Open peer commentary on the article “Ethics: A Radical-constructivist Approach” by Andreas Quale. Upshot: The first of my two main goals in this commentary is to establish thinking of ethics as concepts rather than as non-cognitive knowledge. The second is to argue that establishing models of individuals’ ethical concepts is a scientific enterprise that is quite similar to establishing models of individuals’ mathematical concepts. To accomplish these two primary goals, I draw from my experience of working scientifically with von Glasersfeld (...) for 25 years while he was developing radical constructivism as a coherent model of knowing, and appeal to several of his basic insights to establish constructing models of ethical concepts as a scientific enterprise. (shrink)
Consider the concept combination ‘pet human’. In word association experiments, human subjects produce the associate ‘slave’ in relation to this combination. The striking aspect of this associate is that it is not produced as an associate of ‘pet’, or ‘human’ in isolation. In other words, the associate ‘slave’ seems to be emergent. Such emergent associations sometimes have a creative character and cognitive science is largely silent about how we produce them. Departing from a dimensional model of human conceptual space, this (...) article will explore concept combinations, and will argue that emergent associations are a result of abductive reasoning within conceptual space, that is, below the symbolic level of cognition. A tensor-based approach is used to model concept combinations allowing such combinations to be formalized as interacting quantum systems. Free association norm data is used to motivate the underlying basis of the conceptual space. It is shown by analogy how some concept combinations may behave like quantum-entangled particles. Two methods of analysis were presented for empirically validating the presence of non-separable concept combinations in human cognition. One method is based on quantum theory and another based on comparing a joint probability distribution with another distribution based on a separability assumption using a chi-square goodness-of-fit test. Although these methods were inconclusive in relation to an empirical study of bi-ambiguous concept combinations, avenues for further refinement of these methods are identified. (shrink)
INTRODUÇÃO O anestro pós-parto é o período após o parto no qual a fêmea não apresenta ciclos estrais (atividade cíclica). Na vaca leiteira, o parto é seguido de um período de inatividade ovariana de duração variável, que é principalmente afetada pelo estado nutricional, produção leiteira, ganho ou perda de condição corporal antes e depois do parto, e por condições patológicas como hipoplasia dos ovários, cistos ovarianos, mumificação uterina, piometra entre outras, além, também, de condições ambientais como instalações que podem causar (...) estresse etc. 1. Controle neuroendócrino do anestro Entre os 12 e 15 dias pós-parto, as células gonadotróficas presentes na adenohipófise começam a produzir e secretar o FSH (hormônio folículo estimulante), o qual estimula a primeira onda folicular; entretanto, nenhum folículo dominante do(s) ovário(s) chega a completar seu desenvolvimento devido à carência de estímulo apropriado do LH (hormônio luteinizante) que também é produzido pelas mesmas células e que deve estar presente em altas concentrações. Nas 2 primeiras semanas pós-parto (primeiros 15 dias), as concentrações circulantes de LH são baixas, o que se deve à ausência de reservas do LH e à incapacidade temporal da hipófise para responder ao estímulo da GnRH (hormônio liberador de gonadotrofina). Entre os dias 15 e 20 pós-parto, a hipófise aumenta a sua capacidade para responder ao GnRH; entretanto, o estabelecimento do padrão de secreção do LH adequado para estimular a maturação e a ovulação do folículo dominante das primeiras ondas foliculares depende fundamentalmente do balanço energético. 2. Fatores que determinam o início da atividade ovariana pós-parto Na vaca leiteira, é frequente que algum dos primeiros folículos dominantes que se desenvolvem durante as primeiras duas ou três semanas complete a sua maturação e chegue à ovulação, isto é, madure e ovule. O fator limitante para o reinício da atividade ovariana é o balanço energético negativo (BEN). No gado leiteiro, o consumo de matéria seca (CMS), após o parto, deverá ser aumentado em até quatro vezes, para cobrir a demanda de nutrientes para a produção de leite e mantença; no entanto, a vaca é incapaz de consumir a exigência de matéria seca, por isso recorre a suas reservas de gordura e proteína, e cai em BEN. As vacas que consomem menos matéria seca, produzem menos leite, têm um BEN mais profundo e o período do parto à primeira ovulação é maior. O nível mais baixo do BEN é alcançado entre os 10 a 20 dias pós-parto e a vaca continua em BEN até os 70 a 80 dias pós-parto e, em alguns casos, até aos 100 dias pós-parto (vacas primíparas). Entretanto, mesmo com BEN, uma proporção elevada das vacas inicia sua atividade ovariana normal nas primeiras 8 semanas pós-parto. As vacas que alcançam um nível baixo de BEN rapidamente e saem deste ponto mínimo de forma rápida, iniciam sua atividade ovariana mais rápido também (20 a 30 dias pós-parto) do que aquelas que têm um BEN mais profundo e duradouro, essas muitas vezes permanecem em anestro aos 70 dias pós-parto (figura 1). As mudanças na condição corporal estão correlacionadas positivamente com as concentrações séricas de insulina, IGF-I e leptina; assim, a maior qualificação da condição corporal é maior mediante a concentração sérica desses hormônios, que atuam principalmente como sinais que chegam ao hipotálamo e modificam a frequência de secreção do GnRH e, consequentemente, de LH. A leptina é um hormônio que é produzido pelos adipócitos e tem sido proposto que sua concentração é o sinal mais importante de alterações de condição corporal. A transição do anestro para a ciclicidade coincide com um aumento das concentrações séricas de insulina, IGF-I e leptina. Além das mensagens dadas pelos hormônios supracitados, outras substâncias presentes no sangue fornecem informações sobre o estado metabólico do animal. Por exemplo, os ácidos graxos não esterificados e o β-hidroxibutirato são indicadores da mobilização e utilização da gordura corporal; assim, o aumento destas substâncias proporciona uma mensagem inibidora de reprodução. O intervalo médio entre o parto e a primeira ovulação, em vacas leiteiras em sistemas de produção não intensiva, é em torno de 30 dias; enquanto em vacas em sistemas de produção intensiva, é de 40 dias. Deve-se sinalar que é comum aos 70 dias pós-parto, que 20% das vacas ainda não ovulem. Verifica-se frequentemente que as vacas leiteiras desenvolvem folículos que crescem mais que os folículos ovulatórios, os quais convertem em cistos foliculares. Esta condição está associada com insensibilidade do hipotálamo ao retorno positivo do estradiol, o que não desencadeia o pico pré-ovulatório de LH (figura 2). 3. O corpo lúteo dos primeiros ciclos pós-parto Durante um ciclo estral o corpo lúteo tem uma meia-vida fisiológica de 12 a 14 dias; no entanto, na primeira ovulação pós-parto cerca de 25% das vacas desenvolvem corpos lúteos de vida curta (<10 dias), 30% de vida longa (21 a 50 dias) e 45% da vida normal (11 a 20 dias). A regressão prematura do corpo lúteo é uma condição frequente nos ruminantes no primeiro ciclo estral, da transição do anestro à ciclicidade. Ou seja, na vaca é frequente que no primeiro ciclo de pós-parto e da puberdade sejam ciclos curtos; isto deve-se à liberação antecipada da PGF2α. Por outro lado, a causa dos corpos lúteos de vida longa (corpos lúteos persistentes) não é clara, mas está relacionada com alterações na secreção da PGF2α devido a infecções uterinas (tabela 1). 4. Anestro patológico 4.1 Alterações do aparelho genital que causam anestro Na vaca foi calculado que as alterações do aparelho genital que afetam a atividade ovariana representam apenas 10% do total das causas de anestro. Entre as alterações do aparelho genital se encontram os cistos foliculares, cistos luteinizados, aplasia segmentar, piometra e mumificação fetal. . 4.2 Cistos foliculares Os cistos foliculares são a patologia ovariana mais comum nos bovinos leiteiros, causando perdas econômicas devido ao atraso do período do parto ao primeiro serviço, pelo custo dos tratamentos e pelo risco que têm as vacas de serem descartadas. A incidência aumentou à medida que a produção de leite se intensificou. Entre 5 e 30% das vacas desenvolvem cistos foliculares nos primeiros 60 dias do pós-parto; no entanto, cerca de 60% destas se recuperam espontaneamente. Sinais clínicos de vacas com cistos foliculares descritos na literatura são: ninfomania, ciclos curtos, masculinização e relaxamento dos ligamentos pélvicos. Atualmente uma alta proporção de vacas com cistos foliculares apresentam anestro. Por muitos anos um cisto folicular foi definido como um folículo com um diâmetro de 2,5 mm, presente em um ou em ambos os ovários durante um período mínimo de 10 dias, na ausência de um corpo lúteo. Os conhecimentos atuais modificaram o conceito clássico; assim, nem todos os cistos foliculares têm um diâmetro de 2,5 mm; além disso, alguns podem persistir mais de 10 dias. Outros são estruturas dinâmicas, que sofrem regressão e podem ser substituídas por novos cistos. Por esta razão, a definição mais precisa e técnica de um cisto folicular é: folículo de um diâmetro, de pelo menos 20 mm, que está presente em um ou ambos os ovários na ausência de tecido lúteo que interfere com o ciclo estral normal (figura 3). A patogênese dos cistos foliculares não é conhecida. Propõe-se que as vacas que desenvolvem esta patologia têm uma anomalia nos mecanismos de retroalimentação entre o hipotálamo e a hipófise, em conjunto com uma disfunção a nível folicular. É pesquisado e sugerido que em vacas com cistos foliculares, o pico pré-ovulatório de LH não ocorre ou é de menor amplitude, ou não tem uma relação síncrona com o amadurecimento do folículo, o que provoca a falha ovulatória. A alteração na secreção de LH pode obedecer a falta de sensibilidade do hipotálamo ao feedback positivo de estrogênio. Observa-se também que algumas anormalidades a nível folicular, tais como alterações na síntese de hormônios esteroides e uma menor sensibilidade à LH, podem contribuir com a patogenia. Uma vez que o cisto folicular foi estabelecido, observou-se um aumento na frequência de secreção pulsátil de LH, o que contribui com a persistência desta patologia. Existem fatores associados com a incidência de cistos foliculares que, de acordo com a patogenia proposta, podem influenciar ao nível do eixo hipotálamo-hipófise-ovário. Os cistos foliculares ocorrem principalmente durante a transição do anestro pós-parto para a ciclicidade. Neste período as vacas estão em BEN, e tem sido observado que as vacas que sofrem de um BEN mais profundo tendem a apresentar uma incidência maior de cistos foliculares. Por outra parte, há uma correlação positiva entre a produção de leite e a incidência de cistos, o que indica que as vacas que produzem mais leite têm maior risco de sofrer com esta patologia. Também existem outros fatores relacionados com a incidência de cistos foliculares tais como estresse, genéticos, infecções uterinas, estresse calórico e presença de fitoestrogênios na dieta (tabela 2). O tratamento indicado consiste na administração do GnRH, que provoca a luteinização do cisto. É recomendável a combinação com uma dose luteolítica de PGF2α, 7 a 10 dias depois da injeção de GnRH. Também é indicado o tratamento com hCG em vez de GnRH. Em alguns estudos foi possível integrar vacas com cistos foliculares em programas de sincronização da ovulação e inseminação em tempo fixo, com resultados aceitáveis de fertilidade (figura 4). 4.3 Cistos luteinizados Esse tipo de cisto pode se desenvolver a partir de um cisto folicular, também ocorre quando o saco libera um óvulo e, em seguida, se fecha novamente e enche-se de líquido. O tecido luteinizado produz progestágenos do qual os sinais incluem anestro persistente. São bastante mais raros e originam-se pelo contínuo aumento do espaço cavitário central normalmente existente nos corpos lúteos (figura 5). Normalmente, a parede do cisto contém células lúteogranulosas grandes e células tecaluteais pequenas. Se diferenciam com dificuldade de corpos lúteos recém-formados durante o período em que ainda possuem um antro. Os cistos luteínicos únicos, pelo menos os menores, necessitam de importância clínica. Se os cistos são funcionais, a sintomatologia mais destacada é o anestro ou pseudogestação. É preciso lembrar que esses cistos agem como uma fonte de secreção contínua de progesterona, diminuindo assim a resistência do útero a infecções, podendo desencadear-se uma endometrite (figura 6). Se eles forem diagnosticados é recomendável a administração de PGF2α. 4.4 Aplasia segmentar As vacas com esta condição podem gestar quando a ovulação ocorre do lado do corno uterino presente. Se a ovulação acontece do lado onde falta o corno uterino causa anestro. 4.5 Piometra A piometra, por definição, é a acumulação de material purulento no interior da luz uterina que ocorrem geralmente durante ou imediatamente após o período de domínio da progesterona. É uma condição que ocorre mais frequentemente nos primeiros 30 dias pós-parto; no entanto, algumas vacas em anestro que são revisadas no dia 50 pós-parto chegam a ter piometra. O tratamento indicado consiste na administração de PGF2α. 5. Anestro relacionado com o tempo de serviço O anestro em bovinos também é classificado como anestro pré-serviço e pós-serviço. 5.1 Anestro pré-serviço Inclui vacas e novilhas que não tenham mostrado estro, isto é, manifestado cio, no período em que devem ser servidas. Em alguns estudos observou-se que o anestro antes do serviço pode afetar até 50% das vacas elegíveis para apresentar estro. 5.1 Anestro pós-serviço Neste grupo incluem-se as vacas que não retornam ao estro, ou seja, que não retornaram ao cio, 21 dias depois da inseminação e não estão prenhes. Essas vacas são conhecidas como vacas fantasma (The Phantom Cow). A causa principal do atraso do retorno ao estro é a baixa eficiência na detecção de estros; mas também foram descritas outras causas como: inseminação em um estro anovulatório, inseminação em tempo fixo em vacas em anestro, suspensão da ciclicidade após o serviço, fases lúteas longas e morte embrionária. O diagnóstico precoce da gestação é de grande ajuda para conhecer oportunamente o número de fêmeas que não estão prenhes. A ecografia no trigésimo dia pós-inseminação adianta, pelo menos 10 dias, a ressincronização de vacas vazias. 6. Falso anestro ou anestro funcional Este causa as maiores perdas econômicas de caráter reprodutivo em rebanhos leiteiros, e refere-se às vacas que estão ciclando, mas não são observadas em estro pelos trabalhadores. É um dos maiores problemas dentro de um sistema de criação extensivo e, às vezes, semiintensivo, uma vez que é de suma importância a observação técnica e precisa do comportamento da vaca para observar o possível retorno ao cio ou não. 7. Manejo da vaca anéstrica A probabilidade de que a vaca seja inseminada oportunamente depende da eficiência da detecção de estros. É comum que a metade das vacas apresentem estro e não sejam observadas, por essa razão, muitas não são inseminadas uma vez que termina o período de espera voluntária. Por outro lado, há vacas que, por causas patológicas ou por seu estado metabólico, ainda estão em anestro depois que termina o período voluntário de espera. Para identificar as causas da ausência de estros, todas as vacas que não tenham sido inseminadas no dia 60 pós-parto, devem ser revisadas por via retal para aplicar o tratamento ou manejo pertinentes. Durante esta revisão é dada especial atenção às características do útero e nas estruturas ovarianas, já que daqui depende o manejo subsequente. A palpação começa no útero; neste é importante determinar se não há gestação. Posteriormente, avalia-se sua consistência que pode ser normal, edematosa ou turgente. Depois de avaliar o útero procede-se a palpação dos ovários, começando com o direito e, em seguida, esquerdo. Abaixo estão descritas as diferentes descobertas que podem ser encontradas na literatura e seu tratamento ou manejo. O registo dos resultados à palpação é feito através de chaves reprodutivas. 7.1 UN CLD2-3 FE10 Útero normal (UN) com um corpo lúteo 2 ou 3 no ovário direito (CLD2-3) e um folículo no ovário esquerdo de 10 mm de diâmetro (FE10). A consistência normal do útero (é normal quando não há edema ou turgescência) é encontrado em vacas não prenhes durante o diestro, ou em vacas que estão em anestro. O CL 2 ou 3 é uma estrutura bem desenvolvida que deforma o ovário e em alguns casos representa mais de 50% da massa ovariana. Classificá-los como CL 2 ou 3 é uma apreciação subjetiva do tamanho do corpo lúteo e não tem significado prático, pois em qualquer dos casos o manejo é o mesmo. O CL indica que a vaca está em qualquer dia do diestro e, obviamente, indica que está ciclando. Durante o diestro pode-se encontrar folículos de tamanho diferente em qualquer um dos dois ovários, já que este depende das ondas de desenvolvimento folicular. É importante frisar que as estruturas mencionadas podem estar em ovários diferentes ou no mesmo ovário. O achado mais importante nesta fase é a presença do corpo lúteo o que permite o tratamento com a PGF2α, o que resulta na apresentação do estro nas próximas 48 a 120 horas. A presença de um corpo lúteo é o estado fisiológico que é mais frequentemente encontrado neste grupo de vacas, primeiro porque paradoxalmente a maior proporção de vacas em “anestro” está ciclando (anestro funcional) e, em segundo lugar, porque o diestro ocupa 65% dos dias do ciclo estral. 7.2 UE CLD1 FE10-15 Útero edematoso (UE) com um corpo lúteo 1 no ovário direito (CLD1) e um folículo 10 ou 15 mm de diâmetro no ovário esquerdo. O útero edematoso pode ser encontrado no proestro e metaestro. A presença do CL1 e um folículo grande indica que se trata de uma vaca que muito provavelmente é encontrado em proestro. A diferença entre um CL1 e um CL 2 ou 3 é basicamente o seu tamanho; um CL1 é uma estrutura pequena com consistência dura. As vacas que têm estas características devem ser marcadas para que os trabalhadores prestem mais atenção, já que apresentarão o estro nas próximas 48 a 72 horas. Se a vaca não apresentar estro nesse período, deverá ser palpada na semana seguinte. 7.3 UT DE FE10-15 Útero túrgido ou tonificado, ovário direito estático e ovário esquerdo com um folículo de 10 ou 15 mm de diâmetro. Estes achados, além da presença de muco estral, correspondem a uma vaca em estro. Frequentemente, na palpação das vacas do grupo de anestro, há vacas em estro; estas vacas deverão ser programadas para inseminação. 7.4 UE DE EE Útero estático e ovários estáticos. Estas observações correspondem a uma vaca em metaestro; esta decisão tem uma alta margem de erro uma vez que também pode corresponder a um animal no proestro ou em anestro verdadeiro. Um achado que permite ser mais bem sucedido no diagnóstico é a presença de sangue no muco cervical; neste caso, a presença de sangue indica, com certeza, que a vaca está em metaestro; no entanto, nem todas as vacas apresentam este sangramento. As vacas com estes achados devem ser palpadas sete dias depois para confirmar ou corrigir um primeiro diagnóstico. Se a primeira palpação foi correta, na segunda se encontrará um CL2-3. 7.5 UE CHD FE10 Útero edematoso, com corpo hemorrágico no ovário direito (CHD) e com folículo de 10 mm de diâmetro no ovário esquerdo. Estas observações são de uma vaca em metaestro. O corpo hemorrágico é considerado como a fase de transição entre o folículo e o corpo lúteo; o CH é palpado como uma estrutura com uma saliência em forma de papila e é muito suave ao toque. Será necessário esperar 4 ou 5 dias para que se converta num corpo lúteo maduro e assim destruí-lo com PGF2α. Na rotina, estas vacas são palpadas na seguinte revisão (sete dias depois). 7.6 UN DE EE Útero normal e ovários estáticos. Este caracteriza as vacas que estão no anestro verdadeiro. As vacas caem no anestro principalmente por se encontrar em balanço negativo de energia; este problema é mais grave em vacas de primeiro parto. O único tratamento eficaz consiste em melhorar o seu estado metabólico. Tratamentos hormonais não funcionam caso não seja resolvido primeiro o seu estado nutricional. 7.7 UN CFD EE Útero normal, cisto folicular no ovário direito e ovário esquerdo estático. Embora as vacas com cistos foliculares sejam caracterizadas por apresentar estros recorrentes, também chegam a apresentar anestro. O tratamento consiste na administração do GnRH ou hCG. 7.8 UN CLD EE Útero normal, cisto luteinizado no ovário direito e ovário esquerdo estático. Este cisto também é causado por uma deficiência na secreção de LH, só que neste caso a deficiência foi parcial, o que provoca um certo grau de luteinização. O cisto luteinizado é uma estrutura com mais de 20 mm de diâmetro de paredes grossas. O tratamento indicado é a administração de PGF2α. Na prática, é difícil diferenciar um cisto folicular de um luteinizado, pelo que o tratamento recomendado é, primeiro, a administração de GnRH ou hCG e sete dias depois é injetado PGF2α (figura 7). 7.9 Piometra CLD2-3 FE A piometra é uma condição que ocorre principalmente nos primeiros 30 dias pós-parto; no entanto, na revisão das vacas anéstricas são encontradas vacas com esta patologia. O tratamento indicado consiste na administração de PGF2α. 8. Tratamentos hormonais para indução da atividade ovariana O estabelecimento precoce da ciclicidade pós-parto favorece a involução uterina e está positivamente correlacionado com a fertilidade; ou seja, quanto mais ciclos estrais a vaca tenha antes da primeira inseminação, a percentagem de concepção é maior. Um tratamento utilizado para induzir a primeira ovulação pós-parto em vacas anéstricas, consiste na administração de GnRH quando à palpação retal se encontra um folículo grande (> 10 mm). Com isso se pretende fazer o folículo ovular e depois injeta-se PGF2α para provocar a regressão lútea. Outras combinações consistem na administração de GnRH e na inserção de dispositivos de liberação de progesterona e, ao retirar o progestágeno, injeta-se PGF2α (figura 8). No entanto, os tratamentos mencionados são de uso comum, não funcionam em todos os casos. Um requisito para se obter êxito é que as vacas devem ter boa condição corporal ou que estejam ganhando condição corporal. Embora os tratamentos hormonais possam ajudar em alguns casos, não deve-se esquecer que as causas do anestro não são corrigidos apenas com a administração de hormônios, já que a vaca não cicla porque toda a informação do estado metabólico que recebe o cérebro, indica que não o deve fazer. 9. Gonadotropina coriônica equina (eCG) Na égua, por volta do dia 30 de gestação, células do córion migram para o endométrio e formam umas estruturas conhecidas como copas endometriais. Entre o dia 40 e o dia 130 de gestação nestas estruturas é produzido o eCG (anteriormente conhecida como gonadotropina sérica da égua prenha ou PMSG, pela sua abreviatura em inglês). Na égua esse hormônio tem atividade de LH pelo qual estimula a função do corpo lúteo e promove a formação de corpos lúteos acessórios. Nos ruminantes, o eCG se une aos receptores de LH e FSH do folículo, estimulando o desenvolvimento folicular, e no corpo lúteo estimula a secreção de progesterona. O eCG tem sido utilizado com a finalidade de superovulação e em vacas de corte sob anestro é incluído em programas com progestágenos para induzir ciclicidade. Nestes programas é injetado eCG no momento da remoção do progestágeno, o que favorece o desenvolvimento folicular e apresentação do estro. Em rebanhos leiteiros na Nova Zelândia tem sido incrementado a taxa de prenhez sem aumentar a proporção de partos gêmeos, através da injeção de eCG na remoção do dispositivo de libertação de progesterona em programas combinados com a injeção de benzoato de estradiol. RESUMO ➢ Transcorrem 15 dias pós-parto para que a hipófase responda ao hormônio GnRH. ➢ Entre os dias 12 e 15 pós-parto começa-se a secreção de FSH e iniciam as ondas foliculares. ➢ As vacas chegam ao ponto mais baixo de BEN entre os dias 15 e 20 pós-parto. ➢ As vacas iniciam a atividade ovariana normal, em média, após os 40 dias pós-parto. ➢ Aos 70 dias pós-parto é normal que 20% das vacas ainda estejam em anestro. ➢ Na primeira ovulação pós-parto 25% das vacas desenvolvem corpos lúteos de vida curta e 30% mostram corpos lúteos de vida longa (persistentes). ➢ As anormalidades do aparelho reprodutor são responsáveis por 10% das causas de anestro. ➢ 5 a 30% das vacas desenvolvem cistos foliculares nos primeiros 60 dias pós-parto e 60% destas se recuperam de forma espontânea. ➢ No dia 30 pós-inseminação é possível identificar vacas vazias mediante a ecografia e reservá-las para a ressincronização. ➢ A proteína B específica da gestação aparece no soro a partir do 15º dia de gestação. ➢ Para o diagnóstico precoce de gestação é recomendado medir a PSPB no dia 30 pósinseminação e em vacas com mais de 90 dias pós-parto. ➢ Entre os dias 50 e 60 pós-parto todas as vacas não servidas devem ser examinadas via retal para programar seu serviço. REFERÊNCIAS BIBLIOGRÁFICAS AMBROSE, Divakar J. Postpartum anestrus and its management in dairy cattle. Bovine Reproduction, p. 408-430, 2021. BALL, P. J. H.; PETERS, A. R. Reprodução em bovinos. São Paulo: SP, 2006. Características Gerais dos Bovinos/General Characteristics of Cattle Bovine. 2020. Fisiologia da Reprodução Animal: Ovulação, Controle e Sincronização do Cio. 2020. Nutrição Sobre a Reprodução e Fertilidade dos Bovinos. DERIVAUX, Jules; BECKERS, Jean-François; ECTORS, Francis. L'anoestrus du postpartum. Vlaams Diergeneeskundig Tijdschrift, v. 53, p. 215-229, 1984. ELLI, Massimiliano. Manual de reproducción en ganado vacuno. Zaragoza, ES: Servet Edit., 2005. FERNÁNDEZ DE CÓRDOBA DE LA BARRERA, Luis. Reproducción aplicada en el ganado bovino lechero. 1993. FERREIRA, A. de M. Reprodução da fêmea bovina: fisiologia aplicada e problemas mais comuns (causas e tratamentos). Juiz de Fora: Minas Gerais–Brasil, p. 422, 2010. GARVERICK, H. Allen. Ovarian follicular cysts in dairy cows. Journal of dairy science, v. 80, n. 5, p. 995-1004, 1997. HAFEZ, Elsayed Saad Eldin; HAFEZ, Bahaa. Reprodução animal. 2004. HIDALGO, Galina et al. Reproducción de animales domésticos. 2008. PETER, A. T.; VOS, P. L. A. M.; AMBROSE, D. J. Postpartum anestrus in dairy cattle. Theriogenology, v. 71, n. 9, p. 1333-1342, 2009. PETERS, A. R. et al. Reproducción del ganado vacuno. 1991. SPAIN, JAMES N.; LUCY, MATTHEW C.; HARDIN, DAVID K. Effects of nutrition on reproduction in dairy cattle. In: Current Therapy in Large Animal Theriogenology. WB Saunders, 2007. p. 442-450. UNGERFELD, Rodolfo. Reproducción de los animales domésticos. Edizioni LSWR, 2020. VILLA-GODOY, A. et al. Association between energy balance and luteal function in lactating dairy cows. Journal of Dairy Science, v. 71, n. 4, p. 1063-1072, 1988. WATHES, D. C. et al. Influence of negative energy balance on cyclicity and fertility in the high producing dairy cow. Theriogenology, v. 68, p. S232-S241, 2007. (shrink)
This French paper is a prelimary report on the authors' work on the logics of common knowledge and common belief. See L. Lismont and P. Mongin, "On the logic of common belief and common knowledge", Theory and Decision 37 (1): 75-106. 1994 for a more complete report.
