Books 44 (3):294-296.
    Download  
     
    Export citation  
     
    Bookmark  
  25. Die Grundlagen der Arithmetik, §§ 82-3. [REVIEW]William Demopoulos - 1998 - Bulletin of Symbolic Logic 6 (4):407-28.
    This paper contains a close analysis of Frege's proofs of the axioms of arithmetic §§70-83 of Die Grundlagen, with special attention to the proof of the existence of successors in §§82-83. Reluctantly and hesitantly, we come to the conclusion that Frege was at least somewhat confused in those two sections and that he cannot be said to have outlined, or even to have intended, any correct proof there. The proof he sketches is in many ways similar to (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  26. Die Grundlagen der Arithmetik, 82-3.George Boolos & Richard G. Heck - 1998 - In Matthias Schirn (ed.), The Philosophy of mathematics today. New York: Clarendon Press.
    A close look at Frege's proof in "Foundations of Arithmetic" that every number has a successor. The examination reveals a surprising gap in the proof, one that Frege would later fill in "Basic Laws of Arithmetic".
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  27. (1 other version)Objects are (not) ...Friedrich Wilhelm Grafe - 2024 - Archive.Org.
    My goal in this paper is, to tentatively sketch and try defend some observations regarding the ontological dignity of object references, as they may be used from within in a formalized language. -/- Hence I try to explore, what properties objects are presupposed to have, in order to enter the universe of discourse of an interpreted formalized language. -/- First I review Frege′s analysis of the logical structure of truth value definite sentences of scientific colloquial language, to draw suggestions (...)
    Download  
     
    Export citation  
     
    Bookmark  
  28. The Basic Laws of Cardinal Number.Richard Kimberly Heck - 2019 - In Philip A. Ebert & Marcus Rossberg (eds.), Essays on Frege's Basic Laws of Arithmetic. Oxford: Oxford University Press. pp. 1-30.
    An overview of what Frege accomplishes in Part II of Grundgesetze, which contains proofs of axioms for arithmetic and several additional results concerning the finite, the infinite, and the relationship between these notions. One might think of this paper as an extremely compressed form of Part II of my book Reading Frege's Grundgesetze.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  29. The Concept of a Substance and its Linguistic Embodiment.Henry Laycock - 2023 - Philosophies 8 (6):114.
    My objective is a better comprehension of two theoretically fundamental concepts. One, the concept of a substance in an ordinary (non-Aristotelian) sense, ranging over such things as salt, carbon, copper, iron, water, and methane – kinds of stuff that now count as (chemical) elements and compounds. The other I’ll call the object-concept in the abstract sense of Russell, Wittgenstein, and Frege in their logico-semantical enquiries. The material object-concept constitutes the heart of our received logico / ontic system, still massively (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  30. The Enhanced Indispensability Argument, the circularity problem, and the interpretability strategy.Jan Heylen & Lars Arthur Tump - 2019 - Synthese 198 (4):3033-3045.
    Within the context of the Quine–Putnam indispensability argument, one discussion about the status of mathematics is concerned with the ‘Enhanced Indispensability Argument’, which makes explicit in what way mathematics is supposed to be indispensable in science, namely explanatory. If there are genuine mathematical explanations of empirical phenomena, an argument for mathematical platonism could be extracted by using inference to the best explanation. The best explanation of the primeness of the life cycles of Periodical Cicadas is genuinely mathematical, according to Baker (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  31. Mathematics as a science of non-abstract reality: Aristotelian realist philosophies of mathematics.James Franklin - 2022 - Foundations of Science 27 (2):327-344.
    There is a wide range of realist but non-Platonist philosophies of mathematics—naturalist or Aristotelian realisms. Held by Aristotle and Mill, they played little part in twentieth century philosophy of mathematics but have been revived recently. They assimilate mathematics to the rest of science. They hold that mathematics is the science of X, where X is some observable feature of the (physical or other non-abstract) world. Choices for X include quantity, structure, pattern, complexity, relations. The article lays out and compares these (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  32. "Cała matematyka to właściwie geometria". Poglądy Gottloba Fregego na podstawy matematyki po upadku logicyzmu.Krystian Bogucki - 2019 - Hybris. Internetowy Magazyn Filozoficzny 44:1 - 20.
    Gottlob Frege abandoned his logicist program after Bertrand Russell had discovered that some assumptions of Frege’s system lead to contradiction (so called Russell’s paradox). Nevertheless, he proposed a new attempt for the foundations of mathematics in two last years of his life. According to this new program, the whole of mathematics is based on the geometrical source of knowledge. By the geometrical source of cognition Frege meant intuition which is the source of an infinite number of objects (...)
    Download  
     