FISIOLOGIA DO CICLO ESTRAL DOS ANIMAIS -/- Departamento de Zootecnia – UFRPE Embrapa Semiárido e IPA -/- • _____OBJETIVO -/- O cio ou estro é a fase reprodutiva dos animais, onde as fêmeas apresentam receptividade sexual seguida de ovulação. Para tanto, é necessário entender a fisiologia do estro para a realização do manejo reprodutivo dos animais. Em geral, as fêmeas manifestam comportamentos fora do comum quando estão ciclando, tais comportamentos devem ser observados para que não percam o pico de ovulação (...) e, consequentemente, para que não perca o momento de monta ou inseminação para emprenhar o animal. Neste trabalho, o estudante compreenderá o ciclo estral identificando as diferenças entre as espécies domésticas, para considerá-las na manipulação do mesmo. -/- • _____INTRODUÇÃO -/- As fêmeas dos mamíferos domésticos apresentam, em sua vida reprodutiva, even-tos recorrentes conhecidos como ciclos estrais que se caracterizam por uma série de alte-rações ovarianas, genitais, endócrinas e comportamentais. Esses ciclos são o fundamento da reprodução e possuem a finalidade de que ocorra a ovulação de forma sincronizada com o acasalamento para conduzir a uma gestação. A compreensão deste é de suma im-portância para alcançar uma boa eficiência produtiva nas propriedades pecuárias; consi-derando que a oportunidade de gestar os animais se limita a períodos, em geral, muito curtos, que ocorrem em cada ciclo. Assim que as fêmeas atingem a puberdade, em bovinos entre 11 e 19 meses, inicia-se a apresentação dos ciclos estrais, o que geralmente indica o início da receptividade sexual, também chamada de "estro" ou "cio", por ser a fase mais fácil de reconhecer devido ao qual a fêmea busca, atrai e aceita a montaria do macho. Todavia, para uma melhor eficiência reprodutiva, as fêmeas que apresentarem o primeiro cio não devem ser colocadas à disposição do macho ou da IA, uma vez que ela ainda não possui o aporte e a condição corporal ideal para conseguir gestar; logo para serem colocadas à reprodução devem estar ao terceiro estro ou possuir entre 60 a 70% do seu peso vivo adulto. Depois da receptividade ocorre um período em que a fêmea não atrai nem aceita o macho. Assim, um ciclo estral é definido como o período entre um estro e o seguinte. Quando durante o ciclo estral ocorre uma cópula fértil, as fêmeas passam a uma fase de anestro fisiológico, causado pela gestação, em que cessa o ciclo estral e passam a não apresentarem atividade sexual. Nas espécies sazonais (cabras, éguas e ovelhas), a manifestação dos ciclos estrais também é limitada pela época do ano em que as fêmeas apresentam um anestro sazonal. Essas espécies sazonais ou estacionais apresentam cio durante a época em que os dias apresentam a presença de luz por mais tempo; isto é, dias mais longos. Deve-se considerar que a ciclicidade feminina pode ser alterada por eventos patológicos como processos infecciosos, persistência do corpo lúteo, desnutrição e estresse, entre outros. -/- • _____CONTROLE ENDÓCRINO DO CICLO ESTRAL -/- As mudanças ovarianas, genitais e comportamentais que ocorrem ao longo dos ciclos estrais são controladas pelo sistema endócrino e são o resultado de uma complexa interação entre hipotálamo, hipófise, ovário e útero. Vários hormônios participam desse processo, dos quais serão descritos a importância e a participação dos mais relevantes (figura 1). -/- Figura 1: Interação hormonal do eixo hipotálamo-hipófise-gonodal. No lado esquerdo, com linhas contínuas, os principais hormônios são exemplificados quando há um folículo pré-ovulatório. No lado direito, com linhas pontilhadas, os hormônios envolvidos são mostrados quando a estrutura ovariana predominante é o corpo lúteo. Fonte: RANGEL, 2018. A Kisspeptina é um peptídeo hipotalâmico que tem sido denominado regulador central, pois os neurônios que a produzem recebem informações do meio ambiente e do próprio corpo, o que indica o momento ideal para a reprodução. Além de modular a secreção de GnRH durante o ciclo estral, esse hormônio controla tanto o início da puberdade quanto da estacionalidade reprodutiva. Além disso, é inibido durante a lactação, bloqueando a atividade reprodutiva das fêmeas nessa fase. Os neurônios produtores de Kisspeptina possuem receptores de estradiol, que os regulam para modular a liberação tônica e cíclica de GnRH, controlando assim a secreção de gonadotrofina; além disso, foi sugerida a participação de outros hormônios neurotransmissores e neuropeptídios na modulação da secreção de GnRH. Entre eles estão os estimuladores: norepinefrina, serotonina, aminoácidos excitatórios (principal-mente glutamato) e neurotensina. Atuando como inibidores: GABA e opioides endógenos (principalmente o β-endorfina). O GnRH é um neuropeptídio hipotalâmico que estimula a produção e liberação de LH, de forma que um pulso de LH é sempre precedido por um pulso de GnRH. Os estrogênios foliculares têm, por outro lado, um efeito de feedback positivo com o LH, aumentando a produção de GnRH pelo centro cíclico e a formação de seus receptores nos gonadotrópicos da hipófise. Como resultado, a maturação dos folículos ovarianos é alcançada e os picos pré-ovulatórios de estradiol e LH são alcançados. No centro tônico da secreção de GnRH, os estrogênios inibem a liberação desse hormônio quando os animais estão na vida pré-púbere ou nos estágios de anestro, e a sensibilidade a esse feedback negativo diminui durante os estágios reprodutivos. No sentido estrito, a liberação de FSH pelos gonadotrópicos hipofisários não requer a presença do GnRH, que participa antecipadamente do estímulo de sua síntese; o FSH é considerado, então, um hormônio secretado constitutivamente, ou seja, constantemente, a menos que haja um estímulo inibitório. Este estímulo inibitório existe graças aos estrogênios e à inibina, que são produzidos pelos folículos em desenvolvi-mento, especialmente pelo folículo dominante. A progesterona é um hormônio esteroide produzido pelo corpo lúteo (CL) que inibe a secreção de LH. Isso é realizado tanto indiretamente por meio da inibição da secreção de GnRH no nível hipotalâmico, quanto por ação direta no nível da hipófise, uma vez que bloqueia a formação de receptores de GnRH nos gonadotropos. Assim, diminui a frequência dos pulsos de LH, que é mantida em níveis basais capazes de participar da formação e manutenção do corpo lúteo, mas incapaz de causar ovulação. Na vaca, o papel do LH na manutenção do corpo lúteo é controverso, uma vez que alguns autores propõem que apenas o hormônio do crescimento participe para esse fim, pois a administração de inibidores de GnRH quando há corpo lúteo funcional não afeta a secreção de progesterona. Se a fertilização não for alcançada com sucesso, eventualmente o corpo lúteo deve ser destruído por apoptose (processo conhecido como luteólise), para permitir a ocorrência de um novo ciclo estral. Nesse caso, os hormônios participantes são a ocitocina, produzida inicialmente no nível central e posteriormente pelo CL; e a prostaglandina F2alfa (PGF2α), secretada pelo endométrio uterino ao final do diestro; entre ambos os hormônios estabelecerão um mecanismo de feedback positivo até que se complete a luteólise. -/- • _____FREQUÊNCIA DE APRESENTAÇÃO DOS CICLOS ESTRAIS -/- As espécies são classificadas de acordo com a frequência com que apresentam seus ciclos estrais em um dos três grupos existentes (figura 2). -/- Figura 2: classificação das espécies domésticas de acordo com a frequência de apresentação de seus ciclos estrais ao longo do ano. Fonte: RANGEL, 2018. -/- Tabela 1: tipo e duração do ciclo estral de diferentes espécies Monoéstricas -/- São as espécies que apresentam um único ciclo estral, uma ou duas vezes ao ano, que culmina com um período de anestro, que faz parte do mesmo ciclo. Em geral, a fase de receptividade sexual dessas espécies é muito longa para garantir a fecundação. Dentro desta classificação está a família Canidae, que inclui cães domésticos, lobos e raposas. Os cães domésticos são capazes de se reproduzir em qualquer época do ano, portanto, não são considerados sazonais; apesar disso, observou-se que o estro tende a ocorrer com mais frequência no final do inverno ou início da primavera. Como exceção, a raça de cães Basenji é considerada sazonal, pois eles sempre têm seus ciclos férteis no outono. -/- Poliéstricas estacionais ou sazonais -/- São espécies que para garantir que seus filhotes nasçam na época do ano mais favorável à sua sobrevivência, apresentam uma série de ciclos estrais durante uma estação limitada do ano (figura 3). No final desta estação, os animais entram em anestro sazonal, que termina com o início da próxima estação reprodutiva. Dentro deste grupo estão as espécies que se reproduzem nas épocas do ano em que está aumentando a quantidade de horas-luz por dia ou fotoperíodo crescente (primavera-verão), como equinos e gatos; o último mostra a atividade ovariana entre janeiro e setembro (ou até outubro) nas zonas temperadas. Há outro grupo de espécies que se reproduzem em períodos de fotoperíodo decrescente (outono-inverno), entre as quais estão ovinos e caprinos. -/- Figura 3: classificação das espécies domésticas, de acordo com a estacionalidade de sua reprodutiva. Fonte: RANGEL, 2018. Poliéstricas contínuas -/- As espécies deste grupo são caracterizadas por ciclos estrais durante todo o ano. Dentro desta classificação estão bovinos e suínos. -/- • _____ETAPAS DO CICLO ESTRAL -/- Do ponto de vista das estruturas ovarianas predominantes, o ciclo estral se divide em duas fases: a fase folicular, na qual os folículos ovarianos se desenvolvem e amadurecem, além da ovulação; nas espécies poliéstricas, esta fase começa com a regressão do corpo lúteo do ciclo anterior. A outra é conhecida como fase lútea e refere-se às etapas do ciclo em que o corpo lúteo se forma e tem sua maior funcionalidade. Cada uma dessas fases pode ser dividida em etapas de proestro e estro (fase folicular); e metaestro e diestro (fase lútea) (figura 4). Algumas espécies, adicionalmente, podem apresentar períodos de anestro e interestro, como parte de seus ciclos estrais (figura 4). -/- Figura 4: etapas dos ciclos estrais dos animais domésticos. Fonte: RANGEL, 2018. -/- Fase folicular -/- É identificada porque os hormônios ovarianos predominantes são os estrogênios (produzidos pelos folículos em crescimento), que desencadeiam o comportamento sexual e fazem com que o aparelho reprodutor passe por algumas adaptações para atrair o macho, preparar-se para a cópula e facilitar o transporte dos gametas. O proestro começa quando as concentrações de progesterona do ciclo anterior baixem para níveis basais devido à regressão do CL; e termina quando o comportamento de receptividade sexual começa. É caracterizado pelo crescimento do folículo dominante da última onda folicular do ciclo anterior; portanto, sua duração depende do grau de desenvolvimento em que o folículo se encontra no momento da luteólise. Nesse estágio, aumenta-se a produção de estradiol e inibina secretada pelo folículo ou folículos que iniciaram seu desenvolvimento durante o final do período de diestro. As concentrações de FSH diminuem no início do proestro; entretanto, eles começam a aumentar à medida que o estro se aproxima. O LH, devido ao efeito do estradiol, passa a aumentar sua frequência de secreção e diminuir a amplitude de seus pulsos, o que acentua a produção de andrógenos pelas células da teca e a capacidade de aromatização das células da granulosa, com o consequente aumento na produção de estradiol. O aumento do estradiol desencadeia a apresentação comportamental do estro que também é conhecido como estágio de cio, calor ou receptividade sexual, uma vez que representa o único período em que a fêmea procura ativamente o macho e aceita a montagem e a cópula. O comportamento sexual pode variar em intensidade entre diferentes espécies. Durante a fase de estro, o(s) folículo(s) em desenvolvimento no ovário adquirem sua maturidade e tamanho pré-ovulatório (figura 5), atingindo as concentrações máximas de estradiol. Um feedback positivo é então exercido entre o estradiol, GnRH e LH, para que ocorra o pico de LH pré-ovulatório que será responsável pela ovulação. -/- Figura 5: folículos ovarianos de porcas. Esquerda: pequenos folículos, estágio de proestro. À direita: folículos pré-ovulatórios, estágio de estro. Fonte: RANGEL, 2018. -/- O estro é a fase do ciclo em que ocorre a ovulação em espécies domésticas, com exceção dos bovinos que ovulam durante o metaestro inicial. A ovulação, por outro lado, manifesta-se espontaneamente na maioria das espécies domésticas, com exceção dos felinos, leporídeos e camelídeos, nos quais a cópula deve ocorrer para induzi-la, por isso são conhecidos como espécies de ovulação induzida (figura 6). Nessas espécies, a cópula provoca um reflexo nervoso que atua no nível hipotalâmico para induzir a liberação de GnRH e, portanto, o pico pré-ovulatório de LH. Existem outras espécies em que a cópula não estimula a ovulação, mas é necessária para induzir a formação do CL (figura 6). Dentro dessas espécies estão ratos e camundongos. -/- Figura 6: classificação das espécies domésticas, segundo a espontaneidade da ovulação e a formação do corpo lúteo. Fonte: RANGEL, 2018. -/- Em caninos, deve-se considerar que, embora tradicionalmente se diga que a ovulação ocorre dois dias após o início do estro, ela pode ocorrer mais tarde, em alguns casos ocorrendo próximo ao final do estro. Em geral, durante a fase folicular, o útero tem maior suprimento e as glândulas endometriais entram em fase proliferativa, aumentando seu tamanho. Isso faz com que o útero fique mais tônico, ou seja, mais firme, exceto no caso de éguas e carnívoros nos quais os estrogênios fazem com que o útero se encontre com edema e sem tonalidade, enquanto a cérvix aparece relaxada durante o estro. Além disso, o aumento do suprimento de sangue causa hiperemia e congestão do epitélio vaginal e vulvar (figura 7). Para permitir a passagem do esperma, a cérvix se abre e a produção de um muco cervical muito fluido, cristalino e abundante é aumentada; o útero e o oviduto aumentam suas contrações. Nessa última ação participam as prostaglandinas contidas no plasma seminal (PGF₂α e PGE). Na vagina, o número de camadas de células do epitélio começa a aumentar e as células da superfície tornam-se cornificadas. No caso da cadela, a situação hormonal durante a fase folicular é completamente diferente do resto das espécies domésticas (figura 8), uma vez que há altas concentrações de estrógenos durante o proestro, que atingem seu nível máximo 24 a 48 h antes de seu término; ao mesmo tempo, os folículos iniciam sua luteinização, antes de serem ovulados. Essa situação provoca a liberação de progesterona, que começa a aumentar suas concen-trações; à medida que aumenta, as concentrações de estradiol começam a cair. Assim, o estro começa quando os níveis de progesterona atingem uma concentração de cerca de 1 ng/ml. O pico de LH ocorre durante a transição do proestro para o estro e a ovulação ocorre 48 a 60 horas depois; processo que pode se estender de 24 a 96 h. Os níveis de progesterona aumentam após o início do estro, de modo que antes da ovulação estão entre 2 e 4 ng/ml, enquanto as concentrações entre 5 e 10 ng/ml estão relacionadas ao tempo de ovulação. Uma vez que as concentrações de estradiol caem abaixo de 15 pg/ml, o estro é encerrado (figura 8). -/- Figura 7: comparação da aparência vulvar em porcas. O círculo azul indica a vulva de uma porca que não está em estro, enquanto um círculo vermelho mostra uma vulva apresentando hiperemia e edema característicos da fase de estro. Fonte: Acervo pessoal do autor. -/- As altas concentrações de estradiol no proestro são responsáveis pela atração da fêmea pelo macho a partir desta fase, porém, não apresentará comportamento receptivo até o início da fase de estro. Deve-se levar em consideração que algumas cadelas podem não aceitar o macho, apesar de estarem endócrinamente na fase de estro, o que pode ser atribuído às condições de manejo, aos comportamentos adquiridos ou às características hierárquicas, ou ainda a distúrbios relacionados a endocrinologia da reprodução (anorma-lidades hormonais e/ou baixas concentrações de hormônios). No caso das éguas, não há menção à fase de proestro e os eventos que ocorreriam nessa fase estão englobados no estro, que tradicionalmente será denominado fase folicular ou simplesmente estro (figura 9). -/- Figura 8: Endocrinologia do ciclo estral da cadela. Fonte: RANGEL, 2018. -/- Figura 9: duração das etapas do ciclo estral das éguas. A ovulação ocorre nos últimos 2 dias da fase de estro. Fonte: RANGEL, 2018. -/- Fase lútea -/- Durante essa fase, o esteroide ovariano predominante é a progesterona, cujo objetivo é manter a gravidez se a fertilização for bem-sucedida. Para isso, os estrogênios pré-ovulatórios favorecem a formação de receptores de progesterona uterina, então a presença da progesterona faz com que as glândulas endometriais entrem em sua fase secretora e iniciem a produção de histiotrofo ou leite uterino, para nutrir o produto que poderia estar potencialmente presente. Já na fase lútea, ocorre redução das concentrações de estrogênio, o que causa diminuição do tônus uterino, hiperemia e edema vulvar. Por fim, a cérvix se fecha e o muco cervical torna-se espesso, pegajoso, opaco e menos abundante, de modo a isolar o útero por fora, evitando a entrada de microrganismos que poderiam comprometer a possível gravidez. O metaestro começa quando a fêmea deixa de aceitar a montaria do macho e termina quando há um CL funcional bem estabelecido. Este estágio corresponde ao período de transição entre a dominância estrogênica e o aumento das concentrações de progesterona. Nesse estágio, as concentrações de FSH são aumentadas pela queda repentina de estradiol e inibina após a ovulação, o que permite o recrutamento da primeira onda folicular. Nesta fase, o ovário contém o corpo hemorrágico, a partir do qual se desenvolverá o CL (figura 10). O corpo hemorrágico tem meia-vida muito curta, pois as células que compõem suas paredes iniciam sua luteinização imediatamente após ou mesmo antes da ovulação. -/- Figura 10: ovários bovinos. Corpo hemorrágico (CH); folículos (F) e corpo lúteo (CL). -/- O diestro, por sua vez, constitui a etapa mais longa do ciclo estral e é caracterizado por um CL que se encontra em sua atividade secretora máxima. Somente no final dessa fase, e se não houver fecundação, o CL sofre luteólise; caso contrário, o CL é mantido de forma a preservar a gestação, prolongando um estado fisiológico semelhante ao do diestro. A imagem 11 esquematiza o ciclo estral da vaca, eventos ovarianos e endócrinos, bem como a duração das etapas do ciclo estral. Nessa fase, a progesterona atinge suas concentrações máximas e exerce efeito negativo na liberação de LH, pois inibe a formação de receptores de GnRH nos gonadotropos hipofisários, bem como a secreção de GnRH pelo hipotálamo. Além disso, observam-se aumentos repetidos da secreção de FSH com o consequente aumento do desenvolvimento folicular e das concentrações plasmáticas de estradiol e inibina. No entanto, os folículos que começam seu desenvolvimento, não conseguem completar sua maturação e sofrem regressão (ondas foliculares). A égua é a única fêmea doméstica que pode ovular naturalmente durante a fase lútea, com uma incidência de ovulação de 10-25% nesta fase. Figura 11: etapas, estruturas ovarianas e endocrinologia do ciclo estral da vaca. Fonte: RANGEL, 2018. -/- No final do diestro, os estrogênios sensibilizam o endométrio, de modo que as células epiteliais formam os receptores de ocitocina. Após uma primeira secreção de ocitocina da neurohipófise e secreções subsequentes originadas do corpo lúteo, um mecanismo de feedback positivo é iniciado para a secreção de PGF2α. O papel da PGF2α é destruir o CL quando não houver fertilização. Deve-se considerar que para o útero ser capaz de produzir PGF2α deve haver um período prévio de exposição à progesterona, durante o qual aumenta o conteúdo de precursores das prostaglandinas no endométrio, como o ácido araquidônico (ácido graxo C20H32O2). O anestro é considerado como um período de inatividade reprodutiva, mesmo quando continua havendo atividade hormonal e desenvolvimento folicular, uma vez que o estímulo é insuficiente para que ocorra a maturação folicular e a ovulação. Ao longo desta fase não haverá alterações comportamentais ou morfológicas nas fêmeas. Nas espécies estacionais ou sazonais, o anestro é muito importante, pois limita a estação reprodutiva de forma que os partos ocorram na época do ano que pode ser mais favorável para a sobrevivência dos filhotes. Em espécies poliéstricas contínuas, o anestro aparecerá em casos de processos fisiológicos como gestação ou amamentação, ou devido a condições patológicas que interrompem a ciclicidade. Em caninos, o anestro é considerado mais uma fase do ciclo estral (figura 12), e é o estágio de transição entre o diestro de um ciclo e o proestro do próximo; na verdade, o anestro é a fase mais longa do ciclo nessa espécie, pois pode durar de 4 a 10 meses, dependendo do indivíduo. Em algumas espécies de animais domésticos, o anestro pode ocorrer pós-parto. O interestro é uma fase de repouso entre as ondas foliculares e é característica do ciclo estral de espécies cuja ovulação é induzida, como os felinos e camelídeos, por exemplo, a lhama e a alpaca. Ao longo desta fase, não há comportamento sexual. Sua apresentação se deve ao fato de a monta não ter ocorrido ou de não ter sido capaz de induzir a ovulação, de modo que os folículos ovarianos regridem, dando origem a um novo recrutamento folicular. No caso dos felinos, foi relatado que até 50% das cópulas simples são insuficientes para causar ovulação. -/- Figura 12: etapas do ciclo estral da cadela. A ovulação ocorre dois dias após o início do cio. Fonte: RANGEL, 2018. -/- • _DURAÇÃO DOS CICLOS ESTRAIS E PARTICULARIDADES POR ESPÉCIE -/- As variações na duração do ciclo estral e as fases presentes entre as diferentes espécies domésticas são indicadas na tabela 2. Em particular, existe uma grande variação entre os indivíduos dependendo da duração das fases do ciclo estral em caninos e felinos, sendo difícil precisar sua duração, já que no caso da cadela o anestro é parte integrante do ciclo; na gata, a duração do ciclo anovulatório é diferente daquele em que ocorreu a ovulação. Assim, em um ciclo anovulatório, a gata pode manifestar períodos de estro de sete dias em média, seguidos de 2 a 19 dias sem estro (período denominado interestro), que são continuados com outro período de estro. Quando ocorre a ovulação e não é fértil, surge uma fase lútea de 35 a 37 dias e às vezes demora mais 35 dias para o animal apresentar um novo estro. Em cadelas, não há estágio de metaestro propriamente dito, pois a ovulação ocorre no início do estro, de forma que, ao término do comportamento sexual, os corpos lúteos já estão formados. Da mesma forma, as gatas não apresentam este estágio, portanto, se ocorrer ovulação, a fase de estro é imediatamente seguida pela fase diestro (figura 13). Figura 13: etapas e endocrinologia do ciclo estral da gata. Fonte: RANGEL, 2018. -/- Tabela 2: Duração do ciclo estral e suas fases nas diferentes espécies domésticas Espécie Ciclo (dias) Proestro (dias) Estro Metaestro (dias) Diestro (dias) Interestro (dias) Anestro Bovina 21 (17-24) 2 a 3 8-18 h 3 a 5 12 a 14 - Pós-parto (vacas de leite) Lactacional (vacas de corte) Ovina 17 (13-19) 2 24-36 h 2 a 3 12 - Estacional Caprina 21 2 a 3 36 h (24-48) 3 a 5 8 a 15 - Estacional Suína 21 (17-25) 2 24-72 h 2 14 - Lactacional Equina 21 (15-26) - 4-7 d - 14 a 15 - Estacional Canina - 9 (3-20) 9 d (3-20) - 63 ± 5 em gestantes 70 a 80 em vazias - 4 a 10 meses Felina - 1 a 2 7 d (2-19) - 35 a 37 8 (2-19) Estacional (30-90 d) Onde: d = dias. h = horas. -/- O ciclo estral das éguas é dividido apenas em duas fases, folicular e lútea; às vezes também conhecido como estro e diestro, respectivamente (figura 14). No caso de bovinos, a ovulação ocorre durante a fase de metaestro, entre quatro e 16 horas após o término do estro, ou de 30 a 36 horas após o início do estro (figura 15). Uma vez que a ovulação ocorre, e como consequência da queda repentina nas concentrações de estradiol, algumas vacas podem ter uma secreção vulvar sanguinolenta (figura 16). -/- Figura 14: endocrinologia do ciclo estral da égua. Fonte: RANGEL, 2018. -/- Figura 15: duração das etapas do ciclo estral das vacas. A ovulação ocorre no metaestro ou de 4 a 16 horas depois do término do cio. Fonte: RANGEL, 2018. -/- Figura 16: secreção vulvar sanguinolenta em vaca no estágio de metaestro • ___DESENVOLVIMENTO FOLICULAR -/- Embora o desenvolvimento folicular que leva à ovulação ocorra na fase folicular do ciclo estral e desempenhe um papel essencial no controle do ciclo, durante a fase lútea também ocorre o desenvolvimento folicular, mas os folículos não conseguem realizar sua maturação final e ovulação; mesmo em animais pré-púberes e em animais em anestro, há crescimento folicular. Por isso o desenvolvimento folicular é considerado um processo constante e dinâmico. As fêmeas têm certo número de folículos e ovócitos desde o nascimento, que em geral excede consideravelmente o número de oócitos que serão ovulados ao longo de suas vidas. Aproximadamente 90% dos folículos ovarianos começam a crescer, mas não ovulam e regridem, fato conhecido como atresia folicular. Estima-se que a atresia ocorra em qualquer época de desenvolvimento, mas é mais comum nos estágios dependentes de gonadotrofinas. A razão pela qual as ondas foliculares se desenvolvem durante a fase lútea, culminando na atresia, é que a progesterona produzida pelo corpo lúteo inibe a pulsação de LH. Assim, os folículos dominantes não obtêm suprimento suficiente desse hormônio para completar seu crescimento e ovular, causando sua regressão. Quando os folículos sofrem atresia, cessa a produção de estradiol e inibina, retomando a secreção de FSH, iniciando um novo recrutamento folicular. No final do período de diestro, quando as concentrações de progesterona começam a diminuir devido à luteólise, os estrogênios foliculares estimulam a secreção de LH, que fornece suporte suficiente para o crescimento e maturação dos folículos até que a ovulação seja desencadeada. -/- • ___OVULAÇÃO -/- A ovulação ocorre graças a um processo de remodelação, adelgaçamento e ruptura da parede folicular ao nível do estigma, que é uma área de tecido desprovida de vascularização, que se forma na superfície do folículo ovulatório (figura 17). Nas espécies domésticas, o folículo pode se desenvolver e ovular em qualquer parte da superfície do ovário, com exceção dos equinos, nos quais, devido à conformação anatômica característica do ovário desta espécie, a ovulação sempre ocorre ao nível da fossa de ovulação. O pico de LH que precede a ovulação estimula a síntese e a liberação local de PGE₂ e PGF₂α, bem como o início da produção de progesterona pelas células foliculares. Junto com o pico pré-ovulatório de LH, ocorre aumento da quantidade de fluido folicular, graças ao aumento da permeabilidade vascular da teca (ação estimulada em conjunto com a PGE₂) e ao aumento do suprimento sanguíneo no período pré-ovulatório; entretanto, a pressão intrafolicular não aumenta porque a parede do folículo está distendida. -/- Figura 17: ruptura do estigma folicular durante o processo de ovulação. Fonte: Internet. -/- A ovulação começa com um enfraquecimento da parede folicular, porque a PGF₂α causa a liberação de enzimas lisossomais das células da granulosa do folículo pré-ovulatório. O aumento local da progesterona faz com que as células da teca interna sintetizem colagenase, uma enzima que cliva as cadeias de colágeno do tecido conjuntivo, enfraquecendo a túnica albugínea que constitui a parede folicular. À medida que a parede enfraquece, forma o estigma - projeção avascular - na região apical, o que indica que a ovulação está se aproximando. O estigma é o local onde o folículo se rompe, permitindo a liberação do oócito, que sai envolto pelas células da coroa irradiada e acompanhado pelo fluido contido no antro folicular. -/- • ___CORPO LÚTEO -/- Após a ovulação, as células que permanecem na cavidade folicular desenvolvem um CL, que é considerado uma glândula temporária; sua função essencial é a produção hormonal e só está presente durante o diestro, na gestação e em algumas patologias como a piometra. A luteinização, ou formação do CL, é mediada principalmente pelo LH; no entanto, outros hormônios também estão envolvidos, como o hormônio do crescimento (GH). Assim, o tratamento com GH em animais hipofisectomizados foi encontrado para restaurar a função normal do CL; enquanto em espécies como roedores e caninos, a formação do CL é induzida e mantida pela prolactina, hormônio que não participa com essa finalidade no caso dos ruminantes. Durante a luteinização, os remanescentes das células da granulosa se diferenciam em grandes células lúteas, que são capazes de secretar progesterona continuamente (basal), e possuem grânulos secretores responsáveis pela produção e liberação de ocitocina e relaxina, esta última durante a gestação de algumas espécies. Enquanto as células da teca formam as pequenas células lúteas, que não secretam ocitocina e produzem progesterona em resposta ao LH (tônico). O corpo lúteo é, finalmente, constituído de células luteais grandes e pequenas, fibroblastos, células mioides, células endoteliais e células do sistema imunológico. Outro fator importante para o processo de luteinização é a formação de uma rede vascular, essencial para aumentar o fluxo sanguíneo para o CL. A referida formação vascular é mediada principalmente por dois fatores, fator de crescimento de fibroblastos (FGF), que no estágio inicial do desenvolvimento lúteo estimula a proliferação de células endoteliais pela ação de LH, e fator de crescimento endotélio-vascular (VEGF) que promove a invasão de células endoteliais para a camada de células da granulosa e a organização e manutenção da microvasculatura do CL. A luteólise é um processo essencial para retomar a ciclicidade das fêmeas. Sucede ao final do diestro quando não ocorre a fecundação e consiste na desintegração funcional e estrutural do CL. O primeiro refere-se à queda nas concentrações de progesterona, enquanto o segundo abrange a regressão anatômica da estrutura lútea e a recuperação do tamanho normal do ovário. A desintegração funcional, com a consequente queda nas concentrações de progesterona, ocorre antes que a regressão estrutural seja observada. Caso ocorra a gestação, a vida do CL é prolongada, visto que existem mecanismos que o resgatam de sua regressão. Durante o diestro, a progesterona produzida pelo CL bloqueia inicialmente a ação do estradiol e da ocitocina. Para esse último, causa uma redução no número de receptores de ocitocina endometrial, modificando sua estrutura. Desta forma, não é possível estabelecer um feedback positivo entre a ocitocina e a PGF₂α, que será responsável pela luteólise. No entanto, à medida que o diestro progride, a progesterona esgota seus próprios receptores, de modo que, no final desse estágio, ela perde a capacidade de inibir os receptores de ocitocina. O estradiol ativa, então, o centro de geração de pulso de ocitocina no hipotálamo e começa a induzir o endométrio tanto a formação de seus próprios receptores como os da ocitocina. A ocitocina e o estradiol trabalham juntos para aumentar a atividade e a concentração das enzimas envolvidas na síntese de PGF2α: a fosfolipase (enzima responsável pela liberação de ácido araquidônico de fosfolipídios da membrana celular) e a prostaglandina sintetase (enzima responsável pela transformação do ácido araquidônico em prostaglandina). Dessa forma, a ocitocina hipotalâmica, liberada de forma pulsátil pela neurohipófise, estimula inicialmente a síntese e secreção de PGF2α através do endométrio. A PGF2α possui receptores em grandes células do CL, que aumentam seu número à medida que o ciclo estral progride. Assim, quando a PGF2α endometrial atinge o ovário provoca a liberação de ocitocina lútea, desencadeando um mecanismo local de feedback positivo, que agindo no endométrio aumenta a secreção de PGF2α. Este circuito continua até que se alcance uma frequência de pulsos de PGF2α de aproximadamente cinco pulsos em 24 h, uma frequência que é capaz de desencadear a luteólise. Em equinos, o CL não produz ocitocina; no entanto, as células endometriais os produzem, então a secreção por PGF2α depende do estímulo da ocitocina que vem desta última fonte e da hipófise. Ressalte-se que o CL deve atingir certo grau de maturidade para que possa ser receptivo à ação da PGF2α. Isso é conseguido através da formação de receptores para a PGF2α e desenvolvendo a capacidade de expressar a prostaglandina sintetase, de modo que o CL requer para produzir PGF2α na forma autócrina para atingir a lise. As células endoteliais e as células imunes, típicas do CL, também intervêm no processo de luteólise estrutural. As células endoteliais secretam proteína quimiotática de monócitos (MCP-1), para recrutar macrófagos que migram através do epitélio vascular que foi sensibilizado pela PGF2α. Os macrófagos ativados secretam o fator necrose tumoral alfa (TNFα) que atua sobre as células do corpo lúteo causando apoptose celular. A PGF2α também participa da luteólise funcional, inibindo a síntese de progesterona e reduzindo a síntese e fosforilação da proteína responsável pelo transporte de colesterol para a mitocôndria (StAR). Além disso, a PGF2α induz a produção de endotelina-1 (ET1) pelas células endoteliais encontradas no corpo lúteo, as quais contribuem para uma redução na síntese de progesterona. -/- • ___FATORES QUE AFETAM O CICLO ESTRAL -/- A apresentação dos ciclos estrais é natural e impreterível; no entanto pode ser afetada por fatores ambientais como o fotoperíodo, e fatores específicos do indivíduo como a sociabilidade e amamentação, além dos fatores de manejo como a nutrição e, consequentemente, o ECC das fêmeas e a endocrinologia (hormônios). Todos esses fatores serão explicados a seguir. -/- Fotoperíodo -/- O fotoperíodo é determinado pelo número de horas de luz do dia ao longo do ano e é considerado um dos fatores ambientais mais consistentes e repetíveis. A quantidade diária de horas-luz tem maior efeito nas espécies sazonais para determinar o início da atividade reprodutiva. No entanto, em espécies poliéstricas contínuas, variações anuais na ciclicidade também podem ser observadas, um exemplo disso é a acentuada sazonalidade nos nascimentos de búfalos e zebuínos. Da mesma forma, o momento em que uma bezerra ou leitão nasce afeta a idade em que atinge a puberdade, e a explicação para isso é que o fotoperíodo a que estão expostos impacta seu desenvolvimento. Assim, observou-se que uma maior quantidade de horas de luz do dia (suplementação de quatro horas por dia por cerca de dois meses) pode adiantar o início da puberdade em novilhas. -/- Amamentação -/- Em espécies como suínos e bovinos de corte, o anestro pós-parto é mantido pelo estímulo que a prole exerce sobre a mãe no momento da amamentação. Dessa forma, sob esses estímulos a fêmea deixará de apresentar cio enquanto estiver alimentando as crias (figura 18). Na ação de amamentação, pensa-se que participa o reconhecimento filial, onde intervêm a visão, o olfato e a audição. A verdade é que a participação de estímulos táteis é questionável, visto que foram realizados estudos nos quais a denervação da glândula mamária não antecipou o reinício da ciclicidade em fêmeas que amamentavam seus filhotes. O mecanismo pelo qual a amamentação afeta a atividade reprodutiva está relacionado a um aumento da sensibilidade do hipotálamo ao efeito inibitório do estradiol. Nisso intervêm os fatores como os opioides (endorfinas, encefalinas e dinorfinas) e os glicocorticoides. -/- Figura 18: na esquerda porca amamentando seus filhotes e a direita vaca com o bezerro no pé. -/- Nutrição -/- A função reprodutiva depende da existência de um consumo de energia superior ao necessário para manter as funções fisiológicas essenciais do corpo e as funções de produção, como termorregulação, locomoção, crescimento, manutenção celular ou lactação. Considera-se que o efeito da nutrição na atividade reprodutiva é maior nas fêmeas do que nos machos, devido a uma maior demanda de energia exigida pelas fêmeas para manter uma gestação do começo ao fim (figura 19). Quando o consumo de energia é insuficiente, a função reprodutiva é bloqueada para não comprometer as funções vitais. Desta forma, os animais pré-púberes que sofreram deficiências nutricionais durante o seu crescimento apresentam um atraso no início da sua atividade reprodutiva. Assim, existem sinais metabólicos ao nível do sistema nervoso central, como o IGF-I e a leptina, que indicam ao organismo o grau de desenvolvimento somático do indivíduo. Animais adultos que já iniciaram sua atividade reprodutiva também podem ser afetados pela nutrição, de forma que sua ciclicidade pode ser interrompida por perdas de peso corporal igual ou superior a 20%. Da mesma forma, o reinício da atividade ovariana pós-parto é retardado quando as fêmeas estão submetidas a dietas deficientes em proteínas, energia, minerais etc. -/- Figura 19: comparação das condições corporais em vacas leiteiras. À esquerda: uma vaca com uma condição corporal adequada, que está ciclando normalmente. À direita: vaca em péssimo estado corporal e, portanto, em anestro. -/- As deficiências nutricionais de energia e proteína não afetam diretamente os níveis circulantes de FSH em animais intactos, mas o efeito da desnutrição pode ser mascarado por feedback negativo dos hormônios ováricos sobre a secreção de FSH, uma vez que os animais ovariectomizados com uma boa condição corporal têm maiores concentrações de FSH que os de condição corporal pobre. Em contraste, a secreção de LH é altamente sensível a deficiências nutricionais e a mudanças na condição corporal. O diâmetro do folículo dominante é reduzido quando os animais estão a perder peso, o que se correlaciona com uma diminuição na produção de estradiol, o que diminui a secreção de LH e consequentemente é evitada a maturação folicular terminal e a ovulação, o que os animais entrarem em anestro. No pós-parto, a ciclicidade se recupera quando as concentrações basal e média de LH, bem como a sua frequência de secreção aumenta para exceder o nadir do balanço energético (este último é atingido quando o fornecimento de energia está no ponto mínimo e está excedido pelas exigências de mantença do organismo). O ECC possui relação direta com as taxas reprodutivas dos animais. Em bovinos um ECC ideal é entre 3,5 e 4,5 para o período reprodutivo. Com relação do ECC sobre o estro, estima-se que num rebanho de 100 vacas com ECC 2,5 cerca de 47 entram em cio, e dessas apenas 27 conseguem conceber. Por outro lado, no mesmo rebanho de 100 vacas, mas com ECC igual a 3, cerca de 62 vacas entram em cio normalmente e dessas 40 conseguem engravidar. Já com um ECC 3,5, 68 vacas entram em estro normalmente e dessas 46 conseguem engravidar. -/- Efeitos independentes de gonadotropinas -/- A importância das gonadotropinas no crescimento e maturação folicular já foi revisada neste trabalho; também deve ser mencionado que, além das gonadotropinas, existem outros fatores que podem intervir na regulação do desenvolvimento folicular e da ciclicidade. Um exemplo do anterior é o flushing: manejo nutricional que consiste na suplementação de uma fonte energética de rápida absorção, em que o aumento do número de folículos em desenvolvimento tem inicialmente um controle independente do eixo hipotálamo-hipófise-gonodal e é mediado por fatores que participam do controle do metabolismo energético do animal, que estão intimamente relacionados às mudanças nutricionais. Esses fatores incluem insulina, fator de crescimento semelhante à insulina I (IGF-I) e hormônio do crescimento (GH). O IGF-I é secretado principalmente pelo fígado em resposta à estimulação do GH e é creditado na regulação de muitas das ações do GH, portanto, quando o GH é administrado, as concentrações de insulina e IGF-I estão aumentadas e um aumento no número de folículos ovarianos é observado em suínos, bovinos, caprinos e ovinos. O IGF-I, da mesma forma, modula a secreção de GH por um efeito de feedback negativo, de modo que no início do pós-parto, quando o animal está em balanço energético negativo, as concentrações de insulina e IGF-I diminuem, enquanto as de GH aumentam. A insulina e o IGF-I estimulam a proliferação e esteroidogênese das células da granulosa e da teca no folículo. Outro fator que interfere na manifestação da atividade reprodutiva é a quantidade de gordura corporal. -/- Fatores sociais (sociabilidade) -/- Existem diferentes interações sociais que são capazes de modificar o início da atividade reprodutiva durante o período de transição para a puberdade ou para a estação reprodutiva, ou ainda de sincronização e manifestação dos ciclos estrais. Entre os fatores sociais o efeito fêmea-fêmea foi bem documentado em pequenos ruminantes, onde a introdução de fêmeas ciclando (em cio) a um grupo de fêmeas em anestro estacional adianta a estação reprodutiva induzindo e sincronizando a ovulação. Quando as porcas pré-púberes, por outro lado, são alojadas em pequenos grupos de dois ou três animais, o início da puberdade é retardado em comparação com indivíduos alojados em grupos maiores. A bioestimulação das fêmeas através do contato com um macho é conhecida como efeito macho (figura 20). Foi determinado que imediatamente após a introdução do macho se inicia o desenvolvimento e maturação folicular como uma resposta a um aumento na secreção de LH. Esse efeito será explicado em próximos trabalhos de minha autoria. -/- Estresse -/- Em vários estudos, foi demonstrado que o estresse pode bloquear a ciclicidade, devido ao aumento nas concentrações de corticosteroides ou opioides que causam redução na resposta da hipófise ao GnRH. Alojamentos inadequados, um ambiente social adverso e deficiências no manejo são considerados condições estressantes. -/- Figura 20: efeito do macho sobre as fêmeas (suínos). -/- REFERÊNCIAS BIBLIOGRÁFICAS -/- AURICH, Christine. Reproductive cycles of horses. Animal reproduction science, v. 124, n. 3-4, p. 220-228, 2011. AISEN, Eduardo G. Reprodução ovina e caprina. MedVet, 2008. BARTLEWSKI, Pawel M.; BABY, Tanya E.; GIFFIN, Jennifer L. Reproductive cycles in sheep. Animal reproduction science, v. 124, n. 3-4, p. 259-268, 2011. BEARDEN, Henry Joe et al. Reproducción animal aplicada. México: Manual Moderno, 1982. CHRISTIANSEN, I. J. Reprodução no cão e no gato. São Paulo: Manole, 1988. CONCANNON, Patrick W. Reproductive cycles of the domestic bitch. Animal reproduction science, v. 124, n. 3-4, p. 200-210, 2011. COLAZO, Marcos Germán; MAPLETOFT, Reuben. Fisiología del ciclo estral bovino. Ciencia Veterinaria, v. 16, n. 2, p. 31-46, 2017. CUPPS, Perry T. (Ed.). Reproduction in domestic animals. Elsevier, 1991. . Fisiologia Clínica do Ciclo Estral de Vacas Leiteiras: Desenvolvimento Folicular, Corpo Lúteo e Etapas do Estro. . Fisiologia do Estro e do Serviço na Reprodução Bovina. DERIVAUX, Jules; BARNABÉ, Renato Campanarut. Reprodução dos animais domésticos. Acribia, 1980. DUKES, Henry Hugh; SWENSON, Melvin J.; REECE, William O. Dukes fisiologia dos animais domésticos. Editora Guanabara Koogan, 1996. FATET, Alice; PELLICER-RUBIO, Maria-Teresa; LEBOEUF, Bernard. Reproductive cycle of goats. Animal reproduction science, v. 124, n. 3-4, p. 211-219, 2011. FERREIRA, A. de M. Reprodução da fêmea bovina: fisiologia aplicada e problemas mais comuns (causas e tratamentos). Juiz de Fora: Minas Gerais–Brasil, p. 422, 2010. FORDE, N. et al. Oestrous cycles in Bos taurus cattle. Animal reproduction science, v. 124, n. 3-4, p. 163-169, 2011. HAFEZ, Elsayed Saad Eldin; HAFEZ, Bahaa. Reprodução animal. São Paulo: Manole, 2004. HIDALGO, Galina et al. Reproducción de animales domésticos. México: Limusa, 2008. HOPPER, Richard M. (Ed.). Bovine reproduction. John Wiley & Sons, 2014. MCKINNON, Angus O. et al. (Ed.). Equine reproduction. John Wiley & Sons, 2011. MEIDAN, R. et al. Intraovarian regulation of luteolysis. JOURNAL OF REPRODUCTION AND FERTILITY-SUPPLEMENT-, p. 217-228, 1999. NETT, T. M. et al. Pituitary receptors for GnRH and estradiol, and pituitary content of gonadotropins in beef cows. I. Changes during the estrous cycle. Domestic Animal Endocrinology, v. 4, n. 2, p. 123-132, 1987. NISWENDER, Gordon D. et al. Mechanisms controlling the function and life span of the corpus luteum. Physiological reviews, v. 80, n. 1, p. 1-29, 2000. NORMAN, Anthony W.; LITWACK, Gerald. Hormones. Academic Press, 1997. PATTERSON, David J. et al. Control of estrus and ovulation in beef heifers. Veterinary Clinics: Food Animal Practice, v. 29, n. 3, p. 591-617, 2013. PLANT, Tony M.; ZELEZNIK, Anthony J. (Ed.). Knobil and Neill's physiology of reproduction. New York: Academic Press, 2014. RANGEL, L. Ciclo estral. In. PORTA, L. R.; MEDRANO, J. H. H. Fisiología reproductiva de los animales domésticos. Cidade do México: FMVZ-UNAM, 2018. REKAWIECKI, R. et al. Regulation of progesterone synthesis and action in bovine corpus luteum. J Physiol Pharmacol, v. 59, n. suppl 9, p. 75-89, 2008. REYNOLDS, L. P.; REDMER, D. A. Growth and development of the corpus luteum. JOURNAL OF REPRODUCTION AND FERTILITY-SUPPLEMENT-, p. 181-191, 1999. RIPPE, Christian A. El ciclo estral. In: Dairy Cattle Reproduction Conference. 2009. p. 111-116. SANGHA, G. K.; SHARMA, R. K.; GURAYA, S. S. Biology of corpus luteum in small ruminants. Small Ruminant Research, v. 43, n. 1, p. 53-64, 2002. SARTORI, R.; BARROS, C. M. Reproductive cycles in Bos indicus cattle. Animal Reproduction Science, v. 124, n. 3-4, p. 244-250, 2011. SENGER, Phillip L. et al. Pathways to pregnancy and parturition. Current Conceptions, Inc., 1615 NE Eastgate Blvd., 1997. SMITH, Matthew J.; JENNES, Lothar. Neural signals that regulate GnRH neurones directly during the oestrous cycle. Reproduction (Cambridge, England), v. 122, n. 1, p. 1-10, 2001. SOEDE, N. M.; LANGENDIJK, P.; KEMP, B. Reproductive cycles in pigs. Animal reproduction science, v. 124, n. 3-4, p. 251-258, 2011. WEBB, R. et al. Mechanisms regulating follicular development and selection of the dominant follicle. REPRODUCTION-CAMBRIDGE-SUPPLEMENT-, p. 71-90, 2003. WHITTEMORE, Colin et al. The science and practice of pig production. Blackwell Science Ltd, 1998. -/- FIXAÇÃO DO ASSUNTO -/- 1. Disserte sobre o papel do eixo hipotálamo-hipófise-gonadal sobre o ciclo estral dos animais domésticos. -/- 2. Qual a importância do controle endócrino para a apresentação do estro? -/- 3. De acordo com a frequência do ciclo estral, como se classificam as vacas, porcas, éguas, gatas, cadelas, cabras e ovelhas? -/- 4. Defina e diferencia monoéstricas e poliéstricas. -/- 5. Um produtor possui fêmeas em primeiro cio, e deseja introduzi-las na vida reprodutiva. Explique por que não é ideal utilizar fêmeas em primeiro cio na vida reprodutiva? -/- 6. Quais são as etapas do ciclo estral? -/- 7. Defina e diferencia fase folicular e fase lútea. -/- 8. Defina e diferencie os tipos de ovulação e formação do corpo lúteo nas espécies domésticas? -/- 9. Quais os eventos ocorrem durante as fases proestro, estro, metaestro, diestro e inter-estro. -/- 10. Explique por que a égua possui ciclo diferente da vaca? -/- 11. Disserte e diferencie a endocrinologia do ciclo estral da cadela, da égua, da gata e da vaca? -/- 12. Fale sobre o desenvolvimento folicular durante o ciclo estral. -/- 13. Disserte sobre a ovulação das fêmeas domésticas. -/- 14. Defina e diferencie luteinização e luteólise. -/- 15. Disserte sobre os principais fatores que afetam a apresentação e manifestação do ciclo estral. -/- 16. Qual o papel da nutrição e do ECC sobre o ciclo estral? -/- 17. Defina e diferencie efeito fêmea-fêmea e efeito macho sobre a apresentação do estro nas fêmeas. -/- 18. Um produtor de ruminantes possui um rebanho de 10 bezerras, 10 cabritas e 10 cordeiras, todas com 1 mês de idade. Elabore um projeto reprodutivo para que essas fêmeas tenham seu primeiro parto após ciclos estrais normais e sem complicações. -/- Leve em consideração os fatores de idade ao primeiro cio ou a puberdade que é diferente entre as espécies, bem como aos fatores que podem afetar a manifestação do cio. (shrink)
COMPORTAMENTO SEXUAL DOS ANIMAIS OBJETIVO O estudante explicará a conduta sexual de fêmeas e machos de diferentes espécies domésticas para detectar a fase de receptividade sexual, com a finalidade de programar de maneira adequada a monta ou a inseminação artificial. A observação da conduta sexual dos animais é indispensável para o sucesso da estação reprodutiva em uma determinada propriedade. Logo, o estudante obterá o alicerce necessário sobre os pontos teóricos e práticos a serem observados para a seleção dos animais aptos (...) para a reprodução, além dos meios de identificação comportamental dos animais no que se refere a atividade cíclica das fêmeas. • _____INTRODUÇÃO O comportamento sexual característico de fêmeas e machos devem-se, por um lado, ao ambiente endócrino do organismo e, por outro, a uma influência da aprendizagem obtida ao longo da vida. Este comportamento é indispensável para alcançar a cópula em um momento apropriado, a fim de alcançar uma fertilização que culmina com a gestação. Conhecer as características do comportamento reprodutivo das diferentes espécies domésticas é de grande utilidade para poder determinar o momento ideal de serviço nas fêmeas, bem como para avaliar a capacidade reprodutiva dos machos; também serve para detectar algumas alterações que modificam o comportamento sexual normal. No caso das fêmeas, o comportamento sexual distintivo está limitado ao estágio do ciclo estral conhecido como estro, enquanto nos machos, a atividade reprodutiva pode acontecer a qualquer momento. Nas fêmeas e nos machos das espécies sazonais, o comportamento sexual é suprimido ou diminuído, respectivamente, durante as épocas de anestro. Existem espécies em que certas mudanças observáveis no comportamento ou na genitália são suficientes para identificar as fêmeas no cio. Outras espécies, entretanto, requerem necessariamente a presença do macho para poder expressar seu comportamento estral e somente quando ele estiver presente será possível estabelecer o momento em que a fêmea está em estro. Em determinadas propriedades, o macho reprodutor somente é utilizado para cobrir as fêmeas em cio; o trabalho de detecção das fêmeas que pode ser desgastante para o reprodutor é realizado por um outro macho conhecido como rufião. Esse animal não cobre as fêmeas, apenas é utilizado para a observação de fêmeas aptas à monta. É comum que, quando se fala em comportamento sexual, seja dada mais importância à fêmea do que ao macho, pois seu comportamento é aquele que se limita a períodos curtos, além de ser aquele que permitirá a cópula; mas os machos também têm uma participação muito ativa, pois além de atrair e detectar as fêmeas no cio, devem ser capazes de realizar a cópula com sucesso. Através da conduta sexual dos machos é observada sua eficiência reprodutiva, isto é, se ele possui a capacidade de detecção e cobrição padrão esperada de um reprodutor. Se as observações forem negativas, o ideal é a realização de um exame andrológico. • _____ETAPAS DO COMPORTAMENTO SEXUAL O comportamento sexual feminino possui três finalidades: atrair o macho (atração) por meio de sinais e da busca ativa do mesmo, estimular o macho para realizar a cópula (proceptividade), ao qual alcançam exibindo-se ante o mesmo, e facilitar a cópula (receptividade) ao permanecer imóvel, realizando a lordose (figura 1) e o movimento lateral da cauda. Figura 1: reflexo de lordose na vaca e na gata, ambas em cio. Os machos também apresentam três estágios comportamentais; na primeira, procuram ativamente as fêmeas, realizam atividades de cortejo, se aproximam da fêmea e se estimulam sexualmente (fase pré-copulatória) (figura 2). Assim que detectam uma fêmea no cio, realizam a monta, que inclui movimentos pélvicos, penetração e ejaculação (fase copulatória). No final, eles exibem um estágio de descanso e desinteresse pela fêmea no cio, conhecido como estágio pós-copulador ou refratário. Figura 2: comportamento sexual de um macho caprino ante uma fêmea. A etapa pré-copulatória consiste na aproximação do macho, no ato de fugar que é o de cheirar a vulva da fêmea. Quando a fêmea urina o macho cheira e produz o reflexo de flehmen. Por último o macho escoiceia a fêmea para depois realizar a monta na etapa copulatória. • _____ESTIMULAÇÃO SEXUAL A estimulação sexual é um componente essencial para que o comportamento sexual ocorra. Como parte desse estímulo, machos e fêmeas de algumas espécies secretam substâncias voláteis conhecidas como feromônios fora do corpo, que exercem sua ação sobre outros indivíduos da mesma espécie. Essas substâncias são detectadas pelo órgão vomeronasal (figura 3), também conhecido como órgão de Jacobson; localizado no osso vômer, entre o nariz e o céu da boca; que possui dois dutos nasopalatinos cujas aberturas estão localizadas atrás do lábio superior. A superfície desses dutos e do órgão é recoberta por um epitélio com neurônios bipolares sensoriais que captam feromônios e enviam informações, por meio de um estímulo nervoso, ao bulbo olfatório acessório e para o hipotálamo. Para facilitar a entrada de feromônios no órgão vomeronasal, os ruminantes machos e equinos, bem como algumas fêmeas, realizam o reflexo de Flehmen (figura 4), que consiste em um movimento facial em que o lábio superior é levantado para expor a abertura dos dutos nasopalatinos. Determinou-se que as fêmeas produzem feromônios que são secretados na urina, bem como no muco cervical e vaginal, a fim de atrair o macho e promover sua atividade sexual; estimulação conhecida como efeito feminino indireto. Esses feromônios também podem estimular outras fêmeas; na verdade, foi visto que as fêmeas que estão juntas sincronizam a apresentação de seu estro e podem até iniciar a estação reprodutiva juntas. Este fenômeno é conhecido como efeito feminino-feminino ou efeito feminino direto. Figura 3: olfateio da genitália pelo macho. Aqui o macho é atraído pelo feromônio que a fêmea produz e exala pela vagina. Figura 4: movimento do lábio superior típico do reflexo de Flehmen. Os machos sexualmente ativos, por sua vez, também emitem feromônios, que podem ser detectados na urina, na secreção de algumas glândulas sebáceas, nas glândulas ante-orbitais de carneiros e, no caso de porcos, na saliva (figura 5). Essas emissões são dependentes de andrógenos, logo os machos castrados não conseguem produzi-las. Esses feromônios, sinergicamente com as vocalizações e o comportamento do macho, exercem um efeito bioestimulante eficiente conhecido como efeito macho, que é uma alternativa ecológica e econômica para a manipulação do ciclo estral de fêmeas domésticas. O efeito macho tem sido usado com sucesso para esse fim em ovinos, caprinos, suínos e, em menor medida, em bovinos. Figura 5: salivação em reprodutores suínos, com o qual estimulam as fêmeas. Com o efeito macho, é possível causar um aumento na frequência de secreção dos pulsos de LH, o que acelera o início da atividade reprodutiva nas fêmeas durante os períodos pré-púbere, estacional ou pós-parto; também prolonga a estação reprodutiva em fêmeas sazonais. Há não mais de uma década, considerava-se que esse efeito só funcionava em tempos de transição para a estação reprodutiva ou para o anestro; agora sabemos que os machos podem estimular as fêmeas mesmo durante anestro profundo, que ocorre desde que sejam estimulados e exibam comportamento sexual suficiente para interagir com as fêmeas. É importante notar que quando as fêmeas iniciam sua atividade reprodutiva, o efeito macho também pode ser usado para sincronizar a apresentação do cio e da ovulação. O efeito macho é mais eficiente quando é um estímulo novo, pois a introdução de um macho desconhecido, ou com o qual as fêmeas não tiveram contato anterior, é suficiente para causar ciclidade independentemente de estarem em coexistência com outro macho; este detalhe é importante visto que se considerava anteriormente que as fêmeas tiveram que permanecer completamente isoladas de todos os machos por, pelo menos, duas semanas. Foi constatado, inclusive, que toda vez que as fêmeas são expostas a um novo macho, ocorre um aumento na frequência dos pulsos de LH, com a consequente ovulação, ainda que a exposição ao macho não seja permanente ou constante. Foi sugerido que a presença intermitente de machos, algumas horas a cada 12 horas, é suficiente para estimular as fêmeas. Em ovelhas, foi descrito que a ovulação ocorre entre 50 e 56 h após o primeiro contato com o macho, variando de 30 a 72 h, tempo que pode dobrar quando se trata de animais pré-púberes. • _____DEFINIÇÃO DE ESTRO A palavra estro vem do grego oistros, que significa exaltação ou desejo desenfreado e se refere ao comportamento errático e nervoso que as vacas adotam quando são picadas pela mutuca ou mosca do estábulo (família Oestridae). O estro é uma fase reprodutiva que faz parte do ciclo estral das fêmeas de todos os mamíferos domésticos. É a fase mais fácil de reconhecer dentro deste ciclo, porque mudanças características são observadas no comportamento, nos ovários e nos órgãos genitais internos e externos. • _____CARACTERÍSTICAS DO ESTRO O estro é considerado a partir das características comportamentais das fêmeas, é a única fase do ciclo estral em que a fêmea mostra interesse pelo macho, aceitando o acasalamento e a cópula; por isso é definido como o período de receptividade sexual. O sinônimo utilizado com mais frequência é o cio. Se o foco de estudo dessa fase são as alterações que ocorrem no útero, o estro caracteriza a fase proliferativa, já que os estrogênios estão elevados, o que promove a proliferação tanto do endométrio quanto das glândulas endometriais. Nos genitais também ocorrem modificações que visam atrair o macho e favorecer a cópula, entre outras estão a hiperemia e o edema vulvar, além da secreção de muco cervical e vaginal (figura 6). Do ponto de vista dos processos ovarianos, o estro é uma fase que se classifica dentro da fase folicular do ciclo estral, ou seja, quando ocorre o desenvolvimento folicular. Os eventos endócrinos correspondentes podem ser consultados no trabalho sobre a endocrinologia reprodutiva . É necessário ressaltar que na maioria das espécies domésticas o comportamento estral ocorre quando as concentrações de estradiol são elevadas. A exceção pode ser observada na cadela, cujos níveis máximos de estradiol ocorrem durante o proestro, de forma que, quando o estro começa, as concentrações desse hormônio começam a diminuir. Esse declínio continua durante o estro, culminando quando as concentrações de estradiol caem para menos de 15 pg/ml. Isso acontece porque nessa espécie o pico de LH ocorre durante a transição do proestro para o estro, de modo que as concentrações de progesterona chegam a cerca de 1 ng/ml quando o comportamento estral começa e continuam a aumentar durante o estro. Figura 6: muco cristalino e fluido, característico de vacas em estro. • _____FATORES QUE PODEM AFETAR A MANIFESTAÇÃO DO ESTRO É importante lembrar que existem diferenças no grau e na forma em que ocorrem a manifestação e a duração do estro nas espécies animais, além da existência de variações individuais. Ainda temos parâmetros médios que podem ser usados para descrever este período em diferentes espécies. Em bovinos, por exemplo, pode-se fazer uma distinção entre bovinos especializados na produção de carne e bovinos leiteiros, onde a intensidade com que o estro se manifesta é menor no primeiro grupo, principalmente quando se trata de bovinos zebuínos. Em estudos genéticos realizados com bovinos, por outro lado, tem-se considerado que a intensidade da expressão da conduta sexual é uma característica hereditária (h2 = 0,21). Além disso, existe uma grande diversidade de fatores ambientais e sociais que podem modificar a apresentação dos ciclos estrais e a manifestação do comportamento estral. Fotoperíodo O principal regulador da estacionalidade reprodutiva é o fotoperíodo. A influência da mudança das horas do dia na atividade reprodutiva e, portanto, na apresentação do estro é amplamente determinada pela localização geográfica, e é maior à medida que a distância do equador aumenta. O fotoperíodo afeta principalmente as espécies que apresentam estro apenas em uma época do ano, conhecidas como poliéstricas sazonais. Nessas espécies, o fotoperíodo também pode modificar o tempo de início da puberdade. Nutrição Uma deficiência nutricional pode encurtar a estação de acasalamento e até mesmo suspendê-la se a desnutrição for severa. Em bovinos de corte, o reinício da atividade reprodutiva pós-parto ou puberdade também pode ser retardado quando a ingestão nutricional é inadequada. Aspectos sociais A superlotação pode atrasar o início da puberdade em animais jovens ou causar a ausência de ciclos estrais em adultos. Os efeitos fêmea e macho como estimulantes da ciclicidade também devem ser levados em consideração. Hierarquia Observado em cães cujas matilhas têm uma classificação hierárquica bem estabe-lecida, na qual os machos subordinados não têm permissão para acasalar com as fêmeas dominantes. Este comportamento é observado até mesmo em cães domésticos nos quais uma cadela dominante não permite ser montada facilmente, mesmo apresentando estro. Da mesma forma, em bovinos zebuínos, as vacas dominantes não aceitam que outras fêmeas as montem o que pode dificultar a detecção de estro a campo. Tipo de alojamento Quanto mais intensa a acomodação, menor a manifestação do comportamento sexual, pois há menos espaço para os animais interagirem entre si. É menos frequente observar as manifestações de estro se o local onde os animais estão alojados for muito grande e eles tiverem que caminhar grandes extensões para encontrar um animal com o qual possam se relacionar. Problemas nos membros Existem anomalias, principalmente nos membros posteriores, que impedem a fêmea de ter comportamento homossexual ou de aceitar a monta, pois causa dor tanto ao montar quanto ao ser montada. •_DURAÇÃO DO ESTRO E A RELAÇÃO COM O MOMENTO DA OVULAÇÃO Foi estabelecido que o pico de LH pode ser um bom preditor do tempo de ovulação, pois há uma alta correlação entre o tempo decorrido do pico de LH e a ovulação. Na Tabela 1 pode-se ver os períodos de duração do estro e o tempo em que o pico de LH e a ovulação ocorrem nas diferentes espécies domésticas. Tabela 1: momento de ovulação em diferentes espécies domésticas e a relação com o pico de LH. Espécie Duração do estro Ovulação Pico de LH até a ovulação (horas) Bovina 18 h (8 a 18 h) 10 h (4 a 16 h) de finalizado o estro 28 (24 a 32) Ovina 24 a 36 h 18 a 24 h após iniciado o estro 24 a 26 Caprina 36 h (24 a 48 h) 30 a 35 h após o início do estro 28 Suína 48 a 72 h 24 a 48 h após o início do estro 40 Equina 7 d (2 a 12 d) 1 a 2 d antes de finalizar o estro -- Canina 9 d (3 a 20 d) 2 a 3 d do início do estro (pode variar) 48 a 60 Felina 7 d (3 a 16 d) Induzida pela cópula 26 a 28 h depois 24 Onde d = dias; h = horas. Vale ressaltar que em equinos o aumento nas concentrações de LH ocorre gradati-vamente; um pico pré-ovulatório agudo não é visto como no resto da espécie, uma vez que o nível máximo desse hormônio é atingido um a dois dias após a ovulação. No entanto, deve-se entender que, no momento da ovulação, as concentrações de LH são altas o suficiente para desencadear a ovulação, como em qualquer outra espécie. A gata também apresenta uma particularidade no que diz respeito à ovulação, já que é um evento induzido pela cópula que estimula a liberação de LH, duas a quatro horas depois. No entanto, foi relatado que, às vezes, o pico de LH de uma única cópula pode ser insuficiente para induzir um nível adequado de LH, causando ovulação apenas em aproximadamente 50% das fêmeas. Por outro lado, verificou-se que entre 30 e 40% das fêmeas podem ovular espontaneamente. Além dos felinos, outras espécies com ovulação induzida são os leporídeos (por exemplo, o coelho e a lebre), os camelídeos (por exemplo a lhama, a alpaca, a vicunha e a camelo fêmea) e os mustelídeos (por exemplo, o visom, o furão e o arminho). • _____MECANISMOS PARA ATRAIR O MACHO Os mecanismos femininos de atração do macho podem ser divididos em dois tipos, de um lado, alterações na genitália externa, que por sua vez são consequência de processos endócrinos e modificações na genitália interna. Por outro lado, mudanças de comportamento, que por sua vez se dividem em dois tipos: cortejo e acasalamento. Mudanças nas genitais É importante observar que nas fêmeas todas as adaptações genitais são mediadas por altas concentrações de estrogênios, entretanto, é interessante notar que os efeitos podem variar de uma espécie para outra. Um padrão típico é o útero ficar túrgido, uma vez que os estrogênios promovem a contração muscular, aumento do suprimento sanguíneo e proliferação das glândulas endometriais; em éguas, ao contrário, os estrogênios fazem com que o útero fique edemaciado e sem tonalidade, enquanto o colo do útero parece relaxado, observações que devem ser consideradas ao realizar a palpação retal e a ultrassonografia. A imagem ultrassonográfica do útero da égua tem a aparência de uma “roda de vagão” (figura 7). Em carnívoros, o útero também apresenta edema durante o estro. Figura 7: imagem de ultrassom de um corte transversal do útero de uma égua em estro; observa-se edema grau 3, que provoca a típica imagem de “roda de carroça”. Fonte: HV-UFRPE. Outro efeito promovido pelos estrogênios é a produção de um muco cervical cristalino com certa viscosidade, que, mesmo quando ocorre em todos os animais, é mais abundante e característico nas vacas e, posteriormente, nas porcas (figura 6). O muco tem por finalidade favorecer a passagem dos espermatozoides para o útero, bem como reter aqueles que não são viáveis para que sejam fagocitados ou eliminados junto com as secreções vaginais. A secreção da cérvix é composta por glicoproteínas; dois tipos principais são reconhecidos: a sialomucina, que faz parte de um muco viscoso produzido nas áreas basais das criptas cervicais, e a sulfomucina, que é um muco altamente viscoso, um produto das células apicais. No caso da cadela, uma secreção com sangue pode ocorrer através da vulva (figura 8), isso se deve a uma diapedese causada por alta permeabilidade vascular em resposta aos estrogênios. A maioria das fêmeas apresentam esse corrimento durante o proestro e cerca de 70% continuarão com ele durante o estro. Uma proporção muito pequena de cadelas pode até continuar a ter secreção serossanguínea durante o início do diestro. Deve-se considerar que, quando a ausência de sangramento é relatada em cadelas, na verdade, pode ser devido à falta de observação, uma vez que pode ser escasso, ou passar despercebido se a mesma lamber com frequência, se a cor do pelo for escura ou possuir pelos muito longos, ou se for em grandes áreas onde a secreção é difícil de observar. Figura 8: aparência vulvar em cadelas. Esquerda: edema e hiperemia. À direita: secreção vulvar com sangue. O grau de hiperemia e edema vulvar varia nas diferentes espécies, sendo muito evidente nas porcas (figura 9). Em contraste, as gatas não têm receptores de estradiol nos lábios vulvares, razão pela qual não manifestam edema vulvar ou hiperemia. O inchaço acentuado e o alargamento da vulva na cadela são característicos da fase de proestro, devido às peculiaridades hormonais do seu ciclo. Na tabela 2 são mostradas as alterações mais comuns que ocorrem na genitália das diferentes espécies de mamíferos domésticos. Figura 9: aparência vulvar em porcas. Esquerda: vulva normal. À direita: hiperemia e edema típicos da fase de estro. Tabela 2: Mudanças características na genitália interna e externa, que ocorrem durante o estro em diferentes espécies domésticas Espécie Genitais externos Genitais internos Bovina Secreção abundante de muco cristalino. Pouco edema vulvar aparente e hiperemia. Turgor uterino Ovina Pouca secreção de muco abundante. Não há sinais muito evidentes. Turgor uterino Caprina Pouca secreção de muco abundante. Não há sinais muito evidentes. Turgor uterino Suína Pouca secreção de muco abundante. Hiperemia e edema vulvar muito aparente. Turgor uterino Equina Edema vulvar; as dobras dos lábios são frouxas. Vulva hiperêmica e com muco. Útero flácido e edematoso. Colo do útero macio e relaxado Canina Pode haver secreção com sangue. Edema vulvar muito aparente, lábios mais macios e alongados. Útero edematoso Felina Não há sinais evidentes. Turgor uterino Fonte: compilação de vários autores. Mudanças comportamentais Foi demonstrado que o comportamento sexual nas fêmeas é determinado pela secreção de estrogênios, principalmente 17β-estradiol, que percorre a corrente sanguínea como um sinal humoral e atinge o sistema nervoso central ao nível do hipotálamo, que possui um grupo de células entre o quiasma óptico e a região pré-óptica anterior, denominado centro sexual. Esses neurônios são responsáveis por transformar o estímulo humoral em um estímulo nervoso, que por sua vez induz o comportamento sexual. Em espécies como ovinos, e em menor grau os bovinos, observou-se que para a manifestação do comportamento estral ocorrer, o cérebro requer uma exposição prévia à progesterona que o sensibiliza para a ação dos estrogênios, que se dá pelas concentrações do ciclo anterior. Por isso, constatou-se que a primeira ovulação da estação reprodutiva ou puberdade (no caso dos bovinos a primeira ovulação pós-parto) ocorre sem manifestação de estro. É até a segunda ovulação que o comportamento normal do estro será observado. Esta condição é conhecida como ovulação silenciosa ou estro silencioso, e é indetectável para o trabalhador, o produtor e o veterinário, e que possui como principal causa os distúrbios nutricionais. Devido nas fêmeas o comportamento sexual se limitar a um curto período de horas ou dias, enquanto nos machos há poucas variações em seu comportamento sexual, aparentemente é ela quem inicia o comportamento de cortejo. Aparentemente, isso se deve ao fato de que, nos machos, o padrão de secreção de testosterona é constante e mostra apenas leves diminuições fora da estação reprodutiva em espécies sazonais. Nos machos, a testosterona é transformada no cérebro em estradiol para produzir o comportamento reprodutivo. Durante a fase de estro ocorrem manifestações comportamentais comuns a todas as espécies, como as seguintes: Aumento geral da atividade física, isso se reflete no aumento da locomoção e que é direcionado à busca do macho; Inquietação e movimento ao menor estímulo; Ingestão diminuída; Diminuição da produção de leite; Aumento gradual da temperatura corporal; Micção frequente na presença do macho: isso é importante, pois os feromônios responsáveis pela atração do macho estão presentes na urina; Vocalizações frequentes, típicas de cada espécie; Atração do macho. Na tabela 3 são apresentadas as características comportamentais mais comuns das fêmeas das diferentes espécies de mamíferos domésticos. Tabela 3: Comportamentos característicos durante o estro em diferentes espécies