    Export citation  
     
    Bookmark  
  33. Neo-Logicism and Its Logic.Panu Raatikainen - 2020 - History and Philosophy of Logic 41 (1):82-95.
    The rather unrestrained use of second-order logic in the neo-logicist program is critically examined. It is argued in some detail that it brings with it genuine set-theoretical existence assumptions and that the mathematical power that Hume’s Principle seems to provide, in the derivation of Frege’s Theorem, comes largely from the ‘logic’ assumed rather than from Hume’s Principle. It is shown that Hume’s Principle is in reality not stronger than the very weak Robinson Arithmetic Q. Consequently, only a few (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  34. Is Incompatibilism Compatible with Fregeanism?Nils Kürbis - 2018 - European Journal of Analytic Philosophy 14 (2):27-46.
    This paper considers whether incompatibilism, the view that negation is to be explained in terms of a primitive notion of incompatibility, and Fregeanism, the view that arithmetical truths are analytic according to Frege’s definition of that term in §3 of Foundations of Arithmetic, can both be upheld simultaneously. Both views are attractive on their own right, in particular for a certain empiricist mind-set. They promise to account for two philosophical puzzling phenomena: the problem of negative truth and the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  35. Expressing set-size equality.John Corcoran & Gerald Rising - 2015 - Bulletin of Symbolic Logic 21 (2):239.
    The word ‘equality’ often requires disambiguation, which is provided by context or by an explicit modifier. For each sort of magnitude, there is at least one sense of ‘equals’ with its correlated senses of ‘is greater than’ and ‘is less than’. Given any two magnitudes of the same sort—two line segments, two plane figures, two solids, two time intervals, two temperature intervals, two amounts of money in a single currency, and the like—the one equals the other or the one is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  36. Grundgesetze and the Sense/Reference Distinction.Kevin C. Klement - 2019 - In Philip A. Ebert & Marcus Rossberg (eds.), Essays on Frege's Basic Laws of Arithmetic. Oxford: Oxford University Press. pp. 142-166.
    Frege developed the theory of sense and reference while composing his Grundgesetze and considering its philosophical implications. The Grundgesetze is thus the most important test case for the application of this theory of meaning. I argue that evidence internal and external to the Grundgesetze suggests that he thought of senses as having a structure isomorphic to the Grundgesetze expressions that would be used to express them, which entails a theory about the identity conditions of senses that is relatively fine-grained, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  37. Russell's Logicism.Kevin C. Klement - 2018 - In Russell Wahl (ed.), The Bloomsbury Companion to Bertrand Russell. New York, USA: Bloomsbury. pp. 151-178.
    Bertrand Russell was one of the best-known proponents of logicism: the theory that mathematics reduces to, or is an extension of, logic. Russell argued for this thesis in his 1903 The Principles of Mathematics and attempted to demonstrate it formally in Principia Mathematica (PM 1910–1913; with A. N. Whitehead). Russell later described his work as a further “regressive” step in understanding the foundations of mathematics made possible by the late 19th century “arithmetization” of mathematics and Frege’s logical definitions of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  38. Říká logicismus něco, co se říkat nemá?Vojtěch Kolman - 2010 - Teorie Vědy / Theory of Science 32 (1):37-57.
    The objective of this paper is to analyze the broader significance of Frege’s logicist project against the background of Wittgenstein’s philosophy from both Tractatus and Philosophical Investigations. The article draws on two basic observations, namely that Frege’s project aims at saying something that was only implicit in everyday arithmetical practice, as the so-called recursion theorem demonstrates, and that the explicitness involved in logicism does not concern the arithmetical operations themselves, but rather the way they are defined. It thus (...)
    Download  
     