Espécie Conduta Bovina Monta entre fêmeas (conduta homossexual). Batidas antes da monta (figura 10). Aumento nas vocalizações. Ovina Movimentação da cauda. Pode haver conduta homossexual. Cabeça para trás em busca do macho. Caprina Movimento característico da cauda. Pode haver conduta homossexual. Cabeça para trás em busca do macho. Suína Grunhido característico (grunhido de estro). Falsas lutas. Pode haver pequena conduta homossexual. Orelhas eretas e projetadas para trás. Equina Diminuição da agressividade com o macho. Sem conduta homossexual. Mostra a área genital ante o macho e everte o clitóris. Espelhamento: contrações rítmicas dos lábios vulvares. Canina Reflexos contráteis na vulva e levantamento da cauda, inclinando-se para o lado, na presença do macho. Lambidas frequentes da região vulvar. Felina Inquietação. Chafurdamento. Miados característicos. Esfrega-se contra os objetos. Fonte: compilação de vários autores. O comportamento homossexual em fêmeas foi extensivamente estudado em bovinos (figura 10), por ser um dos sinais mais evidentes e importantes da manifestação do estro; ocorre em cerca de 70% dos animais e sua expressão é altamente influenciada pela hierarquia social do rebanho. Deve-se levar em consideração que os animais que estão em estro precisam interagir uns com os outros para expressar esse comportamento, sendo observada maior atividade quando há cerca de 20 fêmeas em estro. Sabe-se também que o tipo de instalações é imprescindível para a manifestação do comportamento homossexual, visto que os animais encontrados nos piquetes montam mais do que os alojados em instalações intensivas, isto fica ainda mais evidente quando o piso destas últimas é escorregadio. As montas entre fêmeas são observadas com maior frequência à noite, ocorrendo cerca de 70% das montas entre as sete da noite e as sete da manhã, o que se explica pelo fato de que durante estas horas os animais não são submetidos a nenhum manejo rotineiro, como ordenha, alimentação ou limpeza das instalações, além disso, acredita-se que os animais preferem montar nos períodos mais frios do dia, principal-mente em criações tropicais. Em bovinos de corte, sugere-se que tanto a fêmea que monta quanto a que é montada estejam em cio; ao contrário do gado leiteiro, em que se considera que o animal que monta está perto do cio, enquanto o que é montado está em cio. Figura 10: comportamento sexual em bovinos. À esquerda: batendo. À direita: comportamento homossexual. No caso de cadelas, deve-se levar em consideração que o comportamento homossexual está associado à hierarquia e dominância, mas não à manifestação do comportamento estral. Além disso, algumas fêmeas muito dominantes não permanecem imóveis na frente do macho, nem permitem que ele a monte, mesmo quando estão em estro. Na égua, uma característica do cio é o espelhamento, que consiste na abertura e fechamento dos lábios vulvares de forma rítmica, geralmente acompanhada pela eversão do clitóris (figura 11). Este último sempre ocorre durante a micção, mas neste caso a fêmea o faz na presença do macho, mesmo quando ela não está urinando. Uma vez que a fêmea no cio está na frente de um macho, ela exibe um comportamento receptivo; a atitude da fêmea é passiva e se caracteriza em todas as espécies pela imobilidade diante da monta do macho, considerada o sinal definitivo do estro. Em geral, a fêmea também adota uma postura diferenciada conhecida como lordose, pois arqueia as costas para baixo, ao mesmo tempo em que levanta a cauda e inclina-a, levantando também os lábios vulvares para promover a cópula. A descrição acima é muito típica dos ruminantes, da cadela e da gata. Na égua, ao contrário, a posição anterior à cópula implica em curvar a coluna para cima (cifose) e baixar a garupa ou inclinar a pelve. • ____COMPORTAMENTO SEXUAL DOS MACHOS O comportamento sexual do macho é muito importante, pois estima-se que o macho dominante pode ser responsável por até 80% dos nascimentos em um rebanho. Um fator a ser considerado é a libido, definida como a “disposição e entusiasmo” de um macho para tentar montar e servir a uma fêmea. No caso dos bovinos, estima-se que cerca de 21% dos machos em que a libido é avaliada não conseguem reproduzir. Isso se torna ainda mais crítico quando se leva em consideração que a libido baixa é hereditária e reproduzível, além de estar associada à puberdade tardia nas filhas. Figura 11: sinais feitos por éguas no cio. À esquerda: espelhamento. À direita: eversão do clitóris. Nos machos, as montas sem penetração e ejaculação durante a fase de cortejo (conhecidas como montas falsas) são muito importantes para estimular o desejo sexual e aumentar a quantidade e a qualidade do sêmen que mais tarde será ejaculado durante a cópula (figura 12). No caso dos touros, sabe-se que o macho monta na fêmea em média seis vezes antes de realizar a primeira cópula, embora o número de montas falsas seja reduzido nas ejaculações subsequentes. Figura 12: comportamento de um cachaço diante de uma fêmea no cio. À esquerda: olfateio dos flancos e salivação do macho. À direita: ereção e retirada do pênis. Na tabela 4 são listados os comportamentos típicos de machos de espécies de mamíferos domésticos durante o cortejo, detecção de fêmeas no cio e cópula. Tabela 4: Comportamentos característicos durante o cortejo e cópula em machos das diferentes espécies domésticas Espécie Conduta pré-cópula Conduta copulatória Bovina Reflexo de Flehmen; cheira e lambe a vulva; inquietude; esfrega o pescoço ou o focinho na fêmea; tentativa de montas. Salto ou golpe do rim; ejaculação precoce: 1 a 3 segundos pós-penetração. Ovina Reflexo de Flehmen; empurram e monta a fêmea; vocalizações; tentativa de montas; inquietude; mantém-se com os membros anteriores à garupa da fêmea (figura 13). Salto ou golpe do rim; ejaculação precoce: 1 a 2 segundos pós-penetração. Caprina Cheira a urina da fêmea e realiza o reflexo de Flehmen; urina a barba e o peito; apalpa o chão em volta da fêmea; vocalizações; língua dentro e fora da boca; cheira e bate na área genital; se sustenta com os membros anteriores à garupa da fêmea. Salto ou golpe do rim; ejaculação precoce: 1 a 2 segundos pós-penetração. Suína Cheira a região genital e dos flancos (figura 12); tentativas de montas; contato naso-nasal ou naso-genital; vocalizações; range os dentes e move as mandíbulas lateralmente; salivação e micção frequente; morde suavemente as orelhas e a cabeça da fêmea. Ereção depois da monta; contrações testiculares muito aparentes durante a ejaculação; ejaculação lenta: 5 a 20 minutos pós-penetração. Equina Vocalizações; reflexo de Flehmen; morde o pescoço da fêmea. Sinalização; movimento lateral da cauda durante a ejaculação; movimentos de fricção; ejaculação média: 20 a 60 segundos pós-penetração. Canina Tentativas de montas; reprodução. O macho se vira e fica abotoado durante a ejaculação; ejaculação lenta: 10 a 30 minutos, mas pode chegas até 50 pós-penetração. Felina Morde o pescoço da fêmea. A fêmea realiza o “ronco pós-coito” quando o macho desmonta. Fonte: compilação de vários autores. Depois de haver realizado com sucesso um serviço (um acasalamento acompanhado de ejaculação dentro do aparelho reprodutor da fêmea), os machos apresentam a fase pós-copulatória, também conhecida como período refratário, em que mostram desinteresse pela fêmea com quem acabam de realizar serviço. Esta fase tem duração variável entre os indivíduos, mas foi visto que eles podem retomar a atividade pré-copulatória e copulatória mais rapidamente se forem apresentados a uma fêmea diferente, fenômeno conhecido como “efeito Coolidge”. Os machos geralmente são capazes de realizar mais de uma cópula por dia antes de atingir a saciedade sexual. O número de cópulas varia entre espécies e indivíduos, portanto, suínos e equinos realizam em média três montas, enquanto pequenos ruminantes realizam 10 e bovinos até 20. Uma vez saciado, o macho pode parar de montar por um ou mais dias, mesmo que haja estímulo suficiente para induzir o comportamento sexual. Figura 13: monta em ovinos. É mostrado como o macho apoia os membros anteriores na garupa da fêmea. Nessa imagem o macho detectou o cio, por isso está usando um avental para impedir a penetração. • ____DETECÇÃO DE ESTROS (CIOS) A detecção adequada do estro é imprescindível para um bom manejo reprodutivo e produtivo dos animais do rebanho, pois é essencial determinar o momento ideal da monta ou inseminação artificial, que consequentemente atinge bons índices de fertilidade. A falha na detecção do estro (considerada uma das principais causas de perdas econômicas na pecuária), ocorre em função da baixa eficiência, bem como da precisão, dos métodos utilizados. A tabela 5 resume as consequências da falha na detecção do estro em vacas. Tabela 5: Consequências de falhas na eficiência e precisão dos testes utilizados para o diagnóstico de cio em bovinos Falha Eficiência (vacas não detectadas) Precisão (vacas mal detectadas) Aumenta-se Número de fêmeas vazias; Número de dias abertos; Intervalo entre partos. Números de serviços por concepção; Número de doses de sêmen. Diminui-se Número de crias por ano; Produção cárnea ou láctea. Fertilidade por serviço. Fonte: anotações de aulas na UFPB. Para implementar um programa de detecção de estro, é necessário ter alguns requisitos essenciais, como: A identificação dos animais que deve ser realizada de forma clara de modo que o observador possa distingui-los claramente. Os registros reprodutivos que permitem estimar a fase do ciclo estral em que os animais se encontram e ajudam a discernir os animais que sabemos que estão perto do cio daqueles que foram inseminados recentemente ou estão prenhes. Um pessoal qualificado deve observar animais no cio; esse trabalho não pode ser confiado a qualquer pessoa; deve ser realizado por quem conheça bem os sinais de estro da espécie e que saiba considerá-los em conjunto; deve reconhecer, assim mesmo, a evidência da manifestação de comportamento sexual quando o animal estiver fora de seu campo visual. Outro ponto importante nos programas de detecção de estro é a escolha do método para o seu diagnóstico, que deve estar de acordo com aspectos como as características comportamentais da espécie, disponibilidade e facilidade de uso, custos, entre outros. Alguns dos métodos existentes para detecção de cio são descritos abaixo. Detecção visual Este tipo de detecção é baseado na observação a curtas e longas distâncias pela equipe da unidade de produção, em busca de mudanças genitais e comportamentais nas fêmeas; é amplamente utilizado no caso dos bovinos. Foi estudado que a eficiência na detecção visual do estro aumenta em paralelo com o número de observações realizadas por dia. Ou seja, se a observação for realizada apenas durante as atividades rotineiras da exploração, a eficiência será de 50%; quando se realizam duas observações com 12 h de intervalo, a eficiência aumenta para 70%; quando três observações são feitas por dia em intervalos de 8 h, a eficiência chega a 90% e quando a detecção visual é feita constantemente, a eficiência na detecção do estro chega a ficar entre 95 e 100%. No caso dos bovinos, a detecção visual se baseia, entre outros aspectos, na observação do comportamento homossexual, no aparecimento de muco cristalino pela vulva, bem como nas marcas de monta (culote e garupa sujos, direção dos pelos no sacro ao contrário); inquietação, busca pelo macho, inapetência e segregação. Deve-se levar em consideração que nem todas as espécies animais são passíveis de serem detectadas por esse método, pois há espécies em que não há alterações evidentes na genitália e seu comportamento não denota nenhum sinal característico e forte de estar em estro, como é o caso de ovinos, caprinos e equinos; no qual é necessário submetê-los à presença de um macho para poder saber adequadamente o seu estado reprodutivo. Teste de monta Este teste é utilizado especificamente em porcas e consiste em observar a reação à pressão que uma pessoa exerce sobre a garupa e a coluna do animal, considerando que as fêmeas que estão em estro permanecem estáticas, enquanto as que não se movem (figura 14). A eficiência desse teste pode variar consideravelmente, estando a fêmea submetida ou não a algum estímulo do macho. Isso significa que quando o teste é realizado apenas pelo experimentador sem nenhum contato com o macho, a eficiência fica em torno de 48%, ao passo que, se o realizarmos para que a fêmea possa cheirar e ouvir o macho, a eficiência pode chegar a 90%. Se a porca também vê e toca o macho, a porcentagem de eficiência pode ser aumentada em mais 3 a 7%, respectivamente; enquanto é 100% eficiente quando se aloja e interage com o macho. Figura 14: imobilidade durante a prova de monta em porcas. É importante considerar que embora o teste de monta seja usado principalmente em porcas, as fêmeas no cio de quase todas as espécies apresentam uma reação de imobilização quando a garupa é pressionada; elas também movem a cauda para o lado e podem levantar a vulva. Machos auxiliares e rufiões O macho é o mais eficiente em distinguir as fêmeas de sua espécie no cio, pois é capaz de detectar coisas imperceptíveis aos humanos. A utilização de machos auxiliares e/ou rufiões baseia-se na apresentação de um macho às fêmeas e na observação da resposta de todo o grupo. As fêmeas que permitem ser montadas pelo macho e permanecem imóveis são consideradas no cio. A “guarda” ou “auxílio” pode ser realizada duas vezes ao dia, com intervalos de 12 horas entre eles. Para se utilizar o método é fundamental que haja machos inteiros com boa libido, porém, bons reprodutores não devem ser usados para esse fim, pois podem se machucar por uma fêmea que não esteja no momento ideal ou podem ficar exaustos e recusam-se a montar quando seu uso como reprodutores for necessário. Nos equinos essa técnica diagnóstica é a mais utilizada e é conhecida como “provocação”, já que o macho auxiliar é denominado como provocador e deve ser feito diariamente ou em dias alternados durante o período de cio previsto; nesta espécie, as fêmeas podem ser muito agressivas, por isso é comum o uso de uma barreira protetora entre o macho e a fêmea (figura 15). Quando os machos auxiliares são usados, é interessante evitar que ocorra a cópula fértil com as fêmeas, então várias estratégias foram desenvolvidas, principalmente cirúrgicas, para que os machos utilizados possam ser: Vestidos com um avental (figura 16); Vasectomizados; Epididectomizados; Pênis desviado; Com fixação peniana em forma de “S”; Com obliteração do orifício prepucial; Castrados e com tratamento androgênico. Os rufiões não são considerados machos auxiliares e sim como machos com capacidade de detectar uma fêmea apta para reprodução, porém sem a capacidade de fecundá-la. São utilizados na detecção de estros para monta natural ou inseminação artificial, já que sua presença estimula o cio e a ovulação na fêmea. Já que o animal não possui a capacidade de fecundar a fêmea, a obtenção de rufiões dá-se através de técnicas cirúrgicas como as citadas supra. Figura 15: provocação em equinos (método para instigar e/ou detectar a égua em cio). Figura 16: macho ovino vestido com avental para identificar a ovelha em cio. Fêmeas Em muitas unidades de produção, o uso de fêmeas (com certas características específicas) é preferível ao uso de machos para detecção de cio, pois seu manejo é mais simples e seguro, sua manutenção é menor e não há risco de ocorrência da penetração que pode ser uma fonte de transmissão de doenças. Por exemplo, fêmeas androgenizadas podem ser usadas, tanto tratadas exogenamente, quanto aquelas com pseudo-hermafroditismo ou freemartinismo. Palpação retal É um método muito útil no caso de bovinos e equinos, pois o estado reprodutivo em que o animal se encontra pode ser determinado de acordo com as estruturas ovarianas presentes, a tonicidade do tecido uterino e o tipo de corrimento vaginal que pode ser observado. Nessa técnica, a precisão e a eficiência dependem da experiência da sonda, bem como da correta subdivisão dos animais que são passados a ela para revisão. Ultrassonografia Com o uso do ultrassom em tempo real e sob o mesmo princípio da palpação retal, pode-se determinar o momento do ciclo estral; sua confiabilidade é maior quando comparada à palpação, pois os resultados são menos subjetivos. Medição de mudanças fisiológicas Toda fêmea em cio apresenta ligeiras mudanças fisiológicas nos seguintes aspec-tos: Sua temperatura aumenta; A frequência cardíaca aumenta; A produção leiteira diminui. Essas mudanças, quando medidas repetidamente, são úteis para determinar o momento do estro. Quando as concentrações de progesterona no sangue estão abaixo de 1 ng/ml, indica que a fase lútea daquele animal terminou e que, portanto, está perto de apresentar estro ou que acabou de estar. No caso das cadelas, a dosagem da progesterona tem sido muito valiosa para determinar o momento do início do estro, mas sua interpretação é exatamente o inverso do resto das espécies, quando atinge o nível de 1 ng/ml, sabemos que está prestes a iniciar a receptividade sexual. A citologia vaginal esfoliativa realizada, sobretudo, nas cadelas e tem como princípio determinar o tipo de células presentes no esfregaço vaginal, de acordo com sua morfologia e número. Sua base é que as camadas celulares da mucosa vaginal se multiplicam à medida que o nível de estrogênio aumenta, fazendo com que as células da superfície, que estão em direção ao lúmen, morram e adquiram a aparência folheada ou floculada. Durante a fase estral, entre 80 e 100% das células observadas são superficiais e cornificadas ou escamosas. A confiabilidade do método é muito alta, mas são necessárias amostras seriadas, pois o padrão celular é cíclico e nem sempre uma amostra isolada indica com precisão o estágio do ciclo reprodutivo. Uma ferramenta útil em equinos é observar a tonicidade e coloração do colo do útero e vagina através de um vaginoscópio. As alterações observadas são consequência dos estrogênios e a aparência nos animais em estro é de uma estrutura com secreções, hiperêmicas e edematosas. Também é eficaz para uso em cabras. O aumento da atividade física pode ser medido com um pedômetro, que é um detector eletrônico que é colocado nas patas e mede a atividade motora das fêmeas; transmite um sinal para um computador que registra e representa graficamente os dados. Lembre-se de que os animais no cio apresentam maior mobilidade. Em geral, considera-se que uma fêmea no cio anda pelo menos duas vezes mais que as que não estão. A viscosidade do muco cervical pode ser medida com o estrón, que é um dispositivo usado em bovinos e cuja base é medir a resistência elétrica no fluido vaginal ou impedância, que é diminuída durante o proestro e o estro. Para aumentar a eficiência desta ferramenta é necessário realizar medições repetidas e manter registros individuais. Junto com os métodos descritos aqui, ajudas foram desenvolvidas para tornar a detecção do estro mais eficiente, entre as quais estão: Detectores de monta Esses dispositivos são muito diversificados, a maioria deles são colocados na linha média da garupa da fêmea, logo na frente da inserção da cauda, mas também podem ser colocados no peito ou abaixo do queixo e início da barbela do macho. Sua função é deixar uma marca distinguível ou registrar uma monta no animal que está no cio. Entre eles estão os seguintes. A pintura com giz de cera na altura da garupa, é comum usá-la para que quando uma vaca for montada por outra, a marca fique borrada ou desbotada, indicando que a fêmea está no cio (figura 17). O arnês de marcador que é colocado abaixo do queixo e início da barbela do macho (“Bola de queixo” figura 18) ou no peito, para que ao montar uma fêmea receptiva, pinte sua garupa deixando uma marca facilmente identificável. As manchas de tinta chamadas de patches “kamar” (figura 19), que são colocadas na garupa da fêmea e quando ela é montada por outro animal, o peso faz com que ela quebre o recipiente e libere uma tinta que podemos facilmente observar. O relógio de cio é um dispositivo eletrônico que se conecta à garupa da fêmea e registra o momento em que é montada (figura 20), quando pressionado pelo peso mantido por alguns segundos, emitindo um sinal que é recebido por um computador. Tem sido indicado que a precisão na detecção do estro com este método é muito alta, podendo chegar a 96%. Figura 17: vacas com pintura de giz de cera na linha dorsal, utilizada para diagnóstico do cio. À esquerda vaca não montada. À direita vaca que já foi montada, a qual a marca de giz aparece desbotada. Figura 18: uso do arnês marcador para diagnóstico de cio. À esquerda macho com marcador na barbela. À direita marca no dorso da fêmea realizada pela monta de um macho e que indica que o animal marcado está em cio. Figura 19: pastas de “kamar” para a identificação de fêmeas em cio. Figura 20: relógio de cio, dispositivo eletrônico para a detecção de montas À esquerda foto do dispositivo. À direita, vacas com o dispositivo na garupa. REFERÊNCIAS BIBLIOGRÁFICAS AURICH, Christine. Reproductive cycles of horses. Animal reproduction science, v. 124, n. 3-4, p. 220-228, 2011. AISEN, Eduardo G. Reprodução ovina e caprina. MedVet, 2008. BARTLEWSKI, Pawel M.; BABY, Tanya E.; GIFFIN, Jennifer L. Reproductive cycles in sheep. Animal reproduction science, v. 124, n. 3-4, p. 259-268, 2011. BEARDEN, Henry Joe et al. Reproducción animal aplicada. México: Manual Moderno, 1982. CHRISTIANSEN, I. J. Reprodução no cão e no gato. São Paulo: Manole, 1988. CONCANNON, Patrick W. Reproductive cycles of the domestic bitch. Animal reproduction science, v. 124, n. 3-4, p. 200-210, 2011. COLAZO, Marcos Germán; MAPLETOFT, Reuben. Fisiología del ciclo estral bovino. Ciencia Veterinaria, v. 16, n. 2, p. 31-46, 2017. CUPPS, Perry T. (Ed.). Reproduction in domestic animals. Elsevier, 1991. Fisiologia Clínica do Ciclo Estral de Vacas Leiteiras: Desenvolvimento Folicular, Corpo Lúteo e Etapas do Estro. Fisiologia do Ciclo Estral dos Animais Domésticos. Fisiologia do Estro e do Serviço na Reprodução Bovina. Relação e Efeitos Bioquímico-nutricionais Sobre os Cios ou Estros Silenciosos em Vacas. DERIVAUX, Jules; BARNABÉ, Renato Campanarut. Reprodução dos animais domésticos. Acribia, 1980. DUKES, Henry Hugh; SWENSON, Melvin J.; REECE, William O. Dukes fisiologia dos animais domésticos. Editora Guanabara Koogan, 1996. DYCE, Keith M. Tratado de anatomia veterinária. Elsevier Brasil, 2004. FATET, Alice; PELLICER-RUBIO, Maria-Teresa; LEBOEUF, Bernard. Reproductive cycle of goats. Animal reproduction science, v. 124, n. 3-4, p. 211-219, 2011. FERREIRA, A. de M. Reprodução da fêmea bovina: fisiologia aplicada e problemas mais comuns (causas e tratamentos). Juiz de Fora: Minas Gerais–Brasil, p. 422, 2010. FORDE, N. et al. Oestrous cycles in Bos taurus cattle. Animal reproduction science, v. 124, n. 3-4, p. 163-169, 2011. HAFEZ, Elsayed Saad Eldin; HAFEZ, Bahaa. Reprodução animal. São Paulo: Manole, 2004. HIDALGO, Galina et al. Reproducción de animales domésticos. México: Limusa, 2008. HOPPER, Richard M. (Ed.). Bovine reproduction. John Wiley & Sons, 2014. MCKINNON, Angus O. et al. (Ed.). Equine reproduction. John Wiley & Sons, 2011. MEIDAN, R. et al. Intraovarian regulation of luteolysis. JOURNAL OF REPRODUCTION AND FERTILITY-SUPPLEMENT-, p. 217-228, 1999. NETT, T. M. et al. Pituitary receptors for GnRH and estradiol, and pituitary content of gonadotropins in beef cows. I. Changes during the estrous cycle. Domestic Animal Endocrinology, v. 4, n. 2, p. 123-132, 1987. NISWENDER, Gordon D. et al. Mechanisms controlling the function and life span of the corpus luteum. Physiological reviews, v. 80, n. 1, p. 1-29, 2000. NORMAN, Anthony W.; LITWACK, Gerald. Hormones. Academic Press, 1997. PATTERSON, David J. et al. Control of estrus and ovulation in beef heifers. Veterinary Clinics: Food Animal Practice, v. 29, n. 3, p. 591-617, 2013. PLANT, Tony M.; ZELEZNIK, Anthony J. (Ed.). Knobil and Neill's physiology of reproduction. New York: Academic Press, 2014. RANGEL, L. Ciclo estral. In. PORTA, L. R.; MEDRANO, J. H. H. Fisiología reproductiva de los animales domésticos. Cidade do México: FMVZ-UNAM, 2018. REKAWIECKI, R. et al. Regulation of progesterone synthesis and action in bovine corpus luteum. J Physiol Pharmacol, v. 59, n. suppl 9, p. 75-89, 2008. REYNOLDS, L. P.; REDMER, D. A. Growth and development of the corpus luteum. JOURNAL OF REPRODUCTION AND FERTILITY-SUPPLEMENT-, p. 181-191, 1999. RIPPE, Christian A. El ciclo estral. In: Dairy Cattle Reproduction Conference. 2009. p. 111-116. SANGHA, G. K.; SHARMA, R. K.; GURAYA, S. S. Biology of corpus luteum in small ruminants. Small Ruminant Research, v. 43, n. 1, p. 53-64, 2002. SARTORI, R.; BARROS, C. M. Reproductive cycles in Bos indicus cattle. Animal Reproduction Science, v. 124, n. 3-4, p. 244-250, 2011. SENGER, Phillip L. et al. Pathways to pregnancy and parturition. Current Conceptions, Inc., 1615 NE Eastgate Blvd., 1997. SMITH, Matthew J.; JENNES, Lothar. Neural signals that regulate GnRH neurones directly during the oestrous cycle. Reproduction (Cambridge, England), v. 122, n. 1, p. 1-10, 2001. SOEDE, N. M.; LANGENDIJK, P.; KEMP, B. Reproductive cycles in pigs. Animal reproduction science, v. 124, n. 3-4, p. 251-258, 2011. WEBB, R. et al. Mechanisms regulating follicular development and selection of the dominant follicle. REPRODUCTION-CAMBRIDGE-SUPPLEMENT-, p. 71-90, 2003. WHITTEMORE, Colin et al. The science and practice of pig production. Blackwell Science Ltd, 1998. FIXAÇÃO DO ASSUNTO 1. O comportamento sexual dos animais é uma particularidade de cada espécie na iniciação da perpetuação da vida e que deve-se a quais fatores e por quê? 2. O que é anestro? É possível revertê-lo? 3. Defina e explique os estágios comportamentais de machos e fêmeas antes, durante e depois da cópula. 4. Defina e diferencia efeito fêmea e efeito macho. 5. Define e explique a estimulação sexual dos animais e como podemos induzi-la? 6. Defina e caracterize o estro das espécies zootécnicas. 7. Quais são os fatores que retardam ou adiantam a manifestação do cio e por quê? 8. Qual a relação direta ou indireta da duração do estro com o momento da ovulação? 9. Quais os mecanismos de atração dos machos? 10. Que mudanças ocorrem nas partes reprodutivas das fêmeas para a atração do macho? 11. Cite o comportamento característico das fêmeas durante o estro que visam a atração do macho para a cópula. 12. Disserte sobre a importância do macho e sobre seu comportamento sexual para o manejo reprodutivo. 13. Qual a importância e quais os meios de detecção do estro nas fêmeas. Como hipótese, você como criador utilizaria qual método de identificação e por quê? 14. Explique as principais diferenças entre machos reprodutores e machos rufiões. Como obter um rufião? (shrink)
Le Père Ignace Carbonnelle, l'un des principaux fondateurs de la Société scientifique de Bruxelles en 1875 et son secrétaire général depuis cette époque, décède inopinément en 1889 après une quinzaine d'années durant lesquelles il fut «l'homme fort» de ladite Société. Aussitôt, la Revue des questions scientifiques annonce la triste nouvelle, promettant, pour un prochain numéro, une étude détaillée de sa vie et de son œuvre. Elle ne paraîtra jamais, de sorte que sa mort ne fut pas saluée avec l'ampleur qu'on (...) était en droit d'attendre. Et pour cause ! Au terme d'une enquête digne d'un roman policier, cette étude révèle que Rome, agacée par l'atomisme de Carbonnelle, profita de sa mort pour rappeler à l'ordre la Société en l'invitant à marcher dans les pas de l'Aquinate. En réponse à cette pressante invitation et par un excès de zèle non requis, la Société élut comme président le célèbre thomiste français Edmond Domet de Vorges, cependant que le mathématicien Paul Mansion s'attacha d'établir, à partir des publications de Pierre Duhem prônant un retour à une physique des qualités, que la Société se conformait bien, mais à sa manière, aux injonctions romaines. ––– Fr. Ignace Carbonnelle, who founded the Brussels Scientific Society in 1875 and was from this date onwards her Secretary General, passed away suddenly in 1889, after fifteen years during which he was the leading figure of the aforementioned Society. “La Revue des Question scientifique” announced the sad news but promised that their next publication would include a detailed article on the great man and his works. Sadly this article never appeared, meaning that the passing of Fr. Carbonnelle was not marked with the importance which we might have otherwise expected. For what reason, you may well ask? After a detailed investigation, worthy of Agatha Christie herself, it would appear that Rome had been rather alarmed by the “atomism” present in Fr. Carbonnelle's reflections, and had taken the opportunity of his death to invite the Scientific Society to opinions more in line with those of St Thomas. In response to this firmly worded invitation, and with overzealous spontaneity, the Society elected the celebrated French Thomiste Edmond Domet de Vorges as their new President. At the same time the mathematician Paul Mansion relied on the publications of Pierre Duhem, which advocated a stronger adhesion to a physics of an object's qualities, to establish that the Society was, in fact, well aligned with the desires of Rome. (shrink)
Achieving space domain awareness requires the identification, characterization, and tracking of space objects. Storing and leveraging associated space object data for purposes such as hostile threat assessment, object identification, and collision prediction and avoidance present further challenges. Space objects are characterized according to a variety of parameters including their identifiers, design specifications, components, subsystems, capabilities, vulnerabilities, origins, missions, orbital elements, patterns of life, processes, operational statuses, and associated persons, organizations, or nations. The Space Object Ontology provides a consensus-based realist framework (...) for formulating such characterizations in a computable fashion. Space object data are aligned with classes and relations in the Space Object Ontology and stored in a dynamically updated Resource Description Framework triple store, which can be queried to support space domain awareness and the needs of spacecraft operators. This paper presents the core of the Space Object Ontology, discusses its advantages over other approaches to space object classification, and demonstrates its ability to combine diverse sets of data from multiple sources within an expandable framework. Finally, we show how the ontology provides benefits for enhancing and maintaining longterm space domain awareness. (shrink)
DIFERENCIAÇÃO SEXUAL -/- Emanuel Isaque Cordeiro da Silva Instituto Agronômico de Pernambuco Embrapa Semiárido -/- • _____OBJETIVO -/- Os estudantes de Veterinária e de Zootecnia estão ligados à disciplina Reprodução Animal, um pelos mecanismos fisiológicos para evitar e tratar as possíveis patologias do trato reprodutivo dos animais domésticos, e outro para o entendimento dos processos fisiológicos visando o manejo reprodutivo e a procriação para a formação de um plantel geneticamente melhorado. Sendo assim, a finalidade do presente trabalho é apresentar os (...) mecanismos que regulam as diferenças sobre o desenvolvimento embrionário relativos à diferenciação e determinação sexual de machos e fêmeas, que também incluem o desenvolvimento dos órgãos envolvidos na reprodução e a origem das diferenças entre ambos os sexos. -/- •____INTRODUÇÃO -/- Os organismos que se reproduzem sexualmente são descendentes de organismos ao qual não existia a diferenciação sexual. Em algum momento da evolução surgiu a reprodução sexual como um mecanismo para incrementar a diversidade genética e facilitar a troca de informações genéticas mediante o material genético da fêmea com o do macho. Devido sua origem comum, na maioria das espécies, tanto os machos como as fêmeas possuem todos os genes necessários para desenvolverem-se em qualquer dos sexos. O que efetivamente faz diferença entre os sexos é a forma e a ordem ao qual se expressam os genes durante o processo de desenvolvimento. A diferenciação sexual é regulada principalmente por mecanismos epigenéticos, mais do que as diferenças genéticas de grande magnitude entre os sexos. Todo o controle epigenético de qualquer processo de desenvolvimento depende basicamente de uma série de expressões gênicas, através da qual a expressão de certa combinação de genes resulta na presença de determinadas proteínas, conhecidas como os fatores de transcrição, que induzem ou reprimem a expressão de outro(os) gene(es), a partir dos quais se produzem novas proteínas, que em certos casos também atuam como fatores de transcrição para outros genes, e assim sucessivamente. Logo, a expressão ou falta de expressão de um gene ao início da série pode resultar em um ladrão totalmente diferente da expressão de outros genes subsequentes, o que pode ocasionar profundas mudanças no processo de desenvolvimento e até a mutações indesejáveis. O padrão predeterminado de expressões gênica relativo a diferenciação sexual na maioria das espécies tanto domésticas quanto selvagens, leva ao desenvolvimento de um dos sexos (o padrão predeterminado dos mamíferos é o sexo feminino). Em consequência, a diferenciação faz com que um indivíduo do sexo oposto exija a expressão de um gene de determinação sexual que desvie a subsequente série de expressões gênica em direção ao dito sexo. Nos mamíferos, a expressão do gene SRY, localizado no cromossomo Y (e portanto ausente nas fêmeas), redige o padrão de diferenciação sexual de sua via pré-estabelecida feminina em direção ao padrão masculino. A existência de uma única diferença genética (presença do gene SRY nos machos e ausentes nas fêmeas), vai se amplificando e termina resultando no desenvolvimento de indivíduos diferentes entre si. Esse é um mecanismo de diferenciação sexual cromossômica. O primeiro passo de uma série de diferenciação sexual, em sentido estrito, não depende nem requer necessariamente a presença de um gene diferente em algum dos sexos. O gene “disparador” da diferenciação sexual pode estar presente em todos os embriões, porém pode expressar-se somente em algum deles, devido a fatores ambientais que formam parte da sua regulação epigenética, isto é, uma determinação sexual ambiental. Em algumas espécies de tartarugas ou de lagartos a expressão ou falta de expressão do gene “disparador”, por exemplo, depende da temperatura existente durante a incubação dos ovos, pelo qual alguns embriões desenvolvem-se como machos e outros como fêmeas, apesar de não existir diferença genética entre eles, simplesmente como consequência da temperatura: a determinação sexual depende da temperatura a que cada um deles foi submetido durante a incubação. Em certas espécies as temperaturas mais elevadas facilitam o desenvolvimento de fêmeas e outras de machos, enquanto que em outras espécies as temperaturas amenas (intermediárias) resultam em machos, e as inferiores como as superiores induzem o desenvolvimento de fêmeas. A existência dessa diversidade indica que a temperatura por si mesma não é a que induz ou a que provoca o desenvolvimento do macho e da fêmea, senão a que atua somente como um regulador inicial da diferenciação sexual. Em outras espécies o fator ambiental que regula a determinação sexual pode ser distinto. A densidade populacional, por exemplo, pode atuar como um regulador. Podemos concluir que a determinação sexual dependente da temperatura ou de outros fatores ambientais estabelece-se antes da determinação sexual cromossômica, a qual evoluiu depois como um método que oferece maior certeza e resultado, já que a proporção de machos e fêmeas não é afetada por mudanças ambientais ou de hábitat. -/- •___FORMAÇÃO INICIAL DA GÔNADA -/- Basicamente em todos os embriões, inicialmente se formam as chamadas gônadas indiferenciadas (com o potencial de desenvolver-se em ovários ou testículos) a partir da invasão das cristas genitais pelas células germinais primordiais, que migram desde seu local de origem no epiblasto, perto do lugar onde o saco vitelino se une com o intestino primitivo e que chegam até às cristas genitais que são engrossamentos de tecido situados na região mesonéfrica do embrião. A migração das células germinais primordiais ocorre muito cedo sobre o processo de desenvolvimento do embrião (dia 26 nos bovinos). Ao chegas as cristas genitais, as células germinativas proliferam-se e se organizam com as células somáticas já existentes nas cristas para ir formando a gônada (figura 1). Para regular essa remodelação e conformação adequada da gônada vários genes se expressam, como o OCT-4 (que aparentemente mantém a totipotencialidade da gônada), assim como o SF-1 (Fator esteroidogênico 1) e o WT-1 (gene associado ao tumor de Wilms). Esses dois últimos genes estimulam a proliferação celular e estabelecimento dos cordões sexuais. Nessa etapa inicial do desenvolvimento todos esses genes se expressam sem distinção de sexo, pelo que a gônada em formação mantém a capacidade de se diferenciar em testículo ou em ovário. -/- Figura 1: migração das células germinais primordiais em direção a crista gonodal. Diferenciação das gônadas femininas e masculinas. Fonte: ZARCO, 2018. -/- •___SEXO CROMOSSÔMICO -/- Têm-se observado que nos mamíferos a determinação sexual depende diretamente dos cromossomos. As fêmeas possuem dois cromossomos sexuais X (um contribuído do óvulo e o outro por um espermatozoide “X”). Os machos, por sua vez, possuem um cromossomo sexual X(proveniente do óvulo) e um cromossomo sexual Y, que provém de um espermatozoide “Y” (figura 2). A metade dos espermatozoides produzidos por um macho são X e a metade Y, isso porque durante a espermatogênese a divisão meiótica provoca que a partir de cada espermatócito primário, célula diploide que por pertencer a um indivíduo macho tem um cromossomo X e um Y, se originem das espermátides haploides a cada um das que eles tocam cromossomos X, e outras espermátides haploides as que eles tocam os cromossomos Y. Dessa forma, de acordo com o tipo do espermatozoide que fertilize o ovócito, se originará um indivíduo com cariótipo feminino “XX” ou um cariótipo masculino “XY” (figura 2). Esse processo é conhecido como sexo cromossômico, ao qual se determina o momento da fertilização. Figura 2: nos mamíferos todos os óvulos produzidos pelas fêmeas possuem um cromossomo sexual X. A metade dos espermatozoides produzidos pelos machos possuem um cromossomo X e a outra metade possui um cromossomo Y. Dependendo do cromossomo presente no espermatozoide que fertilize o óvulo pode-se gerar um indivíduo XX (fêmea) ou um XY (macho). Fonte: ZARCO, 2018. -/- O cromossomo “Y” é uma “invenção” relativamente recente na história da evolução das espécies e do estudo da genética. Surgiu a partir de uma mutação de um cromossomo “X”, que resultou na perda de um de seus braços, que é por onde se originou a morfologia do cromossomo Y. A maioria dos genes presentes no cromossomo Y também existem no cromossomo X; assim mesmo somente alguns genes do cromossomo Y foram evoluídos até ser diferentes dos genes do cromossomo X. Embora os machos possuam um cromossomo que não está presente nas fêmeas, esse mesmo cromossomo não aporta toda a informação genética original. Todos os genes existentes nas fêmeas estão também presentes nos dos machos, já que eles também possuem um cromossomo X. Uma particularidade do cromossomo Y, ao existir somente uma cópia nos machos, é que ele sofre um entrecruzamento com um cromossomo análogo durante o processo de meiose, pelo que o cromossomo Y de um macho é idêntico ao de seu progenitor e ao de seus descendentes, exceto no caso em que ocorra uma mutação espontânea. Em contraste, os cromossomos X das fêmeas (um proveniente do pai e outro da mãe) se entrecruzam durante a meiose, por onde cada óvulo produzido pela fêmea terá uma combinação de alelos distinta em seu cromossomo X. Ao estudar as diferenças presentes na sequência de DNA do cromossomo Y, é possível identificar a distância filogenética entre os indivíduos (quanto mais diferenças existirem entre os cromossomos significa que seu ancestral comum está mais longe). Algo análogo ocorre com o DNA das mitocôndrias, que sempre são aportados pela mãe e nunca sofrem recombinação genética. Gene SRY -/- Um dos poucos genes do cromossomo Y que não possuem correspondência com o cromossomo X é o gene SRY (Sex-determining Region of the Y chromossome – região do cromossomo Y determinante do sexo). Esse gene se expressa somente na gônada em formação nos embriões machos, em particular em células precursoras das células de Sertoli; ele codifica uma proteína da família SOX (SRY-like Box) que é uma família formada por proteínas que possuem um domínio de união ao DNA e que atuam como fatores de transcrição. Ao produzir-se a proteína SRY nas células precursoras das células de Sertoli estimula-se a expressão (transcrição) de outro gene análogo, denominado SOX-9 que, por sua vez, atua como um fator de transcrição que ativa a expressão de outros genes, como o FGF-9 (Fibroblast Growth Factor-9), ou seja ele é o estimulante de ativação dos demais. Os produtos dos genes SOX-9 e FGF-9 iniciam uma cascata de expressões que provocam a diferenciação das células de suporte da gônada indiferenciada (crista genital) em células de Sertoli. Em seguida, essas células dirigem a diferenciação das células intersticiais da crista genital em células de Leydig, o que finalmente resulta na formação de um testículo. Outro dos efeitos da proteína codificada por SOX-9 é um estímulo maior da expressão de seu próprio gene, pelo qual é produzido um ciclo de retroalimentação positiva que favorece a continuidade do processo de formação testicular. Como nos embriões da fêmea não existe o gene SRY, a gônada indiferenciada não é estimulada para expressar os genes SOX-9 nem o FGF-9 nas células de suporte (que nesse caso serão precursoras de células da granulosa). A gônada, em mudança, expressa em forma constitutiva, isto é, sem a necessidade de estimulação, outra cascata de genes que incluem o WNT4 (Wingless-integration Factor 4) e o RAPO1 (Respondina-1), que por sua vez iniciam uma cascata de expressão gênica, a qual provoca a diferenciação das células somáticas da gônada indiferenciada para formação das células da granulosa e células da teca, esse feito conduz, por sua vez, a formação de um ovário. No embrião macho a proteína SOX-9 inibe a expressão dos genes WNT4 e RSPO-1, pelo que a presença do gene SRY, e portanto de SOX-9, inibem a formação de um ovário ao mesmo tempo que estimulam a formação do testículo (figura 3). Em suma, se o embrião possui genótipo XY (um embrião macho), o gene SRY começa a expressar-se sobre as células precursoras da gônada imediatamente depois da formação da mesma, quando os cordões sexuais primários estão se desenvolvendo na medula. A expressão do gene, assim como a presença subsequente das proteínas SOX-9 e FGF-9 estimula a distinção das células de Sertoli e que se organizem os tubos seminíferos a partir dos cordões sexuais primários. Em contrapartida, em um embrião com genótipo XX (fêmea) não existe o gene SRY, pelo qual é impossível que se elevem os níveis das proteínas SOX-9 e FGF-9 e as células precursoras não se diferenciam em células de Sertoli, e portanto os cordões sexuais primários sofrem regressão. Depois de alguns dias, começam a organizar-se os cordões sexuais secundários e as células precursoras iniciam a expressão do gene WNT4, o que leva as mesmas a diferenciar-se em células da granulosa, que serão a base para a conformação dos folículos ovarianos. Se em um embrião XY, macho, a expressão do gene SRY demora, é formada um ovo-testículo devido a que algumas das células somáticas das cristas gonodais começam a expressar o gene WNT4, e a diferenciar-se em células da granulosa, enquanto que em outras a proteína SRY chega a tempo para dirigir a diferenciação para formação das células de Sertoli. No ovário em formação é expressado um gene denominado DAX-1 (Dosage-sensitive Sex Reversal). Esse gene, localizado no cromossomo X, codifica uma proteína que é um membro da família dos receptores nucleares ao que lhe falta o domínio de união ao DNA, pelo que parece atuar no bloqueio de diversos fatores de transcrição, entre os que se encontra o SRY. Como a proteína DAX-1 impede a ação da proteína SRY, um excesso de expressão do gene DAX-1 pode provocar a feminilização gonodal de indivíduos XY, macho, embora tenham SRY. Em condições normais, a expressão adequada do gene DAX-1 não é capaz de evitar a masculinização gonodal de embriões com o gene SRY, daqui o nome de reversão sexual dependente da dose. Figura 3: série de expressão gênica para a determinação gonodal. SRY (Região do cromossomo Y determinante do sexo), SOX-9 (SRY-like Box-9), FGF-9 (Fator de crescimento de fibroblastos-9), WNT4 (Wingless-integration Factor-4), RSPO-1 (Respondina-1). Uma vez que o SRY induz a expressão de SOX-9 na gônada masculina, inicia-se um processo de feedback positivo mediante o qual os níveis de expressão de SOX-9 e FGF-9 vão aumentando, ao mesmo tempo que inibem a expressão de WNT-4 e RSPO-1. Na gônada feminina não se expressam SRY, SOX-9 e nem FGF-9, o que permite que se expressem os genes WNT-4 e RSPO-1, que iniciam uma cascata de sinalização que dirige a formação de um ovário. Fonte: ZARCO, 2018. -/- • ___DIFERENCIAÇÃO SEXUAL DOS GENITAIS -/- Uma vez que se formam os testículos, todo o desenvolvimento subsequente dos órgãos e as características “masculinas” em lugar das femininas é em consequência dos hormônios produzidos pelos testículos em formação, incluindo os andrógenos e o hormônio inibidor dos ductos de Müller. Mediante a ausência de testículos todo o desenvolvimento dos órgãos genitais internos e externos segue um padrão feminino, sem levar em conta se estão presentes os ovários; o que significa a ausência de hormônios gonodais determina que o embrião se desenvolva como fêmea, uma vez que não requerem hormônios ovarianos para desencadear o padrão feminino. Por sua vez, as gônadas masculinas (os testículos), produzem substâncias que desviam o desenvolvimento em direção ao padrão masculino. Sob etapas relativamente rápidas da diferenciação todos os embriões possuem dois pares de dutos sexuais, os dutos de Wolff ou mesonéfricos e os dutos de Müller ou paramesonéfricos (figura 4). A testosterona secretada pelos testículos do feto macho em desenvolvimento atua sobre os dutos de Wolff, o que induz a formação posterior dos dutos deferentes, do epidídimo e das glândulas seminais (figura 4). Figura 4: formação dos órgãos genitais internos a partir dos dutos de Wolff no macho e dos dutos de Müller na fêmea. Fonte: ZARCO, 2018. -/- Os testículos produzem ao mesmo tempo, uma glicoproteína chamada Hormônio Inibidor dos Dutos de Müller (Müllerian Inhibiting Hormone, MIH, também chamado de Anti-Müllerian Hormone, AMH); como o seu nome indica, inibe o desenvolvimento dos dutos de Müller ou paramesonéfricos, provocando sua regressão, que impede a formação dos órgãos genitais característicos da fêmea como os ovidutos, o útero, a cérvix e a porção cranial da vagina (figura 4). O MIH é uma glicoproteína da família dos fatores de crescimento transformativo β (TGFβ). O gene MIH possui locais de união para os produtos dos genes SOX-9 e SF-1, pelo que a presença simultânea de ambos fatores de transcrição é necessária para a secreção do MIH e leva a cabo sua função de iniciação dos dutos de Müller sobre o embrião macho (vale lembrar que nessa etapa tanto a gônada de embriões machos como de embriões fêmeas expressam o gene SF-1, mas somente o macho expressa o SOX-9, para que unicamente esse último produza MIH). O certo é que na gônada do embrião fêmea não se produzem quantidades importantes da proteína SOX-9, além de que se produz a proteína DAX-1, mesma que antagoniza tanto a SOX-9 como a SF-1, todo o qual impede a produção de MIH e resulta no desenvolvimento dos dutos de Müller até a formação dos ovidutos, útero, cérvix e a porção cranial da vagina (figura 4). Assim, na fêmea, ao não haver testículos não circulam concentrações elevadas de andrógenos, o que impedirá o desenvolvimento dos dutos de Wolff, enquanto que os dutos de Müller se desenvolvem já que não haverá a presença do MIH para impedi-lo. O desenvolvimento dos genitais internos e externos femininos não requerem a presença de nenhum hormônio ovariano o que levará a cabo de maneira predeterminada (ou pré-estabelecida) na ausência de testículos. Outra estrutura interna que também se desenvolve de forma distinta nos machos e nas fêmeas é o seio urogenital, que no embrião macho é estimulado pela testosterona para formação da próstata, das glândulas bulbouretrais e da uretra peniana, enquanto que na fêmea forma a porção caudal da vagina. A respeito dos órgãos genitais externos (figura 5), nos embriões de ambos os sexos existem estruturas precursoras chamadas de tubérculo genital e pregas vestibulares. Na fêmea o tubérculo genital da origem ao clitóris e as pregas vestibulares dão origem aos lábios vulvares sem a necessidade da atuação de hormônios ovarianos, já que o padrão “por via pré-estabelecida” é feminino. Em contrapartida, no macho, tanto o tubérculo genital quanto as pregas vestibulares respondem ao hormônio 5α-dehidro-testosterona (DHT), ao qual se formam as células da pele da zona genital a partir da testosterona que é secretada pelos testículos. Para isso existem nas células a enzima 5α-reductasa, que transforma a testosterona em DHT. Uma vez formada, a DHT atua sobre as pregas vestibulares do embrião macho para que se fusionem e formem o escroto (em lugar dos lábios vulvares), e sobre o tubérculo genital para formar o pênis (em lugar do clitóris). Figura 5: estruturas que se desenvolvem nos embriões de cada sexo a partir do seio urogenital, o tubérculo genital e as pregas vestibulares. A cor do né de cada estrutura final corresponde com a cor do nome da estrutura a partir da qual se originou. Fonte: ZARCO, 2018. -/- • ___DIFERENCIAÇÃO SEXUAL DO SISTEMA NERVOSO -/- Existem inúmeras diferenças funcionais entre o sistema nervoso da fêmeas e o do machos, em humanos podem incluir diferenças tão complexas como a maior capacidade de verbal da mulher ou a maior capacidade de orientação espacial do homem. Nessa parte será abordada aquelas diferenças que influenciam diretamente sobre a função reprodutiva, como as diferenças na regulação da secreção de gonadotropinas ou as diferenças na capacidade de comportamento sexual masculino ou feminino. É necessário lembrar que, apesar de que essas diferenças se originem durante um período crítico da vida fetal ou neonatal (dependendo da espécie), geralmente se fazem presentes até que o animal chegue a vida adulta e demonstre obter ou não a capacidade para se comportar como macho ou como fêmea uma vez que é exposto aos hormônios sexuais que são secretada depois da puberdade. Igualmente aos processos acima citados, podemos afirmar que nos mamíferos o padrão pré-estabelecido de comportamento sexual e de secreção de gonadotropinas é o feminino. Se durante os primeiros dias de vida neonatal uma rata fêmea não é exposta a nenhum hormônio gonodal, ao chegar a vida adulta ela terá a capacidade de se comportar como fêmea na presença de estrógenos, assim como de secretar um pico pré-ovulatório de GnRH/LH em resposta aos mesmos (figura 6). Essa rata, portanto, não poderá se comportar como macho embora que em sua vida adulta seja exposta a testosterona. O sistema nervoso do rato macho recém-nascido que é exposto aos andrógenos produzidos pelos testículos, em detrimento, faz com que adquiram o potencial para se comportar como machos em sua vida adulta e que perdem o potencial para ter conduta de fêmeas na presença e/ou administração de estrógenos (processo conhecido como desfeminização do SNC). Se por meios de experimentos injetamos testosterona em uma rata fêmea recém-nascida, essa rata não poderá se comportar como fêmea em sua vida adulta, e passará a se comportar como macho. A castração neonatal de um rato (visando evitar a exposição de seu SNC a andrógenos testiculares), assim mesmo, resultará em sua vida adulta um padrão feminino (SNC feminizado e não masculinizado). O hipotálamo das ratas adultas possui uma área em que o número, características e densidade dos corpos neurais difere em machos e fêmeas, essa área é denominada como “núcleo sexualmente dimórfico do hipotálamo”, e tem demonstrado que quando as ratas são tratadas com testosterona na vida neonatal, a morfologia de seu núcleo sexualmente dimórfico será masculinizado em sua vida adulta, enquanto que a castração neonatal de ratos resulta em um núcleo sexualmente dimórfico feminizado em sua vida adulta. Isso significa que a exposição ou não a testosterona na vida neonatal é o que determina que tipo de núcleo sexualmente dimórfico se desenvolverá, o que por sua vez está relacionado com o tipo de conduta que o animal poderá expressar em sua vida adulta. Não deixa de ser um paradoxo que ao injetar uma dose elevada de estrógenos nos primeiros dias de vida de uma rata, os núcleos sexualmente dimórficos da mesma se desenvolverão como macho e em sua vida adulta seu potencial de conduta estará masculinizado e desfeminizado. O hormônio “feminino” conhecido como estradiol, masculiniza o hipotálamo e a conduta do animal. Logo, se a rata neonatal for exposta a injeção de andrógeno não-aromatizado (que não pode ser transformado em estrógenos pelas células) ela não se masculiniza. A masculinização e desfeminização dos ratos ou das ratas tratados com testosterona, na realidade, não são provocados pela própria testosterona, senão pelos estrógenos que se formam dentro dos neurônios quando absorvem a testosterona do sangue e a aromatizam para transformá-la em estrógenos (figura 6). Figura 6: desfeminização e masculinização do sistema nervoso central por meio da testosterona, que quando não absorvida pela α-fetoproteína pode entrar nos neurônios, onde se aromatizam para serem transformados em estrógenos, hormônio que é responsável pela desfeminização. Fonte: ZARCO, 2018. Por que as ratas, que possuem ovários funcionalmente produtores de estrógenos, não se masculinizam? A resposta está em uma proteína denominada α-fetoproteína que circula em altas concentrações nos fetos e nos recém-nascidos. Essa proteína possui a capacidade de unir-se aos estrógenos, ao qual impede seu entrada nas células. Os ratos, em desenvolvimento, produzem testosterona, no entanto não possui afinidade pela α-fetoproteína, o que permite com que ela circule livremente. Ao chegar ao SNC, a testosterona (que não foi absorvida) pode entrar nos neurônios e dentro deles se aromatizam e transformam-se em estrógenos, que finalmente masculinizam o SNC. A diferenciação sexual do hipotálamo depende, em síntese, da presença ou ausência dos testículos, o que permite que se produza ou não o hormônio testosterona que pode não ser absorvida por parte da α-fetoproteína, transformar-se em estrógenos e masculinizar o SNC. -/- •___CONCLUSÃO -/- Nos mamíferos todo o processo que se requerem para o desenvolvimento de um macho depende da existência de somente um gene do cromossomo Y, o gene SRY; a ausência desse gene resulta no desenvolvimento de uma fêmea. A presença ou ausência do gene SRY determina, então, a cadeia de eventos morfogênicos que ocorrerá em sua expressão ou não, para desenvolver todos os órgãos e características de um macho ou de uma fêmea. Por essa razão, os indivíduos com uma monossomia XOA (síndrome de Turner) são fêmeas (por não possuir o cromossomo Y nem o gene SRY), enquanto que os indivíduos triploides XXY (síndrome de Kleinefelter) são machos embora possuam dois cromossomos X. Em algumas espécies, no entanto, têm-se identificado machos que são cromossomicamente XX; nesses casos é determinado invariavelmente que por ser um erro durante a meiose a região do cromossomo Y em que reside o gene SRY tem sido transloucada ao cromossomo X. Da mesma forma, em alguns casos tem sido encontrado fêmeas com cariótipo XY; que nelas se identifica uma mutação inabilitante do gene SRY. Isso demonstra experimentalmente que por meio da engenharia genética é possível produzir machos com cariótipo XY mas com o gene SRY eliminado (knockout). Como é de se esperar, esses machos desenvolvem ovários e todos seus órgãos genitais, tanto internos quanto externos, e se desenvolvem como fêmeas. Os machos cromossomicamente XX transgênicos aos que se insertam uma cópia do gene SRY, desenvolvem testículos e um fenótipo masculino, embora sejam estéreis por causa da ausência de alguns genes do cromossomo Y que são necessários para a realização de uma espermatogênese normal. As falhas nos mecanismos de diferenciação sexual podem, diretamente, ocasionar anormalidades como as observadas nas bezerras Freemartin, que são bezerras originadas de uma gestação gemelar em que seu gêmeo era macho. O que sucede é que na espécie bovina, quando há uma gestação gemelar, é produzido um certo grau de anastomose entre as placentas dos fetos, o que permite a troca de sangue e de células entre ambos. Os produtos recebem, então, algumas células de seu gêmeos, que encontram seu lugar no órgão correspondente e se integram a ele. No caso particular das gônadas, quando o ovário primitivo de um embrião fêmea é colonizado por algumas células gonodais de seu gêmeo macho, essas células expressam o gene SRY, o que fará com que essa região da gônada se diferencie como testículo. Como resultado, se desenvolve um ovo-testículo (com maior ou menor proporção de tecido testicular dependendo do grau de colonização da gônada em formação por células provenientes do gêmeo macho). Ademais, ao haver certa quantidade de tecido testicular produtor de MIH, circularão sobre o feto fêmea níveis desse hormônio que, embora baixos, afetarão o desenvolvimento normal dos dutos de Müller, fazendo com que as bezerras Freemartin possuam genitálias internas ausentes ou pouco desenvolvidas. Os andrógenos produzidos pelas zonas de tecido testicular, por fim, são suficientes para causar um certo grau de masculinização, que se manifesta como um clitóris mais grande que o normal ou um desenvolvimento corporal masculinizado. -/- REFERÊNCIAS BIBLIOGRÁFICAS -/- ARNOLD, Arthur P.; CHEN, Xuqi; ITOH, Yuichiro. What a difference an X or Y makes: sex chromosomes, gene dose, and epigenetics in sexual differentiation. In: Sex and gender differences in pharmacology. Springer, Berlin, Heidelberg, 2013. p. 67-88. CUNNINGHAM, James. Tratado de fisiologia veterinária. Elsevier Health Sciences, 2011. DERIVAUX, Jules; BARNABÉ, Renato Campanarut. Reprodução dos animais domésticos. Zaragoza: Acribia, 1980. DA SILVA, Emanuel Isaque Cordeiro. Desenvolvimento Embrionário e Diferenciação Sexual nos Animais Domésticos. Disponível em:. Acesso em: Julho de 2020. HAFEZ, Elsayed Saad Eldin; HAFEZ, Bahaa. Reprodução animal. São Paulo: Manole, 2004. HIDALGO, C. Galina et al. Reproducción de animales domésticos. México: Limusa, 2008. MACLAUGHLIN, David T.; DONAHOE, Patricia K. Sex determination and differentiation. New England Journal of Medicine, v. 350, n. 4, p. 367-378, 2004. MCCARTHY, Margaret M.; ARNOLD, Arthur P. Reframing sexual differentiation of the brain. Nature neuroscience, v. 14, n. 6, p. 677, 2011. PLANT, Tony M.; ZELEZNIK, Anthony J. (Ed.). Knobil and Neill's physiology of reproduction. Academic Press, 2014. REY, Rodolfo. Diferenciación sexual embrio-fetal: De las moléculas a la anatomía. Revista chilena de anatomía, v. 19, n. 1, p. 75-82, 2001. SENGER, P. L. Embryogenesis of the pituitary gland and male or female reproductive system. In. Pathways to Pregnancy and Parturition. Current Conception Inc, v. 1, p. 8-76, 1997. ZARCO, L. Diferenciación sexual. In. PORTA, L. R.; MEDRANO, J. H. H. Fisiología reproductiva de los animales domésticos. Cidade do México: FMVZ-UNAM, 2018. -/- REALIZAÇÃO -/- . (shrink)
REPRODUÇÃO ANIMAL: INSEMINAÇÃO ARTIFICIAL -/- ANIMAL BREEDING: ARTIFICIAL INSEMINATION -/- Emanuel Isaque Cordeiro da Silva Departamento de Zootecnia da UFRPE E-mail: [email protected] WhatsApp: (82)98143-8399 -/- 1. INTRODUÇÃO A inseminação artificial impôs-se em todo o mundo como um método de grande interesse do ponto de vista zootécnico e econômico, incrementando os rendimentos produtivos através da melhoria acelerada e da uniformidade no reagrupamento das populações. Os resultados positivos obtidos nestas últimas décadas testemunham esta possibilidade, válida tanto para os países mais desenvolvidos como (...) para os países em processo de desenvolvimento. A necessidade de uma rápida melhoria da estrutura das raças, o aumento da produção, bem como o máximo emprego de reprodutores selecionados difundiram consideravelmente o método da inseminação artificial, principalmente na espécie bovina, de forma que hoje se insemina artificialmente mais de 150 milhões de vacas e novilhas aptas para reprodução. Em certos países desenvolvidos, do ponto de vista pecuário, mais de 90% das vacas são inseminadas artificialmente, concretamente na Dinamarca 98%, mais de 95% no Japão e Israel ou 94% na Hungria; na Espanha chega-se a níveis muito próximos dos 50%. 2. CONCEITO E PRINCÍPIOS BÁSICOS O Larousse agrícola (1981) define a inseminação artificial como uma «técnica que consiste em depositar, no aparelho genital de uma fêmea, com a ajuda de instrumentos adequados, o sêmen de um macho colhido artificialmente». O sêmen, colhido por um processo variável e adequadamente diluído, serve para a inseminação artificial de um elevado número de fêmeas, o que permite multiplicar a capacidade reprodutiva dos machos e, portanto, constitui um poderoso meio de melhoria do gado. 3. BREVE HISTÓRIA DA INSEMINAÇÃO ARTIFICIAL Embora a zootecnia iniciasse seu verdadeiro desenvolvimento como ciência e ainda estivesse longe de abordar aspectos econômicos, Lazzaro Spallanzani no século XVIII já intuíra a extensão aplicativa da inseminação artificial realizando testes demonstrativos iniciais. Ilya Ivanov começou um século depois a aplicação prática da IA e compreendeu seu significado tecnológico. Nos primeiros anos do século XX, cientistas e técnicos tentaram desenvolver um método com profundidade; no entanto, os resultados obtidos foram escassos. As razões pelos escassos resultados podem se explicar mediante os deficientes conhecimentos da anatomia, fisiologia e patologia da reprodução e o comportamento nos dois sexos estudados, tanto do ponto de vista biológico como técnico, bem como haver trabalhado sobre espécies pouco fáceis tais como o cavalo e o cão. O conhecimento tecnológico e a aplicação sistemática da técnica tornou-se possível, em primeiro lugar, com a ideia que levou à realização da primeira vagina artificial, obra de Amantea em 1914, em seguida com a criação de eficientes mênstruos diluentes e mais recentemente com o progresso da técnica de conservação prolongada "in vitro" do material espermático por congelação. A partir dos anos trinta, em certos países como a Itália ou a Alemanha, a IA foi utilizada como meio de profilaxia das doenças genitais (brucelose, tricomoníase, vibriose, etc.). A aplicação organizada do método foi realizada pela primeira vez na Dinamarca nos anos 1938-1939, com a criação de cooperativas de inseminação com o objetivo de realizar a melhoria zootécnica bovina, alargando-se posteriormente aos outros países da Europa até à sua aplicação sistemática na atualidade. -/- 4. A PRODUÇÃO DO SÊMEN A expansão da IA na maioria das espécies de interesse zootécnico implica uma forte responsabilidade dos que se ocupam dela, tanto na fase de aplicação como na de seu desenvolvimento. No que se refere aos bovinos do Brasil, foi seguida uma ordenação coordenada das práticas de reprodução com os programas de seleção e expansão das diferentes raças. Para o efeito, foi criada uma legislação que permite dispor de normas mais completas possíveis. 4.1 Atividades a desenvolver em um centro de IA O real decreto que regula as atividades dos centros de IA (Decreto nº 91.111, de 12 de Março de 1985), que regulamenta a Lei n° 6.446, de 05 de outubro de 1977, que dispõe sobre a inspeção e fiscalização obrigatórias do sêmen destinado à inseminação artificial em animais domésticos, e dá outras providências, define como centro de IA, em seu Art. 20 Inciso 1, todo o estabelecimento que mantenha alojados reprodutores doadores de sêmen e que realize as tarefas de coleta, manipulação, Industrialização, armazenagem, comércio ou aplicação de sêmen, com as seguintes dependências: a - quarentenário; b - alojamento dos reprodutores; c - setor de coleta de sêmen; d - sala de material de coleta; e - sala de limpeza, desinfecção e esterilização de todos os materiais e instrumentos de coleta e processamento de sêmen; f - laboratório destinado ao exame, avaliação, diluição, envasamento e congelação de sêmen; g - banco de conservação de sêmen; h - setor administrativo e de expedição; i - outras dependências, se necessário. A atividade destes centros baseia-se na coleta do sêmen de reprodutores de qualidade, na sua armazenagem e subsequente distribuição; para tanto, é necessário realizar toda uma série de procedimentos para a apreciação da qualidade do sêmen e da sua aptidão para o armazenamento. A determinação da capacidade fecundante do sêmen, das suas qualidades e garantias sanitárias deve ser efetuada por técnicos especializados. 4.2 Valores genéticos do reprodutor Os centros de inseminação artificial dispõem dos melhores reprodutores de qualidade em termos de valores genéticos. De acordo com as disposições em vigor, os reprodutores devem ser submetidos a testes de descendência dos progenitores, de aptidão leiteira e estes mesmos testes ou, pelo menos, os testes de rendimento de carcaça próprio nas raças autóctones de produção de carne. Os centros devem dispor de catálogos ou listas contendo dados pormenorizados sobre a origem, qualidades reprodutivas e genéticas do reprodutor, o que permite ao criador conhecer com precisão qual é o touro (no caso dos bovinos) que lhe fornece o esperma e que melhorias pode esperar na qualidade da sua descendência. Por estas razões, os peritos dos centros devem ser responsáveis e assegurar que: a) Os reprodutores não transmitam genes letais ou semiletais ou qualquer outra anomalia geneticamente condicionada em relação à descendência. b) Os reprodutores transmitam realmente as qualidades genéticas declaradas e assegurem, em condições de manejo e alimentação dadas, uma importante produtividade da descendência. c) O preço da dose do sêmen reflita efetivamente o valor genético do reprodutor. d) O sêmen seja corretamente identificado, ou seja, pertença ao reprodutor indicado. 5. AS TÉCNICAS DE INSEMINAÇÃO ARTIFICIAL 5.1 A coleta do sêmen A coleta do sêmen constitui a primeira operação a efetuar-se na técnica da IA. Nos mamíferos domésticos existem duas formas: a) Por recolha sobre a fêmea (pós-coito). b) Por recolha sobre o macho. Para desenvolvê-las foram preconizados diversos métodos: alguns como as esponjas vaginais ou aparelhos de borracha colocados nas vias genitais da fêmea não têm mais que um interesse histórico; outros, como a criação de fístulas ou punção direta no testículo, só são úteis como métodos experimentais, inclusive existem outros métodos, porém de uso pouco frequente (eletroejaculação, amaciamento das vesículas seminais, etc.). Hoje em dia tanto para o touro, carneiro, porco, cavalo e coelho o método usual é a obtenção de sêmen a partir do macho, concretamente mediante a aplicação da técnica da vagina artificial. Nas aves a emissão do esperma obtém-se mediante a massagem manual na região abdominal dos galos reprodutores. Nas abelhas, é necessário provocar a evaginação do pênis do zangão utilizando clorofórmio para depois ser efetuada a coleta do sêmen com o auxílio de uma micropipeta. 5.1.1 O método da vagina artificial Baseia-se na utilização de um aparelho prático e simples que tenta satisfazer as condições que imitem o máximo possível o aparelho genital feminino das fêmeas no momento do coito e que permite verificar uma rápida coleta de um ejaculação livre de contaminação. -/- É essencialmente constituído por um cilindro exterior de borracha endurecida e suficientemente compacto para ser utilizado como isolante térmico. Este cilindro apresenta uma abertura com parafuso de fecho; no interior do cilindro grosseiro introduz-se outro de borracha fina e flexível (camisa) revertido em suas extremidades para mantê-lo fixo mediante umas fitas de borracha. Limitada por ambos os cilindros fica uma cavidade que só se comunica com o exterior pelo orifício praticado na parede do cilindro externo. Uma das extremidades da vagina permanece aberta e a outra ajusta-se a um tubo coletor graduado de vidro no qual se recolhe o esperma. Para simular as condições naturais, introduz-se água quente (41-42ºC em bovinos) dentro da câmara em quantidade suficiente para criar uma pressão e temperatura semelhantes à da vagina da fêmea. 6. AVALIAÇÃO E TRATAMENTO DO SÊMEN: OPERAÇÕES E TÉCNICAS No laboratório podem ser avaliadas e medidas uma série de características e propriedades do sêmen através de um controle da sua qualidade. Estes exames são conclusivos ao permitir a diluição do sêmen e a sua posterior utilização ou, se for o caso, a sua eliminação. 6.1 Estudo macroscópico do esperma 6.1.1 O volume do sêmen ejaculado O volume do esperma é muito variável segundo as espécies (Tabela 1). Mesmo dentro da mesma espécie há variações, como, por exemplo, no caso dos bovinos. Circunstâncias tais como a idade, raça, momento da coleta, método no regime sexual da mesma, época do ano, regime alimentar e grau de excitação sexual em que se encontra, provocam grandes variações no total de quantidade ejaculada por animal. Tabela 1: Características médias do sêmen dos mamíferos domésticos Espécie Volume de uma ejaculação (ml) Concentração 1099/ml N° total de spz (109) Porcentagem de spz móveis Touro 5 (1 – 12) 1,2 (0,5 – 2,5) 6 65 Carneiro 0,9 (0,1 – 0,5) 4 (1,5 – 6) 3,6 90 Porco 300 0,3 90 70 Cavalo 100 0,15 15 65 Cão 2 0,1 0,2 85 Fonte: SOLTNER, 1993. A técnica para a sua medição é imediata, é realizada após a coleta mediante a utilização de um tubo graduado. O volume total de esperma é um fator secundário de apreciação. No entanto, o interesse do seu estudo reside no fato de que o volume normal ser um índice favorável que condiciona o número de doses seminais a preparar. Além disso, outras características macroscópicas importantes do esperma são a cor e o odor característicos em cada uma delas. 6.2 Estudo microscópico do esperma 6.2.1 A motilidade massal Imediatamente após a emissão, o exame microscópico direto do esperma fresco nos permite conhecer de forma aproximada a porcentagem de espermatozoides móveis, sua morfologia, tendência dos zoospermios à aglutinação (movimento de ondas e remoinhos, já que as células vivas varrem as mortas, agrupando-as) e a presença eventual de elementos estranhos (células epiteliais, pus, partículas de terra, restos de vaselina, etc.). O método é subjetivo e serve unicamente como avaliação de conjunto; no entanto, é importante a motilidade dos espermatozoides no fluido espermático. Uma boa ejaculação não deverá conter menos de 60% de espermatozoides em movimento, e este deve ser em avanço progressivo, nunca curvo, rotatório ou oscilante. A atividade massal é avaliada tecnicamente mediante microscópio, com ligeiro aumento (20 x 40), colocando uma gota de esperma sobre uma lâmina situada numa placa de aquecimento (38-39ºC). A observação pode ser direta sobre a ocular ou pode ser facilitada por um sistema que permita a visualização num monitor de televisão. 