    Export citation  
     
    Bookmark  
  39. Reference to numbers in natural language.Friederike Moltmann - 2013 - Philosophical Studies 162 (3):499 - 536.
    A common view is that natural language treats numbers as abstract objects, with expressions like the number of planets, eight, as well as the number eight acting as referential terms referring to numbers. In this paper I will argue that this view about reference to numbers in natural language is fundamentally mistaken. A more thorough look at natural language reveals a very different view of the ontological status of natural numbers. On this view, numbers are not primarily treated abstract objects, (...)
    Download  
     
    Export citation  
     
    Bookmark   59 citations  
  40. Endless Incoherence— A Review of Shoemaker's Physical Realization (2009)(review revised 2019).Michael Starks - 2019 - In Talking Monkeys: Philosophy, Psychology, Science, Religion and Politics on a Doomed Planet - Articles and Reviews 2006-2019 Michael Starks 3rd Edition. Las Vegas, NV USA: Reality Press. pp. 284-301.
    Over 40 years ago I read a small grey book with metaphysics in the title which began with the words “Metaphysics is dead. Wittgenstein has killed it.” I am one of many who agree but sadly the rest of the world has not gotten the message. Shoemaker’s work is nonsense on stilts but is unusual only in that it never deviates into sense from the first paragraph to the last. At least with Dennett, Carruthers, Churchland etc. one gets a breath (...)
    Download  
     
    Export citation  
     
    Bookmark  
  41. Julius Caesar and the Numbers.Nathan Salmón - 2018 - Philosophical Studies 175 (7):1631-1660.
    This article offers an interpretation of a controversial aspect of Frege’s The Foundations of Arithmetic, the so-called Julius Caesar problem. Frege raises the Caesar problem against proposed purely logical definitions for ‘0’, ‘successor’, and ‘number’, and also against a proposed definition for ‘direction’ as applied to lines in geometry. Dummett and other interpreters have seen in Frege’s criticism a demanding requirement on such definitions, often put by saying that such definitions must provide a criterion of identity (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  42. Aritmética e conhecimento simbólico: notas sobre o Tractatus Logico-Philosophicus e o ensino de filosofia da matemática.Gisele Dalva Secco - 2020 - Perspectiva Filosófica 47 (2):120-149.
    Departing from and closing with reflections on issues regarding teaching practices of philosophy of mathematics, I propose a comparison between the main features of the Leibnizian notion of symbolic knowledge and some passages from the Tractatus on arithmetic. I argue that this reading allows (i) to shed a new light on the specificities of the Tractarian definition of number, compared to those of Frege and Russell; (ii) to highlight the understanding of the nature of mathematical knowledge as symbolic (...)
    Download  
     
    Export citation  
     
    Bookmark  
  43. (1 other version)Content Recarving as Subject Matter Restriction.Vincenzo Ciccarelli - forthcoming - Manuscrito: Revista Internacional de Filosofía 42 (1).
    In this article I offer an explicating interpretation of the procedure of content recarving as described by Frege in §64 of the Foundations of Arithmetic. I argue that the procedure of content recarving may be interpreted as an operation that while restricting the subject matter of a sentence, performs a generalization on what the sentence says about its subject matter. The characterization of the recarving operation is given in the setting of Yablo’s theory of subject matter and it (...)
    Download  
     
    Export citation  
     
    Bookmark  
  44. Talking about Numbers: Easy Arguments for Mathematical Realism. [REVIEW]Richard Lawrence - 2017 - History and Philosophy of Logic 38 (4):390-394.
    In §57 of the Foundations of Arithmetic, Frege famously turns to natural language to support his claim that numbers are ‘self-subsistent objects’:I have already drawn attention above to the fact th...
    Download  
     