6.2.2 A concentração zoospérmica É o número de espermatozoides por mililitro de esperma variável para as diferentes espécies (tabela 1). A determinação pode ser feita utilizando sistemas semelhantes à contagem globular utilizada em hematologia, utilizando câmaras contabilísticas especiais como a câmara Burker. Esta câmara possui uma grelha integrada por três tipos de retângulos de diferentes áreas, o que permite operar com qualquer concentração. Antes de iniciar o processo é necessário diluir o esperma para uma melhor observação colocando uma quantidade conhecida sobre a câmara sobrepondo uma lamela. A contagem consiste em anotar o número de espermatozoides cujas cabeças se encontram dentro da grade, de modo que cada dois espermatozoides que eventualmente possam apresentar sua cabeça sobreposta sobre a linha divisória se conta um. O número de quadrados sobre os quais se deve fazer a contagem é de 30, obtendo depois a média aritmética do valor que resultava do número total de espermatozoides encontrados nas 30 quadras. Um exemplo prático para conhecer a concentração de espermatozoides no gado bovino pode ser deduzida utilizando a seguinte fórmula: N = M x 400 x 10 x 200 x 1.000 Onde: N: Número de espermatozoides/mm3. M: Média dos espermatozoides contados por grade. 400: Área da grelha (1/20 x 1/20 = 1/400 mm2). 10: Altura delimitada entre a câmara e a lamela (1/19 mm). 200: Título de diluição (1/200). 1000: Conversão de mm3 para cm3. Pode-se também apreciá-lo de forma rápida e precisa usando um fotômetro, avaliando uma pequena quantidade de esperma diluído. O método é baseado na relação direta que existe entre a transparência ou densidade ante a passagem da luz através do fluido espermático e sua concentração em espermatozoides. Uma fotocélula mede a luz que atravessa a preparação, o que permite deduzir diretamente a concentração. O sistema de videomicrografia consiste em um microscópio óptico focado na amostra de sêmen (foco que é feito manualmente por meio de parafuso micrométrico), uma câmera de vídeo recolhe imagens microscópicas e estas são processadas por computador. Sua vantagem é que o sistema, totalmente automatizado, pode ser ajustado para analisar a concentração no sêmen fresco e após a descongelação do mesmo. 6.2.3 A porcentagem de espermatozoides mortos e anormais Uma das provas de aptidão genésica dos reprodutores é a determinação de formas anormais de espermatozoides. Todos os animais em que o teor de tais formas ultrapasse repetidamente um determinado limite ou que sejam de um tipo característico devem ser eliminados. As colorações específicas permitem diferenciar as formas vivas das mortas em função da aceitação dos diferentes corantes utilizados. Uma das técnicas de coloração seletiva consiste em diluir uma gota de esperma num corante vital (eosina) juntamente com nigrosina. Uma vez aplicado o corante, deixa-se secar o esfregaço ao ar de modo que a eosina cora imediatamente os zoospermios mortos no momento da mistura, enquanto a nigrosina resulta na solução de contraste. A medição pode ser feita em um hematímetro ou por colorímetro. A porcentagem de formas anormais é dada pela seguinte fórmula: x=( A x 100 )/N Onde: A: Número de espermatozoides anormais encontrados. N: Número total de espermatozoides contados. Quando o teor de espermatozoides anormais ultrapassa um certo limite ou se as malformações são de um tipo característico, considera-se a ejaculação como não válida. 6.3 Os controles biológicos e bioquímicos Os controles biológicos ao esperma e espermatozoides limitam-se a testes de resistência ou grau de vigor e a testes de sobrevivência. Os controles químicos incluem, em geral, a determinação da atividade metabólica dos espermatozoides em relação a determinados produtos: frutólise, redução do azul de metileno, consumo de oxigênio, ou a utilização de testes indicadores como GOT, DNA e acrosina. 6.4 A diluição do esperma Esse processo tem por finalidade aumentar o volume total da massa espermática. Os objetivos buscados nesse processo de diluição são: a) Partindo de uma ejaculação, o poder de inseminar o maior número possível de fêmeas. b) A criação de um meio favorável à sobrevivência dos espermatozoides "in vitro". Como diluidores são utilizados diluentes e conservantes, a maioria deles são feitos a partir de gemas de ovo, frutose, leite desnatado reconstituído ou produtos químicos como o TRIS (hidroximetilaminometano) com a adição de antibióticos e glicerol. Em qualquer caso, devem satisfazer as seguintes condições: a) Que tenha um pH idôneo para cada tipo de sêmen, com bom efeito de mistura. b) Que tenham a mesma pressão osmótica e a propriedade de mantê-la. c) Que contenham substâncias alimentares necessárias para o metabolismo dos espermatozoides. d) Que contenham os minerais necessários e na concentração adequada sem ânions nem cátions tóxicos. e) Não devem conter elementos prejudiciais para os órgãos sexuais femininos, para o processo de fecundação e o desenvolvimento do óvulo fecundado. A frutose é a principal fonte de energia para o espermatozoide; este como qualquer outra célula é capaz de metabolizar os hidratos de carbono mediante um mecanismo oxidativo anaeróbio. As proteínas do ovo regulam as variações bruscas de temperatura e certos agentes químicos e efeito conservador sobre os zoospermios, o que permite uma melhor sobrevivência dos mesmos. Os lipídeos do ovo comportam-se como fatores de proteção e os complexos lipoproteicos protegem, mas também conservam o esperma. O leite desnatado apresenta a desvantagem de uma observação mais difícil dos espermatozoides ao fazer a constatação das doses seminais. Os antibióticos têm a função de inibir o desenvolvimento dos germes que acompanham o esperma no momento da coleta. A ação mais eficaz é a penicilina e a estreptomicina. À medida que certos agentes patogênicos (vibriofetus) e outras infecções específicas são erradicados, a tendência é a diminuição na utilização de antibióticos, porque, juntamente com a sua ação positiva, implica também uma diminuição da fertilidade do sêmen. O glicerol intervém no processo de conservação e favorece a formação de cristais muito pequenos durante a congelação, o que evita o dano celular e favorece a sobrevivência dos espermatozoides. 6.4.1 A taxa de diluição É um processo importante, uma vez que é necessário assegurar os resultados da fecundação. Realizado o número de espermatozoides de cada um dos ejaculados, uma vez que têm densidade diferente, procede-se ao cálculo do volume do dilúvio-conservador necessário. O número de doses obtidas por ejaculação é muito variável. De 100 a 300 ou mais para ejaculação de touro, de 10 a 15 para o de carneiro ou de bode e de 30 a 40 para o porco. Após a diluição do esperma com o mênstruo, é requerido um período de equilíbrio para que a temperatura do sêmen desça lentamente evitando, dessa maneira, o choque térmico. 6.5 O condicionamento do esperma: o enchimento e o fechamento das palhetas Para o condicionamento dos espermatozoides, sempre que se pratique a congelação do sêmen, como é o caso dos bovinos, foram utilizados diferentes sistemas como as ampolas e os tubos de celofane. No entanto, o mais frequente no Brasil é a aplicação do método francês das palhetas, de capacidade variável (0,25 ou 0,50 ml para o sêmen de touro) e grande resistência. As palhetas devem ser previamente identificadas de acordo com os códigos estabelecidos para estes casos nos centros correspondentes onde devem recolher as chaves de número e a data do congelamento, centro, raça e reprodutor com o seu nome correspondente. As operações de marcação, enchimento e fechamento das palhetas são totalmente automatizadas, no caso dos bovinos. 6.6 A congelação do sêmen Terminada a diluição, começa o processo de conservação correta do sêmen para que conserve sua efetividade de fecundação, para isso podemos recorrer à refrigeração e à congelação. O primeiro sistema é reservado aos animais cujos espermatozoides não resistem a temperaturas baixas ou quando se procura uma inseminação imediata. Nas espécies nas quais se pode realizar a congelação, como no bovino, mesmo com o aperfeiçoamento exaustivo das técnicas atuais, existe uma porcentagem de espermatozoides mortos na operação. Para evitar o máximo possível que isso aconteça, é feita uma descida gradual da temperatura, procurando uma curva adequada, de modo a evitar os riscos acima referidos. A congelação realiza-se a —196ºC com nitrogênio líquido; a conservação neste estado é praticamente indefinida. 6.6.1 Controle após a congelação Deve ser realizada em condições de qualidade, a qual é estabelecida em função do número de espermatozoides vivos e progressivamente móveis (em bovinos nunca inferior a 35%) que apareçam uma vez descongelada a palha. Terminada a análise e estabelecidos os correspondentes controles, os centros são responsáveis por: a) A distribuição de um sêmen controlado e de qualidade. b) O sêmen após descongelação contenha um número suficiente de espermatozoides móveis e fecundantes. 6.7 A qualidade sanitária do sêmen A qualidade sanitária do sémen depende diretamente das condições de vida sanitária em que se encontra o reprodutor, das condições de coleta do sêmen, do tratamento do mesmo e da sua manipulação. A infecção do esperma pode ocorrer durante a diluição e a conservação e, mais eficazmente ainda, durante a coleta e com o ar do ambiente. A infecção pode ser causada por: a) Agentes específicos das infecções genitais, que podem propagar doenças infecciosas através da inseminação (vibriose, tricomoníase, brucelose, etc.). b) Agentes não específicos como diferentes bactérias (estafilococos, estreptococos, colibactérias, germes pirógenos, etc.), fungos (micose) e vírus (IBR) que podem provocar inflamações dos órgãos genitais da fêmea e que exercem uma influência nociva dos seus produtos de metabolismo sobre o poder fecundante dos espermatozoides. Atualmente, é possível obter esperma estéril desde que se trabalhe corretamente com os diluentes; no entanto, apesar de todas as garantias que possam oferecer a tecnologia dos centros dos diferentes países, existe uma regulamentação jurídica clara, a fim de evitar a difusão de riscos para a saúde. 7. A INSEMINAÇÃO ARTIFICIAL NA PRÁTICA No processo de inseminação propriamente dito, o sêmen é introduzido e depositado nas vias genitais da fêmea mediante o instrumental adequado. Para o seu desenvolvimento no gado bovino, são necessárias uma série de operações. 7.1 Coleta e transferência no termo de transporte As palhetas são recolhidas pelos inseminadores nos centros levando-as em pequenos contentores de transporte que contêm nitrogênio líquido. Ao retirar a palheta do recipiente é conveniente tê-la perfeitamente localizada para conseguir uma correta manipulação da cesta onde está situada, uma vez que uma queda brusca da temperatura faz diminuir a sobrevivência das células espermáticas. 7.2 A descongelação Realiza-se rapidamente num banho de água ou num termo que mantém a temperatura da água entre 35-37ºC. Outros sistemas diferentes não são recomendados, pois aumentam o tempo de descongelação e diminuem a capacidade fecundante do sêmen. 7.3 A aplicação do sêmen no aparelho genital da vaca Uma vez descongelada a palheta, seca-se e homogeneíza-se o seu conteúdo, corta-se uma das suas extremidades selada com álcool polivinílico solidificado e introduz-se no cateter de inseminação, instrumento cilíndrico no qual se introduz a palheta, posteriormente ajusta-se perfeitamente para evitar perdas de material seminal e, no momento da aplicação, o seu conteúdo é empurrado através de um sistema de êmbolo. O cateter é revestido com uma bainha de plástico, descartável após cada utilização. O método técnico que se impôs atualmente é o americano, no qual o lugar ideal para depositar o sêmen é na bifurcação dos cornos uterinos guiando-se por palpação manual através da parede retal. 7.4 O momento ideal de inseminação na vaca Há uma série de fatores que determinam o momento ideal de inseminação da vaca: a) A capacidade de sobrevivência dos espermatozoides nos órgãos sexuais femininos. b) A necessidade da maturidade dos espermatozoides (capacitação). c) O tempo de maturidade do óvulo e sua passagem pelo oviduto. Em geral, como média, as vacas permanecem no cio por 18 horas e ovulam às 14 horas depois, sendo a vida do óvulo de 6 a 10 horas. Em função destes fatores e para obter uma fertilidade ideal as vacas podem ser servidas durante os últimos dois terços do período de cio, ou algumas horas depois de este ter terminado, o que na prática se traduz em que se observa o cio pela manhã, as vacas podem ser servidas nessa mesma tarde e as que mostram o cio pela tarde são inseminadas na manhã seguinte. Em caso de dúvidas é sempre melhor deixar passar mais tempo. 7.5 Inseminação em caprinos, ovinos, suínos, equinos, coelhos, aves e abelhas Nos ovinos e caprinos, a inseminação é feita com sêmen fresco e refrigerado, normalmente conservado a 16 ºC com ampolas de ácido acético. A técnica da inseminação em si é simples, mas requer a utilização de espéculo para abrir a vulva e guiar a pistola inseminadora, injetando a dose correspondente à entrada do colo do útero. A dose seminal depositada varia entre 0,2 e 0,4 ml em concentrações de 5 x 106 espermatozoides/ml. No caso dos caprinos, a técnica é semelhante à das ovelhas, com a ressalva de que as doses seminais são geralmente, um pouco mais elevadas. Em suínos utiliza-se para inseminação o sêmen fresco, a temperatura de conservação varia entre 40 ºC e 15 ºC. As técnicas de congelação resultam na obtenção de espermatozoides móveis após a descongelação, mas com má fertilidade. Na porca o cio ou estro, momento apropriado para a inseminação, tem uma duração aproximada de 3 dias. A ovulação ocorre às 35 horas após o início do cio; este fato acontece às 30-40 horas de imobilização ante o cachaço, sendo a sobrevivência do óvulo de 12 horas. As fêmeas em cada cio podem ser inseminadas uma ou duas vezes. O momento apropriado é 24 horas após o início do estro quando se aplica uma única dose; caso se aplicarem duas, recomenda-se fazê-la de 24 à 36 horas após o aparecimento do estro. Devido à disposição peculiar do colo do útero na porca, a prática da inseminação suína requer: a) Uma deposição do sêmen intrauterina. b) Uma fixação do cateter correta para estimular as contrações uterinas e facilitar o transporte de espermatozoides. c) Evitar o refluxo do sêmen e a consequente diminuição do número de espermatozoides, o que entra em detrimento com a finalidade da fertilidade. A forma do cateter é adaptada à necessidade de uma correta fixação cervical para praticar a inseminação intrauterina de um volume importante de sêmen diluído (cerca de 100 cc). Os diversos modelos existentes, com variantes, tratam de imitar a forma do pênis do macho e introduzem-se na vagina girando para a esquerda para permitir seu deslizamento e uma boa fixação. O sêmen contido no recipiente é depositado por gravidade no útero. Nos equinos, o sêmen utilizado é fresco, normalmente a 4 ºC. A técnica apresenta uma maior dificuldade decorrente da necessidade de utilizar um longo tubo acoplado ao cateter de inseminação para o acesso fácil à zona de deposição do esperma no aparelho genital da égua. A dose correspondente é injetada a nível uterino. Nos coelhos é utilizado sêmen fresco, refrigerado e diluído. Para inseminar existem vários procedimentos, embora o mais comum seja a utilização de palhetas e pistola de inseminação. A aplicação do esperma efetua-se entre 1 e 4 horas após a coleta do mesmo. Nas aves, a técnica de inseminação é realizada com sêmen fresco extraído pouco antes da sua implantação na fêmea, uma vez que na maioria das espécies se constata uma rápida diminuição das taxas de fecundação com o tempo. O material e a metodologia do inseminador consistem em pipetas para a obtenção do esperma, dosador de sêmen diluído, palhetas descartáveis e seringas adequadas para a colocação do sêmen no aparelho genital da fêmea. Os intervalos de inseminação são, geralmente, de uma semana. Nas abelhas, a inseminação artificial das rainhas é prática corrente em centros especializados na seleção de reprodutores. A técnica requer um efeito sedativo na rainha durante a manipulação, abertura da prega da vagina e introdução da seringa na vagina. Para efetuar estas operações é necessário utilizar um aparelho especial de inseminação. 8. RESUMO E PRIMEIRAS CONCLUSÕES Aspectos como a melhoria genética, a proteção sanitária ou a organização e gestão da empresa pecuária têm sido as principais motivações para que a técnica da inseminação artificial tenha se difundido atualmente nos países com uma pecuária organizada e desenvolvida. A utilização da técnica implica na utilização de um sêmen de qualidade, garantido pelos centros de inseminação. Através de técnicas laboratoriais, é possível prever essa qualidade mediante a realização de testes macroscópicos (motilidade massal) e microscópicos (quantidade, motilidade, porcentagem de espermatozoides anormais e densidade). Constatada a sua qualidade, o sêmen é diluído com o objetivo de conservá-lo e aumentar o volume de ejaculação, sendo-lhe adicionados diferentes tipos de diluentes e aditivos. O sêmen pode ser conservado refrigerado ou congelado com nitrogênio líquido a uma temperatura negativa de -196 ºC. Para obter uma porcentagem elevada de inseminações fecundantes nos bovinos, faz-se necessário a manipulação correta das palhetas, evitando as mudanças de temperatura até à sua posterior utilização. Os processos de descongelação, secagem e colocação no cateter devem ser realizados de forma rápida e eficiente. Nas espécies em que se utiliza sêmen fresco, além de um correto desenvolvimento da técnica em si, é de vital importância a conservação do mesmo a temperatura adequada, além da sua aplicação em um curto espaço de tempo para evitar baixas taxas de fecundação. Emanuel Isaque Cordeiro da Silva – Departamento de Zootecnia da UFRPE. Recife, 2020. REFERÊNCIAS BIBLIOGRÁFICAS -/- ASBIA. Informações Técnicas sobre inseminação artificial. Acesso em: Março de 2020. ASBIA. Manual de Inseminação de Artificial, Uberaba – MG: Associação Brasileira de Inseminação Artificial, 2003. BRACKETT, B. G.; JÚNIOR, G. E. A.; SEIDEL, S. M. Avances en zootecnia. Nuevas técnicas de reproducción animal. 1ª ed. Zaragoza: Editorial Acribia, 1988. BRASIL. Legislação Informatizada - Decreto n° 91.111 de 12/03/1985. Acesso em: Março de 2020. CLÉMENT, Jean Michel. Larousse agricultural dictionary. Paris: Larousse, 1981. DERIVAUX, Jules. Fisiopatología de la reproducción e inseminación artificial de los animales domésticos. Havana: Instituto Cubano del libro, 1976. GOFFAUX, M. Quelques aspects relatives a la technologie de insémination artificielle des bovins. Elevage et insémination, n. 216, p. 5-9. 1986. HAFEZ, E. S. E. Artificial Insemination in Reproduction in Farm Animals. Lea and Febiger, Philadelphia, p. 481-497, 1990. HOPPER, Richard M. (Ed.). Bovine reproduction. New Jersey: John Wiley & Sons, 2014. HUNTER, Ronald Henry Fraser et al. Physiology and technology of reproduction in female domestic animals. Londres: Academic Press, 1980. JOHNSON, L. A.; LARSSON, K. Deep freezing of boar semen. Uppsala: Swedish University of Agricultural Sciences, 1985. LABBATE, Rodolfo D. Manual del inseminador. Córdoba: Sayg, 2000. ORGEUR, P.; SIGNORET, J. P. L'activité sexuelle du taureau: revue bibliographique. Paris: INRA, 1990, 3 (4), pp.235-242. ORTUÑO, Arturo Duarte. Manual de inseminación artificial de ganado. Disponível em: ——. Acesso em: Março de 2020. PÉREZ PÉREZ, F.; PÉREZ GUTIÉRREZ, F. Reproducción animal, inseminación animal y transplante de embriones. Barcelona: Cientifico-medica, 1985. Y PÉREZ, Félix Pérez. Reproducción e inseminación artificial ganadera. Barcelona: Cientifico-Medica, 1966. SALISBURY, G. W.; VANDERMARK, N. L. Phisiology of the reproduction and artificial insemination of cattle. San Francisco : Freeman e Company, 1961, 630 p. SEVERO, N. C. História ilustrada da inseminação artificial. São Paulo: Livre Expressão, 2013. SOLTNER, D. La reproduction des animaux domestiques d’élevage. Zootechnie générale, v. 1, Paris: Sciences et techniques agricole, 1993. (shrink)
As a contribution to a wider discussion on moral discernment in theological anthropology, this paper seeks to answer the question “What is the impact of mental illness on an individual’s ability to make moral decisions?” Written from a clinical psychiatric perspective, it considers recent contributions from psychology, neuropsychology and imaging technology. It notes that the popular conception that mental illness necessarily robs an individual of moral responsibility is largely unfounded. Most people who suffer from mental health problems do not lose (...) the capacity to make moral decisions, and mental illness on its own rarely explains anti-social or criminal behaviour. Moreover, the assumptions of some scientists, that recent developments in neuropsychology and brain imaging suggest biological determinism, must be treated with caution. (shrink)
This paper provides a method for characterizing space events using the framework of conceptual spaces. We focus specifically on estimating and ranking the likelihood of collisions between space objects. The objective is to design an approach for anticipatory decision support for space operators who can take preventive actions on the basis of assessments of relative risk. To make this possible our approach draws on the fusion of both hard and soft data within a single decision support framework. Contextual data is (...) also taken into account, for example data about space weather effects, by drawing on the Space Domain Ontologies, a large system of ontologies designed to support all aspects of space situational awareness. The framework is coupled with a mathematical programming scheme that frames a mathematically optimal approach for decision support, providing a quantitative basis for ranking potential for collision across multiple satellite pairs. The goal is to provide the broadest possible information foundation for critical assessments of collision likelihood. (shrink)
This paper is basically a presentation of the tenets of Pierre Bourdieu’s philosophy in a language and level that can be easily understood by Filipino students and scholars of philosophy, cultural studies and Philippine studies. The discussion of Bourdieu’s philosophy revolves around 1) his concepts of habitus, field and symbolic violence; 2) his critique of television; 3) his theory of capitals; 4) some implications of his theory of capitals; and 5) his being public intellectual. The ultimate aim of this paper (...) is to suggest some aspects and dimensions of Philippine society and culture that can be analyzed using some of bourdieu’s thoughts as interpretive frameworks, as well as to challenge the said Filipino students and scholars of philosophy, cultural studies and Philippine studies to creatively and effectively appropriate such theories for the enrichment of the theoretical corpus of Philippine studies. This paper is part of a series of similar works done by one of the co-authors that dealt with Adorno, Schleiermacher and Dilthey, Heidegger, Gadamer and Bultmann, and Lyotard. (shrink)
This paper describes an AFOSR-supported basic research program that focuses on developing a new framework for combining hard with soft data in order to improve space situational awareness. The goal is to provide, in an automatic and near real-time fashion, a ranking of possible threats to blue assets (assets trying to be protected) from red assets (assets with hostile intentions). The approach is based on Conceptual Spaces models, which combine features from traditional associative and symbolic cognitive models. While Conceptual Spaces (...) are revolutionary, they lack an underlying mathematical framework. Several such frameworks have attempted to represent Conceptual Spaces, but by far the most robust is the model developed by Holender. His model utilizes integer linear programming in order to obtain an overall similarity value between observations and concepts that support the formation of hypotheses. This paper will describe a method for building Conceptual Spaces models for threats that utilizes ontologies as a means to provide a clear semantic foundation for this inferencing process; in particular threat ontologies and space domain ontologies are developed and employed in this approach. A space situational awareness use-case is presented involving a kinetic kill scenario and results are shown to assess the performance of this fusion-based inferencing framework. (shrink)
Initial responses to questionnaires used to assess participants' understanding of informed consent for malaria vaccine trials conducted in the United States and Mali were tallied. Total scores were analyzed by age, sex, literacy (if known), and location. Ninety-two percent (92%) of answers by United States participants and 85% of answers by Malian participants were correct. Questions more likely to be answered incorrectly in Mali related to risk, and to the type of vaccine. For adult participants, independent predictors of higher scores (...) were younger age and female sex in the United States, and male sex in Mali. Scores in the United States were higher than in Mali (P = 0.005). Despite this difference participants at both sites were well informed overall. Although interpretation must be qualified because questionnaires were not intended as research tools and were not standardized among sites, these results do not support concerns about systematic low understanding among research participants in developing versus developed countries. (shrink)
In his book, History as a Science and the System of the Sciences, Thomas Seebohm articulates the view that history can serve to mediate between the sciences of explanation and the sciences of interpretation, that is, between the natural sciences and the human sciences. Among other things, Seebohm analyzes history from a phenomenological perspective to reveal the material foundations of the historical human sciences in the lifeworld. As a preliminary to his analyses, Seebohm examines the formal and material presuppositions of (...) phenomenological epistemology, as well as the emergence of the human sciences and the traditional distinctions and divisions that are made between the natural and the human sciences. -/- As part of this examination, Seebohm devotes a section to discussing Husserl’s formal mereology because he understands that a reflective analysis of the foundations of the historical sciences requires a reflective analysis of the objects of the historical sciences, that is, of concrete organic wholes (i.e., social groups) and of their parts. Seebohm concludes that Husserl’s mereological ontology needs to be altered with regard to the historical sciences because the relations between organic wholes and their parts are not summative relations. Seebohm’s conclusion is relevant for the issue of the reducibility of organic wholes such as social groups to their parts and for the issue of the reducibility of the historical sciences to the lower-order sciences, that is, to the sciences concerned with lower-order ontologies. -/- In this paper, I propose to extend Seebohm’s conclusion to the ontology of chemical wholes as object of quantum chemistry and to argue that Husserl’s formal mereology is descriptively inadequate for this regional ontology as well. This may seem surprising at first, since the objects studied by quantum chemists are not organic wholes. However, my discussion of atoms and molecules as they are understood in quantum chemistry will show that Husserl’s classical summative and extensional mereology does not accurately capture the relations between chemical wholes and their parts. This conclusion is relevant for the question of the reducibility of chemical wholes to their parts and of the reducibility of chemistry to physics, issues that have been of central importance within the philosophy of chemistry for the past several decades. (shrink)
Psychopathy is a personality disorder characterized by callous antisocial behavior and criminal recidivism. Here we examine whether psychopathy is associated with alterations in functional connectivity in three large-scale cortical networks. Using fMRI in 142 adult male prison inmates, we computed resting-state functional connectivity using seeds from the default mode network, frontoparietal network, and cingulo-opercular network. To determine the specificity of our findings to these cortical networks, we also calculated functional connectivity using seeds from two comparison primary sensory networks: visual and (...) auditory networks. Regression analyses related network connectivity to overall psychopathy scores and to subscores for the “factors” and “facets” of psychopathy: Factor 1, interpersonal/affective traits; Factor 2, lifestyle/antisocial traits; Facet 1, interpersonal; Facet 2, affective; Facet 3, lifestyle; Facet 4, antisocial. Overall psychopathy severity was associated with reduced functional connectivity between lateral parietal cortex and dorsal anterior cingulate cortex. The two factor scores exhibited contrasting relationships with functional connectivity: Factor 1 scores were associated with reduced functional connectivity in the three cortical networks, whereas Factor 2 scores were associated with heightened connectivity in the same networks. This dissociation was evident particularly in the functional connectivity between anterior insula and dorsal anterior cingulate cortex. The facet scores also demonstrated distinct patterns of connectivity. We found no associations between psychopathy scores and functional connectivity within visual or auditory networks. These findings provide novel evidence on the neural correlates of psychopathy and suggest that connectivity between cortical association hubs, such as the dorsal anterior cingulate cortex, may be a neurobiological marker of the disorder. (shrink)
Biological ontologies are used to organize, curate, and interpret the vast quantities of data arising from biological experiments. While this works well when using a single ontology, integrating multiple ontologies can be problematic, as they are developed independently, which can lead to incompatibilities. The Open Biological and Biomedical Ontologies Foundry was created to address this by facilitating the development, harmonization, application, and sharing of ontologies, guided by a set of overarching principles. One challenge in reaching these goals was that the (...) OBO principles were not originally encoded in a precise fashion, and interpretation was subjective. Here we show how we have addressed this by formally encoding the OBO principles as operational rules and implementing a suite of automated validation checks and a dashboard for objectively evaluating each ontology’s compliance with each principle. This entailed a substantial effort to curate metadata across all ontologies and to coordinate with individual stakeholders. We have applied these checks across the full OBO suite of ontologies, revealing areas where individual ontologies require changes to conform to our principles. Our work demonstrates how a sizable federated community can be organized and evaluated on objective criteria that help improve overall quality and interoperability, which is vital for the sustenance of the OBO project and towards the overall goals of making data FAIR. Competing Interest StatementThe authors have declared no competing interest. (shrink)
This paper is founded on the assumption that Philippine Studies has five different discouses: 1) Philippine studies as a neutral discourse; 2) colonial Philippine studies as a discourse that is based on western power and reinforces such power; 3) generic postcolonial Philippine studies as a discourse that critiques western hegemony; 4) Pilipinolohiya as a specific postcolonial discourse that was inaugurated by Prospero Covar; and 5) pantayong pananaw as another specific postcolonial discourse that was inaugurated by Zeus Salazar. Malay Journal, on (...) the other hand, is a scholarly periodical intended for researchers in the field of Philippine studies who use the Filipino language. Currently, it is the most respected journal that is exclusively published in Filipino language, based on the fact that it is accredited by the Commission on Higher Education and listed in a number of international abstracting and indexing organizations. This paper intends to establish which among these five discourses of Philippine studies is the most dominant in as far as the articles of the said journal are concerned. In order to attain such goal, this paper analyzed 50% random sample of the articles that were published from 2011, when the journal had completed its shift towards Philippine studies, up to 2015, the present complete year of publication for the said journal. (shrink)
Les recherches menées dans le champ de la psychologie morale par Larry P. Nucci et Elliot Turiel conduisent à identifier le domaine moral avec le domaine des jugements prescriptifs concernant la manière dont nous devons nous comporter à l’égard des autres personnes. Ces travaux empiriques pourraient apporter du crédit aux propositions normatives du philosophe Ruwen Ogien qui défend une conception minimaliste de l’éthique. L’éthique minimale exclut en particulier le rapport à soi du domaine moral. À mon avis cependant, ces travaux (...) de psychologie morale ne permettent pas du tout d’affirmer que nous sommes, empiriquement parlant, des minimalistes moraux. Les résultats des recherches de Nucci et Turiel montrent que les personnes considèrent intuitivement que le domaine personnel – le domaine des actions qui affectent prioritairement l’agent lui-même – doit échapper au contrôle ou à l’interférence des autres personnes. Mais affirmer que c’est l’agent lui-même qui possède l’autorité légitime de décider dans le domaine personnel ne signifie pas que tout ce qu’il y fait soit moralement indifférent. (shrink)
Host-microbiome interactions (HMIs) are critical for the modulation of biological processes and are associated with several diseases, and extensive HMI studies have generated large amounts of data. We propose that the logical representation of the knowledge derived from these data and the standardized representation of experimental variables and processes can foster integration of data and reproducibility of experiments and thereby further HMI knowledge discovery. A community-based Ontology of Host-Microbiome Interactions (OHMI) was developed following the OBO Foundry principles. OHMI leverages established (...) ontologies to create logically structured representations of microbiomes, microbial taxonomy, host species, host anatomical entities, and HMIs under different conditions and associated study protocols and types of data analysis and experimental results. (shrink)
New trends in the economic systems management in the context of modern global challenges: collective monograph / scientific edited by M. Bezpartochnyi, in 2 Vol. // VUZF University of Finance, Business and Entrepreneurship. – Sofia: VUZF Publishing House “St. Grigorii Bogoslov”, 2020. – Vol. 1. – 309 p.
Esta coletânea é um tributo a Peter Frederick Strawson pelo centenário de seu nascimento (1919-2019). Diferentemente de outras coletâneas, esta propõe colocar em relevo a interlocução de Strawson com a tradição filosófica. Em outras palavras, por um lado, queremos evidenciar as discussões que Strawson travou com os seus contemporâneos (Austin, Quine, Russell e Wittgenstein), e, por outro, a influência que recebeu e as críticas que dirigiu àqueles que o precederam na história da filosofia (Aristóteles, Descartes, Hume, Kant). Poderíamos ter enriquecido (...) a lista acima com o nome de muitos outros filósofos com os quais Strawson teve contato, mas julgamos que o trabalho ficaria bastante extenso. Por esse motivo, optamos por aqueles nomes mais significativos que figuram na construção da história intelectual de Strawson. O presente volume reúne nove capítulos que levam como título o nome de Strawson e do filósofo com o qual ele dialogou ao longo de suas obras. Essa opção na nomeação dos capítulos por si só já permite colocar em evidência os principais filósofos pelos quais Strawson se interessou e com os quais se confrontou ao longo de seu trabalho filosófico. Com exceção do capítulo sobre Wittgenstein, que é uma versão revisada de um texto publicado anteriormente, todos os outros capítulos são inéditos e foram escritos especialmente para esta coletânea. O volume inclui na abertura a tradução de “Um fragmento de autobiografia intelectual”, de P. F. Strawson. Quando elegemos como título desta obra, Strawson e a tradição filosófica, não estamos insinuando que Strawson é um historiador da filosofia e muito menos que se interesse por historiografia. O título desta obra apenas quer indicar que Strawson, por um lado, transita na história da filosofia com alguma facilidade, além de nutrir um grande apreço por ela e, por outro, que ele discute com os principais nomes da história da filosofia no que concerne aos temas de seu interesse. A sua proposta filosófica é alimentada e irrigada por esse conhecimento, o que lhe dá a possibilidade de assumir na maioria das vezes posições ponderadas e equilibradas acerca de temas complexos por ele tratados. ISBN: 978-85-5696-689-6. Nº de pág.: 244. (shrink)
P.F. Strawson (1919-2006) was one of the most significant philosophers of the twentieth-century. His career centred around Oxford – first as Tutor and Fellow at University College, then as Waynflete Professor of Metaphysical Philosophy at Magdalen College. His careful, thoughtful, and characteristically elegant written work was influential in moving Oxford philosophy from the anti-metaphysical leanings of A.J. Ayer and J.L. Austin to a renewed and rejuvenated era of traditional philosophy theorising, albeit domesticated in a distinctively Strawsonian fashion. His influence on (...) British philosophy persists through a generation of students who were brought up on his writings. (shrink)
The archaeological record is very limited and its analysis has been contentious. Hence, molecular biologists have shifted their attention to molecular dating techniques. Recently on April 2013, the prestigious Cell Press Journal Current Biology published an article (Fu et al. 2013) entitled “A Revised Timescale for Human Evolution Based on Ancient Mitochondrial Genomes”. This paper has twenty authors and they are researchers from the world’s top institutes like Max Planck Institute, Harvard, etc. Respected authors of this paper have emphatically accepted (...) that the fossil record is inadequate and unreliable. These statements clearly substantiate that now biologists are agreeing that fossil records do not provide any significant evidence at all for conventional evolution theory. Despite the well-recorded fact of the continual grand propaganda of Darwinism based on fossil evidence for more than 150 years, in recent times biologists are surprisingly coming up with such statements, based on their confidence that evolution can be explained purely by the genealogical/genomic record provided by modern molecular biology. Still many respected journals (for example the article in Nature, Retallack, 2013) continue to publish articles on fossil evidence to support Darwinian evolution. These incoherently diverse claims prove that Darwinists are struggling with unscientific ideological approaches to explain biodiversity. Darwinian evolutionary theory is not only the basis of modern biology, but also acts as the guiding principle of science and intellectual reasoning for modern civilization. Hence, a scientific understanding of the breakdown of the Darwinian theory of objective evolution is very important for overcoming the traditional scientific temper of mechanistic intellectualism that characterizes this ideology. In my article “21st Century Biology Refutes Darwinian Abiology” (published in two parts in November and December 2012 issues of The Harmonizer: www.mahaprabhu.net/satsanga/harmonizer) it was noted that several recent findings challenge the credibility that random mutations and natural selection can provide a valid basis for justifying the naturalistic evolution of species. The present article summarizes the problems associated with the fossil record and dating techniques, and its implication on the neo-Darwinian mechanistic misconception of biological life as mere molecular chemistry or abiology. An alternative approach based on the Vedāntic view for explaining biodiversity in the light of 21st century biology is also discussed in the end of the article. (shrink)
Palawan is a land of promise, and of paradox. On maps, it appears on the edge of the Philippines, isolated. Indeed, it is a kind of last frontier. Its population remained tiny for centuries, the government offering homestead land in the 1950s practically for free to attract migrants from outside. The Palawan State University was established by law in 1965, but did not become operational until 1972. A commercial airport did not exist until the 1980s, and for many years, flights (...) were limited. Yet Palawan is one of the oldest sites of human habitation in the Philippines with the famous Tabon Cave human fossils. The oldest bone fragment here has been dated to be about 47,000 years. We know, too, that trade with China goes back several centuries. Today, Palawan seems to be making up for lost time with new commercial investments pouring in at breakneck speed. In particular, outsiders have rediscovered its potentials around logging, mining, fisheries, and tourism. This has caused concern among individuals and civil society organizations who want sustainable development, and see the commercial developments mainly as extractive, not just of natural resources but of the human. There’s very cheap labor available. And when potential investors marvel about cheap land, they’re actually talking about displacing earlier settlers, including indigenous people, from their lands. A subtle but still insidious aspect of the exploitation of human resources is a transformation of the very concept of human development. Using the rhetoric of modernity, residents in Palawan are reorienting the way they view themselves as well as their families and friends. The value of a human being now hinges on how they look, and the desired appearance is defined from the outside, as we see in this anthology of research reports coming from the Chemical Youth project of the University of Amsterdam and the University of the Philippines Diliman. We read about the importance of fair skin as a projection of cleanliness, of high social status (meaning someone not engaged in manual labor and therefore not exposed to the sun). We read of how “femininity” is defined around body contours, and cosmetics, and how hormones are used by male-to-female transgenders. We go beyond the visual, reading about the importance of controlling or enhancing body odors among tour guides, who interestingly are especially concerned about the bad odor management of their foreign customers, using car perfumes to keep their work manageable and we learn how difficult it is for security guards to stay alert during their long shifts. Energy drinks and cigarettes help them perform their duties. All these transformations through what the French philosopher and historian Michel Foucault has called “technologies of the self” are as paradoxical as Palawan. On the surface, the products—which are technologies—seem to be mainly in the realm of the self but are, in reality, pushed, through marketing, from the outside, in contexts of inequality and exploitative labour relations. Personal aspirations are not personal but are for predefined standards of modernity, related to work-related demands and expectations. The self must be made presentable to the tourist, to the customers in malls, and to those who may threaten the properties that young people protect. It is not surprising that these transformations become problematic for the “self.” The skin whiteners, the hormones, the body deodorants, and the energy drinks are expensive and can distort budgetary priorities. The money for tonic drinks, for example, could well go into more nutritious food. The tragedy, too, many of the products used are of doubtful safety and efficacy. Even the energy drinks have much too high levels of caffeine that can cause cardiac palpitations. Cosmetics and the skin whiteners imported from China and unregistered with the Food and Drug Administration may contain toxic chemicals like mercury. But even registered skin whiteners can be problematic, their so-called “skin-whitening effect” coming about because they take away the upper layers of the skin, leaving behind a red glow (seen as “whitening”) which is actually inflammation. The whitened skin fails to protect against the sun, leading to adverse effects such as black spots. Ultimately though, the problems come with the very definition of the self. As the reports show, young people use the chemicals with some ambivalence, knowing how expensive they are and experiencing some of the undesirable side effects. There is, too, doubt about whether what they’re doing is indeed “good,” captured by how IP women will put on cosmetics only when they’re away from home and about to go to work. The cosmetics have to be removed before they return home because they are not socially acceptable. The research reports are not for Palawan alone. It must make us more critical and discerning as we revisit concepts of development and exploitation, modernity and tradition, self and community. The chemicals, in many ways, are like the products used in precolonial barter trade. For the Chinese, the beeswax and the sea cucumbers, for the inhabitants of Palawan the ceramics, represented faraway lands. To have those products gave prestige. Today, the skin whiteners and tonic drinks and other chemicals described in this anthology represent modernity with promises of not just of a more attractive self, but of better jobs, a better life. We are proud to have worked with the Palawan State University, and the people of Palawan, to gather powerful narratives that will now challenge the outside, the purveyors of modernity, to be more critical and discerning, the chemicals now to be seen not just as stuff applied to the biological body, but as powerful shapers of social bodies. (shrink)
Many philosophers reduce ordinary knowledge to sensory or, more generally, to perceptual knowledge, which refers to entities belonging to the phenomenic world. However, ordinary knowledge is not only the result of sensory-perceptual processes, but also of non-perceptual contents that are present in any mind. From an epistemological point of view, ordinary knowledge is a form of knowledge that not only allows epistemic access to the world, but also enables the formulation of models of it with different degrees of reliability. Usually (...) epistemologists focus their attention on scientific knowledge, believing that ordinary knowledge does not, or cannot, have an epistemology for it is not in any way rigorous. The papers collected in this volume analyse different aspects of ordinary knowledge and of its epistemology. (shrink)
Graduates' employability indicates the excellent education and relevant preparation they obtained from their respective degrees. Tracer studies have enabled higher education institutions to profile their graduates while also reflecting on the quality of education they provide. With the foregoing, a tracer study determined the demographic and academic profile of teacher education graduates from 2017 to 2020 in a state university in the West Philippines. It also ascertained the advanced studies they attended after college, their employment data, the relevance of college (...) preparation with their current employment, difficulties they encountered while securing employment and in their present job, and recommendations to strengthen the teacher education program. The study utilized a descriptive survey research design with 80 non-random samples chosen based on availability. The survey was based on the Philippine Commission on Higher Education with modifications elucidated from previous studies. Results showed that graduates took the teacher education program with a strong passion for the teaching profession. More graduates received honors and awards, passed the licensure examinations for teachers, attended advanced studies for professional development, and are employable. Besides, the graduates’ college preparation is relevant to their current employment. Further, difficulties and problems encountered and recommendations to strengthen the teacher education program were noted. These findings may serve as a baseline for curriculum review and give suggestions for future tracer studies. (shrink)
The tripartite account of propositional, fallibilist knowledge that p as justified true belief can become adequate only if it can solve the Gettier Problem. However, the latter can be solved only if the problem of a successful coordination of the resources (at least truth and justification) necessary and sufficient to deliver propositional, fallibilist knowledge that p can be solved. In this paper, the coordination problem is proved to be insolvable by showing that it is equivalent to the ''''coordinated attack'''' problem, (...) which is demonstrably insolvable in epistemic logic. It follows that the tripartite account is not merely inadequate as it stands, as proved by Gettier-type counterexamples, but demonstrably irreparable in principle, so that efforts to improve it can never succeed. (shrink)
Concentrados e Rações Para Cabras em Lactação -/- ___________________________________________________________________________ De um modo geral, há grande dificuldade nas criações zootécnicas nacionais para a formulação e uso racional de concentrados nas rações dos animais, neste caso, de caprinos, em especial, para cabras em lactação. O problema torna-se real e complexo em função das particularidades apresentadas pelos animais relativas ao seu trato digestivo, além de seus hábitos alimentares. Uma séria dificuldade relacionada com a tomada de decisão no momento da formulação da ração concentrada (...) reside na qualidade do volumoso utilizado. Esse volumoso possui uma qualidade bromatológica variável, na maioria das vezes, seja pelo manejo inadequado da forrageira ou do próprio ciclo vegetativo da planta utilizada. O solo também possui grande impacto nas características químicas da forrageira disponibilizada para os animais. Dada a variabilidade da qualidade da ração volumosa, o concentrado torna-se mal balanceado, sendo fornecido em quantidades inadequadas, favorecendo uma sub ou super alimentação, o que acarreta níveis de produção insatisfatórios e grande prejuízo para a indústria caprina, uma vez que afetará diretamente as características químicas e físicas do leite da cabra, mudando seus teores de sólidos totais etc. -/- OS NUTRIENTES E SUA IMPORT NCIA Muitos nutrientes são necessários na dieta da cabra para a realização do metabolismo normal, para a manutenção das funções corporais e para a produção que inclui acréscimo de tecido (animal em crescimento), para a reprodução e sua manutenção e, por fim, para a produção dos produtos como carne, leite e fibra. As classes específicas de nutrientes incluem carboidratos e lipídeos que fornecem energia; nitrogênio proteico ou não proteico que fornecem aminoácidos e energia; vitaminas; minerais e água. Embora seja ignorada por muitos autores, a água é um nutriente necessário para a digestão, metabolismo e produção. -/- Energia -/- A eficiência da utilização dos alimentos depende de um suprimento adequado de energia, uma vez que o processo de utilização dos alimentos requer gasto energético, sendo, portanto, de grande importância o suprimento energético para a produtividade dos caprinos. A deficiência energética retarda o crescimento e desenvolvimento de cabritos, aumenta a idade à puberdade, reduz a fertilidade e diminui a produção leiteira. Uma deficiência persistente acarreta redução na resistência a doenças infecciosas e parasitárias. A baixa resistência imunológica associada a deficiência energética ainda pode ser agravada mediante o déficit de outros princípios nutritivos como proteínas, vitaminas e minerais. O consumo inapropriado de energia resulta na inadequada ingestão de alimentos ou na baixa qualidade da dieta fornecida para o caprino. A baixa ingestão de energia também pode ser causada pelas altas quantidades de água presentes em algumas forrageiras in natura, por isso o ideal é o fornecimento de volumosos na sua matéria seca, onde será disponibilizado somente os nutrientes, segundo suas características bromatológicas. Segundo DA SILVA & FONTAIN, 2021 a base de qualquer ração é a energia, e se houver uma deficiência existente, os demais nutrientes e os aditivos serão subutilizados pelos animais. Os ruminantes possuem a capacidade de utilização energética através dos carboidratos complexos como celulose, hemicelulose, pectina etc., que estão presentes nas forragens, essa utilização acontece graças ao processo de fermentação que ocorre no rúmen. Entretanto, assim como ocorre em monogástricos, também possuem a capacidade de utilização de demais carboidratos como amido e açúcares. Os ruminantes exigem determinada quantidade de fibra, mas dependendo do animal, do nível de produção e dos ingredientes da ração, há necessidade de incluir na ração os denominados concentrados energéticos. Por exemplo as rações ricas em volumosos (alimentos fibrosos) não podem atender os requisitos energéticos em razão das limitações físicas do animal para ingerir uma quantidade suficiente de alimento, isto é, para atender suas exigências seria necessário grandes quantidades de ração volumosa ingerida, o que é impossível devido a capacidade do rúmen. Neste caso, para se reduzir o volume de ração ingerida, há necessidade de substituir parte dos alimentos fibrosos por concentrados energéticos de boa qualidade. Tais considerações são suficientes para aclarar a importância do aporte de energia no balanceamento de rações para cabras em lactação. -/- Proteínas -/- As proteínas exercem várias funções no organismo do animal e, desse modo, tornam- -se essenciais à alimentação. Elas são necessárias, por exemplo, para a manutenção do organismo, para reparos e formação dos tecidos que são continuamente desgastados, na manutenção dos processos fisiológicos, no crescimento de fetos e dos animais jovens e na síntese do leite. Os ruminantes, assim como outros animais, necessitam de vários componentes na dieta para desempenharem suas funções produtivas e reprodutivas. Esses componentes são chamados essenciais, do qual sem a sua presença os animais não poderiam sobreviver. Entre eles estão as fontes de nitrogênio proteico e não proteico que, após transformações fisiológicas e metabólicas, dão origem a proteínas que são digeridas, absorvidas e utilizadas pelos ruminantes (FERREIRA, 1983). As proteínas destacam-se, dentro das substâncias essenciais, pela amplitude de funções que desempenham no organismo. Estas participam desde a estruturação do corpo (músculos, cartilagens, unhas, pele e pelos), até mecanismos complexos de transporte e metabolismo. Portanto, dentre o supracitado, é essencial conhecer os principais concentrados proteicos e seus limites de utilização, visando o melhor aproveitamento destes, desde a esfera econômica até o impacto positivo sobre a produção de produtos caprinos. -/- Minerais -/- Existem pelo menos 15 minerais essenciais para a nutrição dos ruminantes, dentre os macronutrientes, isto é, os exigidos em maior quantidade na dieta, estão o cálcio, fósforo, sódio, cloro, magnésio, potássio e enxofre, e dentre os micronutrientes, ou seja, exigidos em menor quantidade, porém essenciais a sua presença, estão o ferro, iodo, zinco, cobre, manganês, cobalto, molibdênio e selênio. Em qualquer região, concentrações tóxicas de minerais como cobre, flúor, manganês, molibdênio ou selênio causam redução na produção e produtividade animal. As deficiências minerais ou desequilíbrio destes no solo e nas forrageiras cultivadas neste, têm sido responsáveis pelos baixos índices reprodutivos, ou seja, tais déficits ocasionam perdas nos processos reprodutivos normais, além de causar inadequada produtividade em diversas regiões do Brasil. Segundo dados apresentados por SOUSA, 1983 os caprinos sob pastagens, com elevados déficits de fósforo, cobalto ou cobre, podem apresentar perdas superiores relativas a produção cárnea e láctea em relação aos animais criados sob pastagens com déficits de energia e/ou proteína. Os macrominerais presentes na ração (volumosa ou concentrada) chegam ao rúmen e são dissolvidos, desempenhando uma série de funções importantes, além das específicas nas células e nos tecidos. Dentre elas incluem-se a mantença de um pH constante através da formação da solução tamponante, mantença de um potencial de redução e da pressão osmótica no rúmen. Os micronutrientes, por sua vez, possuem mais funções específicas na célula e no tecido, atuando como constituintes de coenzimas, catalizadores etc. (COELHO DA SILVA & LEÃO, 1979). Assim, torna-se indispensável conhecer as fontes dos minerais e a melhor maneira de utilizá-los durante o preparo de concentrados para cabras em lactação. -/- Vitaminas -/- Os caprinos necessitam fontes alimentares de vitaminas lipossolúveis (A, D, E e K), entretanto os microrganismos do rúmen, através do metabolismo e fermentação, produzem quantidades suficientes de vitaminas hidrossolúveis. Os animais em pastejo somente obtém suficientes quantidades de vitaminas ou precursores de vitaminas para satisfazer as necessidades, porém pode ser necessário a adição complementar de suplementos vitamínicos aos animais alimentados em confinamento ou com altas produções leiteiras. Os ruminantes exigem todas as vitaminas que são metabolicamente essenciais para os monogástricos. Essa indicação tem sido obtida através de estudos sobre as exigências vitamínicas em animais jovens, antes do desenvolvimento completo e funcionamento adequado do rúmen, ou com o emprego de inibidores da vitamina em estudo e observando-se a consequente manifestação do sintoma de deficiência. O suprimento de vitaminas do complexo B e da vitamina K para o ruminante é feito em decorrência das fermentações que ocorrem no aparelho digestivo. Entretanto, existem algumas dúvidas se a síntese de algumas vitaminas do complexo B é adequada para manter altos níveis de produção e uma alta taxa de crescimento. Como supracitado, existem inúmeras informações de que a maioria das vitaminas possam ser sintetizadas ou no trato gastrointestinal ou nos tecidos. Entretanto, as vitaminas A, D e E devem ser fornecidas ao animal (ARAÚJO & ZANETTI, 2019). As principais funções das vitaminas do complexo B estão relacionadas com o eficiente aproveitamento dos açúcares, gorduras e proteínas dos alimentos. A vitamina C possui papel imprescindível no metabolismo geral dos nutrientes. Quanto à vitamina K, sua função mais relatada é como fator anti-hemorrágico, agindo na coagulação do sangue (VELLOSO, 1983). Quanto à vitamina A, sabemos que não existe nos vegetais, entretanto o caroteno presente é um precursor desta, onde este sofre metabolismo e se transforma em vitamina A no organismo do animal, por isso, muitas vezes é relatado como pró-vitamina A. Os ruminantes são excelentes animais quando se fala na transformação de ß-carotenos em vitamina A. A coloração verde das plantas forrageiras é uma garantia da presença de pigmentos carotenoides nelas. Assim, durante a época das águas (chuvas), quando as forrageiras consumidas estão verdes, não há qualquer problema quanto ao suprimento de pró-vitamina A. Por sua vez, quando as pastagens estão amareladas e secas, pode aumentar a possibilidade do aparecimento de sintomas de deficiência de vitamina A, e esse problema pode ser agravado conforme aumenta-se o período de estiagem (VELLOSO, 1983). Deve-se dar especial atenção às cabras em lactação que, na maioria dos casos, recebem ração à base de fenos, que muitas vezes são mal conservados e apresentam pequeno conteúdo de ß-caroteno. As dietas típicas para caprinos contêm quantidades de caroteno suficientes para prevenir possíveis deficiências de vitamina A. O hábito alimentar dos caprinos sob pastejo, isto é, sua tendência de selecionar as partes mais verdes da planta coloca-os em vantagem em relação a outros ruminantes, entretanto, na ausência de partes verdes essa vantagem não possui importância. A deficiência de vitamina A em caprinos criados nos trópicos é rara, exceto nas condições supracitadas (DA SILVA et. al., 2021). A vitamina E apresenta uma deficiência ocasional em caprinos, embora essa vitamina, que é transferida através do leite, seja considerada essencial em função de suas propriedades antioxidantes (DA SILVA et. al., 2021). A vitamina D é relatada como fator anti-raquítico, dada sua propriedade em prevenir o raquitismo através de duas vias conhecidas, seja pelo aumento da absorção de cálcio dietético pelo intestino delgado ou pela mobilização deste, presente nos ossos. Além de evitar o raquitismo em animais jovens, a vitamina D também atua na integridade corporal dos adultos. Os caprinos expostos à luz solar por alguns minutos diariamente conseguem receber vitamina D em quantidades suficientes para suas necessidades fisiológicas, esse recebimento de vitamina D acontece através da conversão do 7-dehidrocolesterol da pele em vitamina D3, portanto a vitamina D3 é uma pró-vitamina. Assim, em animais mantidos em regime de pastejo, nas condições brasileiras, não há maior preocupação quanto ao suprimento de vitamina D3 (VELLOSO, 1983). Entretanto, os animais em regime de confinamento total, onde não possuem acesso à luz solar, devem receber atenção especial, uma vez que podem ocorrer deficiência desta vitamina, esta que pode ser evitada mediante o fornecimento da vitamina na mistura concentrada. -/- Água -/- Muitos autores da área de nutrição animal, seja em artigos ou livros, desconsideram a água como nutriente essencial para os animais, entretanto ela é imprescindível para inúmeras funções metabólicas. Além da água de bebida, os caprinos obtêm água através dos alimentos consumidos na matéria natural, da neve derretida e através do orvalho. A necessidade de água se deve a três motivos, primeiro pela excreção de água nas fezes e na urina ligada à utilização digestiva e metabólica dos alimentos; segundo pela fixação e exportação de água nas produções (carne, leite, pele e fibra); e, por fim, pelas perdas de vapor de água pelos pulmões e através da pele. O total de água requerida varia segundo o tamanho e condição fisiológica do animal, a temperatura ambiental e o nível de ingestão de matéria seca do animal. A ingestão de água é expressa em kg de água necessária por kg de matéria seca ingerida. Nas condições brasileiras, onde a temperatura fica acima dos 30 ºC, normalmente, o ideal de fornecimento é de 6-10 kg de água/kg de IMS. O consumo total é estimado em 3,5 kg de água/kg de leite produzido. Segundo DA SILVA & AIRES, 2018 as recomendações são de 145,6 g de água/kg de peso metabólico (kg0,75) para mantença e 1,43 kg/kg de leite produzido. Para aclarar os dados, suponhamos uma cabra em lactação com 40 kg de PV e produção de 5 kg de leite/dia, seu consumo será de 145,6 g x 400,75 = 2,32 kg de água para mantença + 1,43 x 5 = 7,15 kg de água, seu consumo total será 9,47 kg de água/dia. É necessário enfatizar que, à medida que a temperatura ambiental aumenta, os requisitos de água também aumentam. Em condições semidesérticas os caprinos adaptam-se, bebendo água apenas duas vezes por semana. A equação de necessidade de água, segundo DA SILVA & AIRES, 2018, é: ingestão total de água (L/dia) = 3,86 x IMS - 0,99. REQUISITOS NUTRICIONAIS -/- Para que possamos formular uma dieta balanceada e que os concentrados possam ser utilizados eficazmente e racionalmente, primeiramente é necessário conhecer as exigências nutricionais das cabras em lactação. Esses requerimentos são, na verdade, aproximações dos valores reais das exigências dos animais. Normalmente, os requisitos são tabulados, visando a facilidade no manejo de informações, entendimento e utilização dos dados na prática. Infelizmente, no Brasil não existem tabelas das exigências nutricionais dos caprinos e, com isso, é imperativo a utilização de dados obtidos em outros países e que possuem condições climáticas e animais diferentes, o que nem sempre corresponde à realidade brasileira. Os dados mais utilizados para estabelecimento das exigências são os do NRC nos Estados Unidos, AFRC na Inglaterra, CSIRO na Austrália, INRA na França e FEDNA na Espanha. A tabela 1 apresenta os requisitos nutricionais de ingestão de matéria seca de cabras leiteiras segundo a equação proposta pelo AFRC. É importante levar em consideração todos os fatores que afetam as exigências das cabras, tais como exigências de mantença, gestação, crescimento, atividade física, lactação, clima, raça etc. Os valores apresentados na tabela 2 devem ser incluídos aos valores de mantença. Os requerimentos completos dos caprinos podem ser tomados nas tabelas 3 a 19 do livro Formulação de Ração Para Caprinos. Como supracitado, os valores das exigências para produção de leite devem ser adicionados aos de mantença, por sua vez a tabela 3 apresenta os valores de produção que devem ser múltiplos dos requisitos de mantença. Existem formulações que levam em consideração a porcentagem de nutrientes no conteúdo total do concentrado. Diversos autores publicam quantidades de proteína, nutrientes digestíveis totais, cálcio e fósforo com base na matéria seca da ração. DA SILVA, 2021 sugere que para cabras em lactação com uma ou duas crias é ideal um concentrado com 14 a 16% de proteína bruta. Uma formulação para cabras em lactação, segundo DA SILVA, 2021, pode obedecer a ordem de 3 a 5% de IMS, 16 a 24% de proteína bruta, 65% de nutrientes digestíveis totais e minerais na ordem de 0,75% Ca e 0,3% P. O teor de nutrientes na mistura concentrada é importante para saber se a ração irá atender às exigências das cabras em lactação (tabela 8). O conhecimento dos níveis de nutrientes na mistura é essencial para elaborar uma ração balanceada que atenda aos requisitos de mantença e de produção. É importante, também, saber as observações quanto a relação entre energia/proteína e entre os minerais para que não haja um mau aproveitamento dos nutrientes e possíveis distúrbios metabólicos. ALIMENTOS CONCENTRADOS -/- Por definição, são aqueles que possuem conteúdo de fibra bruta inferior a 18%. Eles são divididos em concentrados proteicos e energéticos, quando possuem mais ou menos de 20% de proteína bruta, respectivamente. Um grande número de alimentos pode ser usado no balanceamento das misturas de concentrados na propriedade e deve permitir uma formulação equilibrada nutricionalmente, economicamente e de boa qualidade. As tabelas 9 e 10 apresentam a composição de alguns alimentos concentrados considerados mais comuns na formulação de dietas e de maior disponibilidade no Brasil. As recomendações para utilização de concentrados nas rações de cabras leiteiras podem variar em função dos demais ingredientes da ração total. De modo geral, quanto aos concentrados energéticos, não existem restrições às quantidades usadas na ração, desde que as exigências nutricionais sejam atendidas. A tabela 11 apresenta as restrições de utilização dos ingredientes na ração de caprinos. De tal forma pode ser pensado para os concentrados proteicos, entretanto, nesse caso, exige-se mais cuidado por parte do formulador, uma vez que deve-se levar em consideração a carga energética presente no ingrediente proteico. Deve-se enfatizar sempre que a utilização de ingredientes de origem animal é expressamente proibida na alimentação de ruminantes. Deve-se, ainda, referenciar quanto ao uso de fontes de nitrogênio não proteico (NNP) (ureia, biureto etc.) que podem ser usadas com vantagens nas dietas com alta carga energética. O critério de uso de NNP, em até ⅓ da proteína total da dieta, ainda pode ser utilizado de forma generalizada. RECOMENDAÇÕES PARA USO DAS MISTURAS DE CONCENTRADOS -/- Qualquer tipo de alimento concentrado pode ser usado no preparo de uma mistura de boa qualidade, entretanto os requerimentos das cabras devem ser atendidos. Sendo assim, o preço e a disponibilidade dos alimentos básicos são fatores importantes na escolha dos ingredientes. Conforme supracitado, a composição da mistura concentrada depende da qualidade do volumoso. Para que o produtor tenha garantia e controle de que as exigências estão sendo supridas, é recomendável o ajuste periódico das quantidades de concentrados que serão fornecidas. Esse ajuste é necessário em função da mudança da composição química das forrageiras com o avanço da maturidade fisiológica da planta. Essa composição normalmente existe em tabelas, entretanto as melhores aproximações são obtidas quando se faz a análise destas forrageiras em laboratórios especializados. É difícil fazer uma recomendação única para fornecimento de concentrado para cabras em lactação. Cada propriedade dispõe de recursos forrageiros peculiares, com variações na qualidade nutricional. Não obstante, os valores apresentados na tabela 12 podem servir de guia quando há impossibilidade de realização de um balanceamento específico para cada propriedade. É essencial a verificação dos níveis de outros nutrientes, tais como energia e minerais. Em geral, a preocupação é dada somente à proteína e, muitas vezes, a energia é negligenciada. O conteúdo de energia da ração (EM, EL ou NDT) muitas vezes se apresenta deficiente, o que possui relação direta com os índices de produção e produtividade insatisfatórios. Este é um dos pontos de limitação da produção leiteira, principalmente porque escapa à capacidade de observação do criador. Quando alimentadas com forrageiras de média ou baixa qualidade, é necessário completar os requerimentos de mantença das cabras e, dependendo da qualidade da forrageira disponível, recomenda-se de 200 a 500 g de concentrado/cabeça/dia. As fontes de NNP também podem ser utilizadas para cabras em lactação, desde que não ultrapasse ⅓ do nitrogênio total da dieta. Em termos práticos, a ureia deve constituir até 1% da matéria seca total da dieta ou, aproximadamente, 3% da mistura de concentrados. Uma adaptação gradativa é necessária para que os caprinos possam aproveitar eficazmente a ureia sem distúrbios. Essa adaptação é feita com níveis crescentes de ureia adicionados ao concentrado na base de 0,5% por semana até a limitação. Desta forma, na sexta semana, as cabras estarão recebendo concentrado contendo 3% do elemento. No caso de cabras de alta produção leiteira, é essencial dar atenção aos minerais, uma vez que elas não conseguem ingerir as quantidades exigidas para sua mantença e produção. Para mitigar o problema, recomenda-se adicionar ao concentrado ou à mistura concentrada um premix, isto é, uma mistura vitamínico-mineral completa ao nível de 3%. As rações comerciais também podem ser utilizadas, desde que se verifiquem os níveis de garantia, tanto de qualidade como de composição. É importante que se evite rações com altos níveis de proteína, onde, normalmente, não possuem boa relação energia/proteína. Essas rações, em geral, não são bem aproveitadas pelas cabras, onerando o custo de produção de leite. É importante sempre frisar que um máximo cuidado deve ser dado ao estado de conservação dos ingredientes. As condições de armazenamento devem ser as melhores possíveis, procurando-se locais secos e com boa ventilação. Alimentos rancificados, de uma forma geral, são rejeitados pelas cabras. No caso de utilização de alimentos com alto conteúdo de matéria graxa, que se rancificam facilmente, deve-se ter cuidados especiais, evitando-se preparar grandes quantidades de uma só vez. Outro ponto que merece destaque é a presença de bolores. Os alimentos mofados devem ser sistematicamente eliminados, pois além de causar danos à saúde do animal, podem também ocasionar problemas para a saúde humana. Intoxicações por aflatoxina são frequentemente relatadas em caprinos. Assim, o uso de ingredientes suscetíveis ao fungo (Aspergillus flavus) que produz aflatoxina, deve ser feito com ressalvas. É imprescindível salientar que essas toxinas também podem ser produzidas por outros fungos e podem estar presentes em uma série de alimentos em más condições de armazenamento. O local de armazenamento dos ingredientes ou da mistura concentrada deve possuir boa vedação para não permitir a entrada de insetos e/ou roedores. A proliferação de insetos, além de causar danos físicos aos alimentos, uma vez que se alimentam de alguns princípios nutritivos, produz um aquecimento em função dos processos metabólicos dos insetos, o que reduz as características do alimento e seu valor nutritivo. É essencial que o local seja à prova de roedores, pois além do grande desperdício de ração, causado pelo consumo e danos às embalagens, os roedores também são vetores de doenças que causam sérios prejuízos e perdas ao criatório. Na maioria dos casos, essas doenças escapam à capacidade de observação do criador. As cabras devem ser alimentadas segundo sua produção. Neste caso, é importante que a alimentação seja individual. Pode-se fornecer a ração durante a ordenha ou no intervalo do fornecimento da ração volumosa, porém sempre em horário previamente estabelecido. A mistura concentrada pode ser fornecida em cochos coletivos, mas é necessário a instalação de canzis para a contenção dos animais. É essencial que, antes do fornecimento, os cochos estejam limpos para permitir um melhor aproveitamento. Os concentrados muito farelados devem ser evitados durante a ordenha, uma vez que podem afetar a qualidade do leite pelo aumento da possibilidade de contaminação com poeira. As cabras de alta produção devem receber a ração concentrada dividida em duas ou três refeições no dia para permitir melhor aproveitamento. O fornecimento da mistura concentrada juntamente com a ração volumosa não é recomendável, mesmo que esta seja de baixa qualidade, porque de forma geral causam desperdício. No caso de cabras semi-confinadas, a prática da mistura de concentrados com os volumosos pode facilitar e agilizar o arraçoamento. Neste caso, também se faz recomendável a disposição de canzis nos comedouros para evitar a competição entre os animais. -/- RAÇÕES PARA CABRAS EM LACTAÇÃO -/- As rações de cabras em produção de leite devem ser de boa qualidade, produzidas em ambiente higienizado e com normas de segurança, além de, no caso de armazenamento, serem armazenadas em ambiente limpo, arejado e fora do alcance de insetos e roedores. Além das condições de fabricação e armazenagem, a ração, quando formulada, deverá obedecer os requisitos nutricionais das cabras para sua mantença e para a produção de leite. Sabemos que quanto maior a produção mais nutritiva deverá ser a ração. O fornecimento de ração volumosa também é essencial para o funcionamento normal do rúmen, além de fornecer uma carga nutricional. A relação entre volumoso e concentrado é importante, um não pode se sobressair em excesso sobre o outro, caso aconteça, haverá um desbalanceamento e consequente baixa na produção e produtividade. O limite de utilização dos ingredientes concentrados também é importante, caso haja uma incorporação maior de um dado ingrediente, poderá haver perdas significativas; por exemplo, se houver maior incorporação de ureia poderá haver intoxicação do animal. Na sequência, são apresentadas rações para cabras em lactação formuladas e disponíveis no livro sobre formulação de ração para caprinos do mesmo autor, exemplos 2 e seção rações prontas para caprinos números 2, 3, 4 e 21. A primeira ração formulada é para uma cabra da raça Saanen com 50 kg de PV e produção leiteira de 5 kg/dia com teor de gordura de 3,5%. A ração é composta por volumoso e concentrado, conforme tabela 13. Tomando os requerimentos da cabra em questão e a composição química da dieta, observamos que a dieta volumosa e concentrada supre todas as exigências nutricionais do animal (tabela 13.1). A seguir, são apresentadas misturas de volumosos e concentrados para cabras em lactação, conforme as recomendações dadas por DA SILVA, 2021 sobre os níveis nutricionais de rações para a categoria. Segundo o autor, a composição industrial de um concentrado deve ser de 16 a 24% de proteína bruta, 65% de nutrientes digestíveis totais, 0,75% de Ca e 0,3% de P, seguindo um CMS de 3 a 5% do peso vivo. Tais valores são genéricos, o ideal é consultar as tabelas de exigências das cabras. Os valores das misturas supracitadas, tanto de quantidade como de composição, são genéricos e podem variar em função de alguns fatores, os mais importantes são composição bromatológica dos ingredientes e das exigências nutricionais das cabras. REFERÊNCIAS BIBLIOGRÁFICAS -/- ARAÚJO, L. F.; ZANETTI, M. A. (Eds.). Nutrição Animal, 1ª ed. Barueri: Manole, 2019. COELHO DA SILVA, J. F. Concentrados energéticos para ruminantes. Informe Agropecuário, v. 9, n. 108, p. 37-42, 1983. COELHO DA SILVA, J. F.; LEÃO, M. I. Fundamentos de nutrição dos ruminantes. Piracicaba: Livroceres, 1979. 380 p. CRAMPTON, Earle W.; HARRIS, Lorin E. Nutrición animal aplicada: el uso de los alimentos en la formulación de raciones para el ganado. Zaragoza: Acribia, 1979. AIRES, P. R. R. Água na nutrição de caprinos e ovinos. In: Seminário da disciplina de Caprino-ovinocultura da professora Drª. Alcilene Maria Andrade Tavares Samay. Curso Técnico em Agropecuária. Belo Jardim: IFPE, 2018. DA SILVA, A. T. M. Rações para cabritos, caprinos a pasto, em mantença, reprodutores e cabras gestantes e em lactação. In: Curso de formulação e fabricação de dietas para ruminantes. São Bento do Una: Instituto Agronômico de Pernambuco, 2021. DA SILVA, C. L.; ALVES, A. A. A.; DA SILVA, S. R. P. Minerais e vitaminas na formulação de dietas para ruminantes. In: Curso de formulação e fabricação de dietas para ruminantes. São Bento do Una: Instituto Agronômico de Pernambuco, 2021. FONTAIN, E. C. da S. Energia e proteína na formulação de dietas para ruminantes. In: Curso de formulação e fabricação de dietas para ruminantes. São Bento do Una: Instituto Agronômico de Pernambuco, 2021. Formulação de Ração Para Caprinos. Belo Jardim, 2021. 97p. FERREIRA, J. J. Proteína e concentrados proteicos na alimentação de ruminantes. Informe Agropecuário, v. 9, n. 108, p. 43-48, 1983. NATIONAL RESEARCH COUNCIL et al. Nutrient requirements of small ruminants: sheep, goats, cervids, and new world camelids. 中国法制出版社, 2007. SAMPAIO, J. M. C. et al. Criação de cabras leiteiras. Brasília: EMBRATER, 1984. 243p. Nutrição e Suplementação Mineral de Bovinos de Corte. Curso de Técnico em Agropecuária, Instituto Federal de Educação, Ciência e Tecnologia de Pernambuco, Belo Jardim, PE. SOLAIMAN, Sandra G. (Ed.). Goat science and production. John Wiley & Sons, 2010. SOUSA, J. C. Os minerais na alimentação dos ruminantes. Informe Agropecuário, v. 9, n. 108, p. 49-57, 1983. VELLOSO, L. Importância das vitaminas para os bovinos. Informe Agropecuário, v. 9, n. 108, p. 63-66, 1983. (shrink)