    Export citation  
     
    Bookmark  
  45. Neo-Logicism and Gödelian Incompleteness.Fabian Pregel - 2023 - Mind 131 (524):1055-1082.
    There is a long-standing gap in the literature as to whether Gödelian incompleteness constitutes a challenge for Neo-Logicism, and if so how serious it is. In this paper, I articulate and address the challenge in detail. The Neo-Logicist project is to demonstrate the analyticity of arithmetic by deriving all its truths from logical principles and suitable definitions. The specific concern raised by Gödel’s first incompleteness theorem is that no single sound system of logic syntactically implies all arithmetical truths. I (...)
    Download  
     
    Export citation  
     
    Bookmark  
  46. Anotações acerca de Symbolic Knowledge from Leibniz to Husserl. [REVIEW]Gisele Dalva Secco - 2015 - Revista Latinoamericana de Filosofia (2):239-251.
    This note presents an analysis of Symbolic Knowledge from Leibniz to Husserl, a collection of works from some members of The Southern Cone Group for the Philosophy of Formal Sciences. The volume delineates an outlook of the philosophical treatments presented by Leibniz, Kant, Frege, and the Booleans, as well as by Husserl, of some questions related to the conceptual singularities of symbolic knowledge –whose standard we find in the arts of algebra and arithmetic. The book’s unity of themes (...)
    Download  
     
    Export citation  
     
    Bookmark  
  47. Analitička filozofija_izabrani tekstovi.Nijaz Ibrulj - 2022 - Sarajevo: Academia Analitica.
    Analytical philosophy is ruled by the alliance of logic, linguistics and mathematics since its beginnings in the syllogistic calculus of terms and premises in Aristotle's Analytica protera, in the theories of medieval logic that dealt with what are Proprietatis Terminorum (significatio, suppositio, appellatio), in the theological apologetics of argumentation with the combinatorics of symbols by Raymundus Llullus in the work Ars Magna, Generalis et Ultima (1305-08), in what is presented as Theologia Combinata (cf. Tomus II.p.251) in Ars Magna Sciendi sive (...)
    Download  
     
    Export citation  
     
    Bookmark  
  48.  21
    Foundations of Mathematics.Kliment Babushkovski - manuscript
    Analytical philosophy defines mathematics as an extension of logic. This research will restructure the progress in mathematical philosophy made by analytical thinkers like Wittgenstein, Russell, and Frege. We are setting up a new theory of mathematics and arithmetic’s familiar to Wittgenstein’s philosophy of language. The analytical theory proposed here proves that mathematics can be defined with non-logical terms, like numbers, theorems, and operators. We’ll explain the role of the arithmetical operators and geometrical theorems to be foundational in mathematics. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  49. How We Naturally Reason.Fred Sommers - manuscript
    In the 17th century, Hobbes stated that we reason by addition and subtraction. Historians of logic note that Hobbes thought of reasoning as “a ‘species of computation’” but point out that “his writing contains in fact no attempt to work out such a project.” Though Leibniz mentions the plus/minus character of the positive and negative copulas, neither he nor Hobbes say anything about a plus/minus character of other common logical words that drive our deductive judgments, words like ‘some’, ‘all’, ‘if’, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  50. Der Gedanke.Eine logische Untersuchung / Misao. Jedno logičko istraživanje (Bosnian translation by Nijaz Ibrulj).Nijaz Ibrulj & Gottlob Frege - 1987 - Dijalog 1 (1-2):33-49.
    Frege's essay "Der Gedanke.Eine logische Untersuchung" was first published in the Beitrage zur Philosophie des Deutschen Idealismus for 1918-1919 and is one of three related logical studies published as a complete work by Gunther Patzig entitled Logische Untersuchungen in Gottingen, 1966 .
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
1 — 50 / 912