OBJETIVO A gestação nos mamíferos domésticos é um processo fisiológico que implica mudanças físicas, metabólicas e hormonais na fêmea, que culminam com o nascimento de um novo indivíduo. Desta forma, a compreensão de tais mudanças e como estas favorecem um ambiente ideal de desenvolvimento embrionário inicial, até a placentação e a fisiologia envolvidas durante esses processos é fundamental na tomada de decisões quanto à saúde reprodutiva da fêmea, na seleção de futuras matrizes e até mesmo para a saúde fetal e (...) sanidade do novo animal. Neste capítulo, o estudante compreenderá de forma clara, concisa, didática e objetiva, as adaptações maternas e fetais para o estabelecimento da gestação após a fecundação, o desenvolvimento desta e também identificará as diferenças existentes entre as espécies de interesse zootécnico. INTRODUÇÃO O estabelecimento da gestação nos mamíferos domésticos inclui três etapas fundamentais: o reconhecimento materno da gestação ou prenhez (RMP), a implantação e a placentação. Dentro da fisiologia da reprodução nos mamíferos, a implantação e a placenta- ção constituem processos essenciais na nutrição do embrião e do feto e, portanto, para seu desenvolvimento; devido a isso, são etapas críticas para a produção animal já que possuem um efeito direto sobre a eficiência reprodutiva. Nos bovinos leiteiros, por exemplo, estima-se uma taxa de fertilização perto de 95%, embora apenas 55% desses zigotos se desenvolvam e cheguem ao parto, o qual representa uma perda de gestações perto de 35%. Entre 70% e 80% das mortes embrionárias ocorrem durante as três semanas seguintes à ovulação, o que coincide com o período no qual se estabelecem os processos de implantação e placentação supracitados. O desenvolvimento embrionário precoce depende da sincronia de eventos entre o oviduto-útero e o embrião. Foi determinado que a presença do embrião pode modificar as secreções ovidutais e uterinas durante as fases iniciais de desenvolvimento. O ambiente endócrino materno (predominância de progesterona) também modula as características das secreções ovidutais e uterinas para assegurar a sobrevivência embrionária no caso da fertilização ter sido bem sucedida. Se este último ocorrer, então o embrião deverá indicar à mãe a sua existência para que sejam mantidas as condições adequadas ao seu desenvolvimento. Como supracitado, o embrião em seu curso pelo oviduto requer certas secreções para sobreviver e desenvolver-se, no entanto, graças à fertilização in vitro, têm-se dispensado a importância das secreções ovidutais, já que se observou que um embrião é capaz de se desenvolver em condições laboratoriais fora do aparelho reprodutor materno durante as suas fases iniciais, e consegue estabelecer uma gestação normal que chega a termo após a sua reintrodução no útero. Em estágios mais tardios de desenvolvimento o embrião necessita necessariamente do meio uterino para sobreviver e continuar o seu crescimento. No bovino, por exemplo, o embrião só é capaz de alongar-se estando dentro do útero, indicando a presença de fatores específicos necessários para que o embrião se desenvolva de maneira normal. Um meio endócrino no qual predomina a progesterona materna durante a gestação induz a secreção do histiotrofo (ou leite uterino) que permite a nutrição e a sobrevivência do embrião antes da implantação e da formação da placenta, através do qual obterá a maioria do fornecimento e intercâmbio necessários para continuar o seu desenvolvimento intra-uterino. SEGMENTAÇÃO E DESENVOLVIMENTO EMBRIONÁRIO PRECOCE O desenvolvimento embrionário precoce, conhecido como período de pré- -implantação, é essencial; inclui processos de divisão e diferenciação celular que são realizadas no início com uma elevada sincronização para garantir o desenvolvimento correto do indivíduo dentro do útero. Esta fase envolve a passagem do zigoto (unicelular), a embrião (multicelular) e, por fim, em concepto (quando se distingue o embrião com suas membranas extraembrionárias). O desenvolvimento precoce é o estágio mais dinâmico e vulnerável na formação de um indivíduo. Investigações recentes demonstraram que alterações nesta etapa podem modificar características produtivas ou reprodutivas durante a vida adulta. É por isso que é necessário conhecer as etapas fisiologicamente normais envolvidas neste processo (figura 1). Em fases mais tardias de desenvolvimento, o embrião se converterá em um feto com todos os sistemas e tecidos diferenciados observados num animal adulto. Após a fertilização, o zigoto resultante é capaz de dar origem a um novo organismo completo, de modo que se considera como uma célula totipotencial. O desenvolvimento embrionário começa e se consegue graças a uma série de divisões mitóticas conhecidas como segmentação ou clivagem (cleavage, em inglês). A primeira divisão mitótica dá origem a duas células filhas idênticas (figura 1), e ocorre por volta das 20 às 30 horas depois da fertilização, com divisões subsequentes a cada 12 a 24 h, dependendo da espécie. As células resultantes destas divisões são conhecidas como blastômeros. A orientação da divisão inicial que dá origem aos dois primeiros blastô- meros, parece ser guiada pela posição dos corpos polares. As divisões iniciais das células embrionárias são sincrônicas, no entanto, conforme o desenvolvimento se torna assincrônicas. Assim, a divisão mitótica inicial dá origem a um embrião de duas células (dois blastômeros), a segunda a um embrião de quatro células, a terceira a um de oito células e a quarta a um com 16 células, onde passa a ser chamado de mórula. Estas divisões são realizadas sem o aumento do volume do citoplasma, para que seja restabelecida uma proporção celular mais adequada à das células somáticas, já que o ovócito é a célula mais grande do organismo (um ovócito mede entre 100 e 150 μm do ovócito, enquanto uma célula somática mede de 10 a 20 μm); e porque o embrião ainda está contido dentro da zona pelúcida (figura 1). Um dos pontos críticos durante o desenvolvimento embrionário precoce é a ativação do genoma embrionário. Durante as etapas iniciais após a fertilização, as proteínas e RNAs “herdados” do ovócito são responsáveis pelo metabolismo e desenvolvimento inicial do embrião. É apenas até o estágio de quatro (ratos) ou oito blastômeros (espécies domésticas e humanas) em que o embrião começa a sintetizar o seu próprio RNAm (mensageiro) e as proteínas específicas necessárias para controlar o seu crescimento e metabolismo. A qualidade do ovócito que é fertilizado, consequente- mente, tem um grande impacto sobre a sobrevivência inicial do embrião. Quando o embrião atinge uma média de 16 a 32 células é conhecido como mórula (tabela 1) (do latim morus: mora), e nesta fase o embrião começa a compactar-se, o que ocorre porque começam a estabelecer-se diferentes uniões celulares, de acordo com a relação espacial entre os blastômeros. As células centrais desenvolvem-se incluindo entre elas junções comunicantes, conhecidas também como junções GAP, enquanto as que se encontram na periferia estabelecem uniões estreitas, dando origem a duas subpopulações distintas de blastômeros: periféricos e centrais. Cabe mencionar que os blastômeros que compõem a mórula ainda são células capazes de dar origem a um novo indivíduo completo, ou seja, são totipotenciais. À medida que a mórula continua a dividir-se e a crescer, as células localizadas na periferia começam a liberar sódio para os espaços intercelulares, criando uma diferença na pressão osmótica seguida pela entrada de água ao embrião. O líquido se acumula e provoca a separação das células, distinguindo ainda mais as duas subpopulações de células mencionadas (periféricas e centrais) e forma-se uma cavidade cheia de líquido. Esta cavidade é conhecida como blastocele; com a sua formação o embrião entra em fase de blastocisto (figura 1, tabela 1). Da subpopulação celular da periferia se origina do trofoblasto (trofoectoderma) que formará a maioria das membranas extraembrionárias (placenta), e da subpopulação central é estabelecida a massa celular interna ou embrioblasto, que dará origem ao embrião propriamente dito, ou seja, ao feto. Ao continuar a multiplicação e crescimento do trofoblasto à medida que o blastocisto se desenvolve, as células da massa interna se diferenciam novamente em dois segmentos distintos: a endoderme primitiva ou hipoblasto e o epiblasto (figura 1), em que todos os tecidos do organismo (saco vitelino) são originados e as células germinativas primordiais. Uma vez formado, o epiblasto continua a dividir-se e a diferenciar-se para dar origem às três placas ou camadas germinativas conhecidas como endoderme, mesoderme e ectoderme. Este processo é conhecido como gastrulação, e durante este diferem-se no embrião as porções craniais, caudais, dorsais e ventrais, processo conhecido como polaridade do embrião, que orienta o desenvolvimento dos diversos tecidos e órgãos do indivíduo. À medida que o blastocisto continua crescendo e diferenciando-se, vai-se acumulando mais líquido no blastocele, com o que a pressão interna aumenta e a zona pelúcida começa a ficar mais fina. Este fato, juntamente com a ação de proteases produzidas pelo embrião, leva à ruptura da zona pelúcida e à saída do blastocisto (eclosão), pelo que, uma vez liberado, o embrião é conhecido como blastocisto eclodido. O trofoblasto embrionário entra, então, em contato direto com o endométrio, o que é considerado como o início da implantação. IMPLANTAÇÃO O trofoblasto embrionário, também conhecido como trofoectoderma, dá origem à maioria das membranas fetais ou placenta fetal. O processo no qual o trofoblasto se une ao endométrio materno é conhecido como implantação; para isso ocorre uma série de processos altamente sincronizados envolvendo secreções embrionárias e maternas, e interações físicas, durante um período limitado conhecido como janela de receptividade. A implantação é considerada um processo gradual que genericamente se divide em cinco fases, algumas das quais podem sobrepor-se parcialmente e diferir segundo a espécie: 1. Eclosão do blastocisto da zona pelúcida (figura 2); -/- 2. Pré-contato e orientação do blastocisto. É o contato inicial entre as células do trofoblasto e do epitélio endometrial, bem como a orientação da massa celular interna e do trofoectoderma, que assume especial importância em espécies cuja implantação é invasiva, como em roedores e primatas; 3. Aposição - refere-se ao posicionamento do blastocisto numa determinada área e de uma forma específica no útero. Começa a interdigitação das vilosidades coriônicas com o epitélio luminal do endométrio. 4. Adesão - requer sistemas de sinalização que envolvem glicoproteínas de adesão, como integrinas, selectinas e galectinas, com os seus ligantes, tanto no epitélio luminal como no epitélio trofoectoderma. 5. Invasão endometrial - este termo se relaciona ao tipo de placentação e é pertinente sobretudo para aquelas espécies onde existe uma fusão entre células do trofoblasto e do epitélio do endométrio durante a formação da placenta, ou que as células trofoblásticas penetrem as camadas endometriais e até modifiquem as células do endométrio que as rodeiam. Existem três tipos de implantação ou nidação. Na nidação central ou não invasiva, a vesícula embrionária ocupa uma posição central na luz do útero e, na sua relação com a mucosa uterina, unicamente através das vilosidades coriônicas (projeções das células trofoblásticas dentro das quais crescem capilares do feto), há adesão mas não invasão da mucosa. Este tipo ocorre nos ungulados domésticos, mas não em carnívoros. Na nidação excêntrica a vesícula embrionária está inserida num canal profundo da mucosa, parcialmente isolada da luz principal, e se apresenta na rata, cadela e gata. A nidação intersticial é própria dos primatas, rato e cobaia, e nesta produz-se a destruição do epitélio e do tecido conjuntivo do útero, de modo que a vesícula embrionária se afunda na própria lâmina mucosa e se desenvolve em um espaço intersticial. Até o momento da implantação, a nutrição do embrião é histotrófica, sendo as substâncias necessárias absorvidas através do trofoblasto, como foi mencionado anteriormente. A partir deste momento, o trofoblasto começa o desenvolvimento de uma série de membranas extraembrionárias que permitirão finalmente a troca de nutrientes e metabólitos entre o sangue materno e o do embrião, constituindo a placenta. Um fato necessário na implantação é a perda de receptores para progesterona no epitélio luminal do endométrio, e pré-sensibilização do mesmo pelos estrógenos. Apesar de parecer um efeito contraditório, este requisito permite o desaparecimento de uma camada de mucina e outros compostos proteicos, que revestem o endométrio e que atuam como uma película antiaderente que inicialmente não permite a aposição e adesão do embrião. O desaparecimento desta camada ocorre durante a janela de receptividade, seja em toda a superfície do endométrio (ruminantes, suínos e roedores) ou nas zonas específicas onde o blastocisto será implantado (humano e coelho). Por esta razão, a interação física entre o embrião e o endométrio desempenha um papel importante na implantação. Uma vez que a camada de glicoproteínas desaparecer, é possível a aposição do trofoectoderma embrionário e das células epiteliais do endométrio, iniciando assim a implantação propriamente dita através da intercomunicação entre os dois tecidos. A implantação pode ser considerada como a fixação do embrião ao útero a partir do ponto de vista físico e funcional. No entanto, como se trata de um processo progressivo e gradual, em que algumas das suas fases podem ser parcialmente sobrepostas, não existe consenso sobre o período em que se inicia e termina. Na borrega, por exemplo, estima-se que ocorra entre o dia 10 e o dia 22, enquanto na vaca entre os dias 11 e 40 pós-ovulação. Nas espécies polítocas, isto é, fêmeas que parem várias crias como as porcas, os blastocistos se distribuem ao longo dos cornos uterinos como resultado de movimentos musculares da parede uterina, aparentemente regulados por prostaglandinas e outros fatores secretados pelo útero. Por exemplo, nas porcas, os blastocistos se movem livremente entre os cornos, e a distribuição dos embriões ao implantar-se é mais uniforme do que poderia ser esperado se ocorresse meramente ao acaso. Tem observado que a deficiência na produção de ácido lisofosfatídico 3 (LPA3) e/ou seu receptor, ocasiona uma falha na distribuição dos embriões no útero. Por outro lado, não há evidência de que um blastocisto implantado exerça alguma influência inibitória sobre a implantação de outro blastocisto próximo a ele. Como supracitado, o processo de implantação inclui uma complexa interação entre o embrião e o útero, e cada um deles provê de estímulos essenciais para favorecer a progressão do outro, apresentando-se diferenças em tempos e particularidades dentro das diferentes espécies. -/- Porca O período de adesão situa-se entre os dias 12 e 24 após a fertilização. Ao redor do dia sete, o blastocisto é eclodido, porque o trofoblasto está em contato direto com o epitélio uterino e começa a proliferar com rapidez. O endoderme se forma e o blastocisto muda de uma pequena vesícula esférica para um tubo muito alongado que chega a medir cerca de um metro em poucos dias, ele que lhe proporciona uma superfície muito ampla para a absorção de nutrientes. Cadela Os embriões migram entre os dois cornos uterinos do dia 12 ao 17 após a fertilização, distribuindo-se de maneira uniforme. Estes embriões aderem ao endométrio entre os dias 16 e 18, e alcançam sua implantação final entre o dia 17 e 20 da gestação. Cabe ressaltar que nos caninos o período de pré-implantação é o mais longo das espécies domésticas, o que ocorre porque a cadela ovula ovócitos imaturos (ovócitos primários) que precisam amadurecer por dois a três dias, para formar ovócitos secundários, antes que a fertilização seja possível. Por isso, o zigoto canino chega à junção útero-tubárica entre o sétimo e o décimo dia após o pico pré-ovulatório de LH (a ovulação ocorre, em média, dois dias após o pico de LH), entrando no útero em estágio de mórula ou blastocisto em torno dos dias 10 a 12 depois do referido pico. Ovelha O desenvolvimento precoce do blastocisto é muito semelhante ao da porca. Observa-se certo grau de adesão desde o dia 10 da gestação, mas o alongamento do embrião é menos extenso do que em suínos e tem início entre o dia 11 e 12. Para a terceira semana o embrião ovino chega a medir até 30 cm de comprimento. O processo de implantação é concluído aproximadamente entre a quarta e quinta semana de gestação (figura 3). Vaca O processo de implantação é semelhante ao da borrega, mas tem início mais tarde. A zona pelúcida se perde por volta do dia 9 a 10 (blastocisto eclodido) e o embrião começa a alongar-se ao redor do dia 12 a 14, atingindo um comprimento de cerca de 60 mm para o dia 16, embora possa haver uma grande variação individual. A partir do dia 33, o córion é formado e existe uma adesão inicial que inclui dois ou quatro cotilédones, que se interdigitam rapidamente com o tecido materno de modo que o embrião começa a nutrir-se através deles. Égua O blastocisto atinge um diâmetro de cinco centímetros aos dois meses e pratica- mente não se alonga. Entre os dias seis e sete após a ovulação, o embrião começa a revestir-se de uma camada glicoproteica que se forma entre o trofoectoderma e a zona pelúcida e que contém e mantém o embrião esférico depois de ter eclodido. Esta cápsula é uma estrutura única nos equinos (cápsula embrionária), afina-se no dia 18 e se perde entre os dias 21 e 23 de gestação. Na décima semana as microvilosidades do córion se interdigitam com a mucosa da parede uterina e na semana 14 é completada a implantação. Espécies não domésticas Em algumas espécies como os marsupiais, os ursos, focas, doninhas e alguns tipos de cervídeos, pode interromper-se temporariamente o desenvolvimento do embrião in utero e adiar a sua implantação, como estratégia evolutiva para favorecer o nascimento das crias em condições ambientais favoráveis para a sua sobrevivência. Esta estratégia é conhecida como diapausa e pode ser uma condição obrigatória ou facultativa para cada gestação, dependendo da espécie. Os mecanismos que a desencadeiam e a concluem não estão totalmente explicados e são espécie-específica. RECONHECIMENTO MATERNO DA GESTAÇÃO (RMG/RMP) O estabelecimento da gestação em mamíferos domésticos requer a presença de um corpo lúteo CL funcional que produz progesterona em quantidades adequadas para manter o desenvolvimento embrionário inicial e permitir mudanças necessárias durante o período de peri-implantação. Para que o corpo lúteo seja mantido e a fêmea seja impedida de reiniciar um novo ciclo estral, o embrião deve sinalizar sua presença para a mãe. O sinal para o reconhecimento materno da gestação (RMG) provém então do embrião e podem ser de dois tipos: luteotrópico ou anti-luteolítico. No primeiro, a(s) substância(s) produzida(s) pelo embrião que atua(am) sobre o corpo lúteo para manter sua funcionalidade, por exemplo a gonadotrofina coriônica humana (hCG) e a prolactina em roedores. O segundo tipo de sinal previne ativamente a luteólise, e é o mecanismo presente nas espécies domésticas em que o embrião produz substâncias como o interferon-τ (IFN-τ) em ruminantes ou os estrógenos em suínos. Ruminantes Como supracitado, o IFN-τ é responsável pela sinalização para o reconhecimen- to materno da gestação neste grupo que engloba cabras, ovelhas e vacas (figura 4). É um fator produzido pelas células do trofoblasto do embrião, e pode ser detectado a partir dos dias 11 a 12 em ovinos e de 14 a 15 em bovinos. Uma vez secretado, o IFN-τ impede a lise do corpo lúteo (efeito anti-luteolítico) por meio do bloqueio indireto da síntese de prostaglandina F2 alfa (PGF2α). No trabalho acerca do ciclo estral foi explicado que a luteólise requer a presença de receptores de ocitocina (OTR) no endométrio, que ao unir-se ao seu ligante, a ocitocina (proveniente inicialmente do hipotálamo e posteriormente de origem lútea), estimulam a produção de PGF2α e estabelecem um feedback positivo, que culminará na destruição do CL. Para que os OTRs sejam sintetizados, é necessária uma estimulação prévia do endométrio com estradiol, que ocorre através da ligação com seus receptores (ER-1). O mecanismo pelo qual o IFN-τ impede a lise do corpo lúteo é bloqueando, direta ou indiretamente, a síntese de OTR e, consequentemente, a produção pulsátil de PGF2α. Suínos No caso dos suínos, considera-se que o sinal embrionário para o reconhecimento materno da gestação são os estrógenos, produzidos pelos embriões em torno do dia 11 a 12 pós-ovulação. O endométrio suíno produz PGF2α que, quando não há gestação, é secretado na circulação uterina (secreção endócrina), de onde é transportada em direção ao CL para causar luteólise. Se há embriões no útero produzindo suficiente quantidades de estradiol, isso redireciona a secreção de PGF2α para o lúmen uterino (secreção exócrina), evitando que seja liberado para a circulação e, portanto, é sequestrado impedindo que chegue ao corpo lúteo (figura 5). É importante enfatizar que a produção de PGF2α não é inibida, mas sua secreção é redirecionada. Este mecanismo é conhecido como teoria endócrino-exócrina. Vale ressaltar que para o sinal de reconhecimento materno da gestação na porca ser eficiente, é necessário a presença de pelo menos quatro embriões, dois em cada corno, uma vez que se não houver dois embriões, um em cada corno, ocorre luteólise e reinicia a atividade cíclica. Embora os estrógenos sejam identificados como o sinal de reconhecimento materno nesta espécie, o embrião suíno também produz outros fatores, como a PGE2 e o ácido lisofosfatídico, considerado necessário para o estabelecimento adequado da gestação. A PGE2 ocasiona uma redução na produção de PGF2α em favor da PGE2 no endométrio e favorece a contração do miométrio para permitir a migração de embriões. O ácido lisofosfatídico, juntamente com seu receptor, é um fator crítico que favorece a migração intra-uterina, e permite uma distribuição adequada dos embriões ao longo dos cornos. Outras substâncias produzidas pelo embrião suíno são o IFN-delta (IFN-δ) e IFN-gama (IFN-γ), que não possuem ação anti-luteolítica, mas poderiam intervir no processo de implantação. Equinos Na égua é essencial que o embrião, ainda rodeado pela sua cápsula embrionária, migre de 12 a 14 vezes por dia através do útero, entre os dias 12 e 14 após ovulação, a fim de distribuir o fator de reconhecimento materno (figura 6). Embora seja sabido que existe, este último ainda não foi identificado, mas foi estabelecido que é da natureza proteica e seu principal efeito é a inibição da produção endometrial de PGF₂α, mediante a redução na formação do receptores de ocitocina; desta forma, evita-se o início do sinal luteolítico. É interessante notar que nesta espécie a ocitocina não é de origem lútea e sim endometrial. Primatas Ao contrário das espécies domésticas mencionadas, o mecanismo de ação do sinal de reconhecimento materno em primatas é luteotrópico. No humano, o embrião produz gonadotrofina coriônica humana (hCG) após o início da implantação (dias 6 a 8). A hCG estende a vida funcional do CL por meio de sua ligação a receptores lúteos para LH, estimulando assim a liberação de progesterona. Este efeito permite a “sobrevivência” do CL pelo menos até o momento em que a produção de progesterona é transferida para a placenta para levar a gestação a termo. Carnívoros Na cadela não é necessário o reconhecimento da gestação, já que normalmente o corpo lúteo tem uma vida média maior que a duração da gestação. Como na égua, a migração dos embriões através do útero antes da implantação pode favorecer o reconhecimento materno. Adicionalmente, tem sido descrito que durante o período antes da implantação (< 10 dias depois da ovulação), há um aumento na expressão de genes relacionados com a imunomodulação local (IFN-γ, IL-4 e CD8+), que não estão presentes em cadelas durante o diestro. A produção de IFN-γ por parte do embrião canino, como em outras espécies, pode estar envolvida na implantação ou o reconheci- mento da gestação, mas até o momento não foi demonstrado de forma inequívoca. Na gata doméstica, o fator que favorece o reconhecimento materno da gestação ainda não foi descrito. Temos que lembrar que seja qual for o mecanismo envolvido, a produção do sinal embrionário de reconhecimento materno da gestação é importante, já que a contínua presença de progesterona na circulação materna, faz possível que ocorra o desenvolvimento precoce do embrião e eventualmente a implantação, com a formação do órgão temporal mais importante para o desenvolvimento fetal: a placenta. Resumindo, o sinal enviado pelo embrião deve ser dado antes do útero começar a secretar PGF2a, hormônio que causa a destruição do corpo lúteo produtor da progesterona necessária para a gestação. O embrião deve secretar algumas substâncias (denominadas EPF: Early Pregnant Factors/fatores de gestação precoce) que capte o endométrio materno e sirva para evitar a ação luteolítica da PGF2a. Na porca, em vez de ser evitada a secreção de PGF2a, o referido hormônio é “sequestrado na luz do útero” e, desta forma, passa a secretar-se em forma exócrina, sem ter efeito sobre o corpo lúteo. No bovino, o reconhecimento materno da gestação é o processo fisiológico no qual o embrião, por meio de sinais moleculares como a secreção de interferon-τ (IFN-τ), anuncia sua presença no trato reprodutivo materno a fim de evitar que seja desencadeado o mecanismo luteolítico exercido pela PGF2a sobre o corpo lúteo. PLACENTAÇÃO Nos mamíferos domésticos, o processo de implantação é gradual e prolongado, e ocorre paralelamente a processos como a gastrulação e a formação de membranas extra- embrionárias: saco vitelino, âmnio, alantóides e córion. A formação das membranas extraembrionárias nos mamíferos eutérios, ou seja, aqueles que formam uma placenta completa, é um processo indispensável que permite ao embrião aderir-se ou implantar-se ao endométrio materno. As quatro membranas extraembrionárias mencionadas são formadas a partir do trofoblasto, mesoderme e endoderme embrionários. O saco vitelino fornece nutrientes no desenvolvimento inicial do embrião e se converte em vestigial quando a gestação progride; tem origem no endoderma primitivo, estrutura que junta com o trofoblasto e o mesoderma, formam o córion e âmnions. O âmnion contém o líquido amniótico que está em contato direto com o embrião e é a membrana mais interna; ademais, protege o feto, proporciona lubrificação para o parto e serve como um depósito para urina e resíduos fetais. O córion, por outro lado, é a membrana mais externa do embrião e, portanto, é a que entra em contato direto com o endométrio uterino materno; se fixa ao útero, absorve nutrientes do útero, permite a troca gasosa materno/fetal e produz hormônios. O alantóide se origina de uma evaginação do intestino primitivo e é de onde surge o sistema vascular da placenta fetal; a fusão com o córion (placenta cotiledonária), carrega os vasos sanguíneos do cordão umbilical, que liga o feto com o alantóide e é um reservatório de nutrientes e resíduos. Conforme o embrião se desenvolve, o saco vitelino regride e o alantóide se enche de líquido, pelo que este último se funde com o córion para formar o corioalantóides, que se torna a membrana mais externa e, portanto, a porção fetal do placenta. A placenta é um órgão temporário que representa uma interface através da qual realiza a troca bidirecional de nutrientes, gases, hormônios e outras substâncias entre a mãe e o feto. A unidade funcional da placenta são as vilosidades corioalantóicas, as quais são projeções pequenas dos corioalantóides que se interdigitam com o endométrio uterino, cuja superfície de absorção permite essa troca. A placenta é um órgão endócrino capaz de produzir uma gama de hormônios que ajudam a controlar o ambiente uterino, favorecendo o desenvolvimento do feto, além disso possui um papel importante no momento do parto. Nas diferentes espécies a placenta tem características particulares, pelo qual existem várias classificações, de acordo com a sua posição uterina, a distribuição das vilosidades corioalantóicas e a sua histologia. Posição uterina Refere-se à posição do concepto em relação ao lúmen uterino (figura 7). Central: O concepto ao ser implantado permanece em contato com o lúmen do útero. A maioria das espécies domésticas de importância veterinária estão dentro desta classificação. Excêntrica: O concepto penetra parcialmente o endométrio materno, mas mantém um certo contato com o lúmen uterino. Os roedores (ratos e ratos) e a coelha possuem este tipo de placentação. Intersticial: O embrião invade o endométrio, perde contato com o lúmen uterino, e ao crescer o lúmen uterino se oblitera. Os humanos e a maioria dos primatas mostram este tipo de placenta. Distribuição das vilosidades As vilosidades que formam a interface materno-fetal podem estar distribuídas de maneira diferente ao longo da superfície dos corioalantóides, pelo qual a placenta pode ser classificada como (figura 8): Difusa: Neste tipo de placenta as vilosidades estão distribuídas ao comprimento de toda a superfície do córion (corioalantóides) de maneira uniforme. As placentas de suínos e equinos se enquadram nesta classificação, embora, nesta última espécie, as vilosidades formem estruturas mais ramificadas, que são chamadas microcotilédones (figura 10). Zonal: Esta placenta se apresenta nos carnívoros domésticos, tanto caninos como felinos. As vilosidades que determinam a zona de troca de nutrientes e resíduos, e de ligação com o endométrio são delimitadas de forma a formar uma cintura central em torno do feto (figura 9). Distingue-se também uma segunda região chamada paraplacenta, que se localiza em ambos lados deste “cinto”, e do qual a função não é inteiramente conhecida, embora sabe-se que desempenha um papel importante na troca de ferro da mãe para o feto. As extremidades laterais dos corioalantóides nestas placentas não possuem vilosidades por isso não se ligam ao endométrio. Uma terceira região é a zona transparente nas extremidades distais do córion que tem pouca vascularização. Esta zona pode estar envolvida na absorção de materiais diretamente do lúmen uterino (figura 11). Cotiledonária: É o tipo de placentação que se encontra presente nos ruminantes (ovinos, caprinos e bovinos). As vilosidades coriônicas nestas espécies são agrupadas em pequenas áreas do córion chamadas cotilédones, que se interdigitam e fundem-se parcialmente com locais delimitados no endométrio chamados carúnculas, formando, em conjunto, estruturas conhecidas como placentomas. Cabe destacar que as carúnculas carecem de glândulas endometriais, que só estão presentes nas porções inter-carun- culares do endométrio. Os placentomas, por sua vez, são altamente vascularizados e são remodelados com o progresso da gestação, ramificando-se para aumentar a superfície de troca e o fluxo sanguíneo para aumentar os requisitos do feto em crescimento. Nas zonas inter-carunculares, a placenta é ligada ao endométrio por meio de sistemas de adesão superficial que envolvem glicoproteínas. Acredita-se que a adesão do concepto com o endométrio (carúnculas) é estabelecida em torno de 30 dias em ovinos e 40 dias em bovinos. (figuras 13 a 17). Discoidal: Nestas placentas, as vilosidades agrupam-se numa área circular ou oval, formando uma estrutura discoidal. Este tipo de placenta é encontrada principal- mente em coelhas, roedores e primatas, incluindo os humanos. Histologicamente Esta classificação considera o número de camadas de tecido que compõem a placenta e que separam a circulação materna da circulação fetal (tabela 3). O número máximo é de seis camadas, três do lado fetal (córion, tecido intersticial e endotélio do vaso sanguíneo) e três do lado materno (epitélio endometrial, tecido intersticial e endotélio vascular) (figura 19 e tabela 3). O modo de distinguir e nomear os diferentes tipos de placenta nesta classificação é usando como prefixo a camada materna que está em contato com o córion fetal. As diferentes placentas baseados em sua histologia são as seguintes (figura 19): Epiteliocorial: É o menos íntimo entre os tipos de placentas (figura 20). Estas placentas conservam intactas as seis camadas de tecido, portanto que mantêm as circulações materna e fetal mais separadas, e consideradas como as mais impermeáveis. Este tipo de placenta está presente na porca e égua. Lembre-se de que as placentas da porca e da égua são diferentes e as vilosidades ocupam uma grande proporção da área de superfície do córion (figura 19 A). Também apresenta-se nos ruminantes, no entanto, as placentas dos ruminantes apresentam algumas características particulares que as colocam como um subgrupo e se chamam sinepiteliocorial ou sindesmocorial (figura 19 B). Na vaca, este tipo apresenta-se nos primeiros 2-3 meses de gestação. Além da característica de erosão parcial do epitélio endometrial, um tipo de célula único é encontrado na placenta de ruminantes. Essas células são chamadas células gigantes binucleadas. Como o nome indica, elas são caracterizadas como bastante grandes e com dois núcleos. Na placenta dos ruminantes, algumas células do epitélio coriônico conhecidas como células binucleadas, se fundem com algumas células do epitélio endometrial, criando inicialmente células gigantes trinucleadas e mais tarde placas ou sincícios multinucleados. Estes sincícios têm em consequência uma origem tanto fetal como materna, que criam lugares delimitados nos quais em vez de existir intacta uma camada de epitélio coriônico e outra de epitélio endometrial, encontra-se uma só camada que combina as duas origens. As células gigantes binucleadas migram e mudam seu número ao longo da gestação em forma dinâmica. Este tipo celular é importante porque secretam uma variedade de hormônios. Células gigantes binucleadas aparecem por volta do dia 14 na ovelha e entre os dias 18 e 20 na vaca. Endoteliocorial: 5 camadas. Neste tipo de placentação o córion fetal está em contato direto com o endotélio vascular do endométrio graças à erosão do epitélio e do tecido conectivo endometrial (tecido intersticial) durante a implantação (figura 19 C). De modo que o intercâmbio de substâncias e resíduos só requer atravessar quatro camadas de tecidos. Este tipo de placenta é presente principalmente em cães e felinos. Nota-se nas figuras 19 C e 21 que este tipo de placenta é mais íntimo do que a placenta epiteliocorial porque o epitélio endometrial não existe mais. Hemocorial: 3 camadas (figura 22). Aqui o epitélio coriônico está intacto e entra em contato direto com o sangue materno em regiões onde formam reservatórios de sangue semelhantes a poços (figura 19 D). O intercâmbio de substâncias e resíduos entre a mãe e o feto é mais direto uma vez que é necessário atravessar apenas três camadas para chegar até à circulação fetal. Algumas espécies de primatas, incluindo o ser humano e os roedores possuem este tipo de placentação. MEMBRANAS EXTRAEMBRIONÁRIAS EM AVES Ao mesmo tempo que se estabelece o corpo embrionário e os esboços de cada um dos órgãos começam a gerar-se, torna-se imperioso garantir a sobrevivência do embrião. Tenha-se em conta que nas aves todo o necessário para o desenvolvimento é encontrado no ovo pelo que deve-se reforçar a eficácia das estruturas criadas para garantir o objetivo a que se destina. O exterior é fornecido apenas com o O2; emite CO2 e vapor de água no exterior (perda de 15% da água durante a incubação inicial). Além disso, o neonato não é imaturo, como nos anfíbios, mas está em um estádio maduro juvenil. Como indicado, são quatro as problemáticas a que deve fazer frente o embrião: prover-se de um meio que garanta o desenvolvimento volumétrico, amortecendo os movimentos físicos excessivos que possam traumatizá-lo e evitar a dessecação; assegurar que os nutrientes (vitelo e albúmen) sejam incorporados de forma correta no interior do embrião; assegurar o intercâmbio de gases; e eliminar substâncias tóxicas derivadas do metabolismo proteico. Para atender estas necessidades são desenvolvidas uma série de membranas extrambrionárias que se vão expandindo progressivamente pelo interior do ovo. A dureza da casca e sua relativa impermeabilidade protege-o igualmente da intempérie terrestre. -/- Figura 23: Evolução das membranas extraembrionárias de galinha (3 e 10 dias de incubação). -/- Saco vitelino: o saco vitelino é a primeira membrana extraembrionária em formação. Aparece como consequência direta da gastrulação: as camadas germinativas que se formam ao nível do disco embrionário expandem-se progressivamente contornando o vitelo. Assim, as células provenientes da área opaca (equivalente ao trofoblasto dos mamíferos) migram sobre o vitelo, terminando quase por cobrir, o mesmo ocorre com o endoderma mais internamente, formando-se assim um saco bilaminar. Posteriormente, o mesoderma se interpõe entre ambos, progredindo igualmente no sentido distal, rodeando o endoderma e aderindo-se ao mesmo e ao equivalente de trofoblasto. Ao estabelecer-se o celoma, o saco é constituído pelo endoderma e folha esplâncnica do mesoderma lateral. Este mesoderma vai progredindo no sentido distal e se vasculariza profunda- mente; os vasos distais se anastomosam formando um anel vascular denominado seio terminal, que marca o limite do mesoderma em expansão. Assim, sobre o vitelo é distinguível um área distal não vascularizada (área vitelina) e uma área proximal vascularizada (área vasculosa) que vai ficando progressivamente maior. Ao sexto dia de incubação mais da metade da superfície do vitelo foi envolvido pelo mesoderma. Os nutrientes do vitelo são absorvidos e desdobrados a componentes mais simples por enzimas produzidas pelo endoderma, sendo incorporados aos vasos vitelinos que os veicularão até o coração, que os impulsionará a todo o embrião. Durante a fase embrionária (até ao sexto dia de incubação), o oxigênio do exterior chega até a área vasculosa por difusão, incorporando-se daqui ao embrião; além disso, durante a primeira semana, as alterações na composição e volume do vitelo fazem que se disponha flutuando sobre o albúmen, o que faz com que a área vasculosa fique em contato com a casca, favorecendo-se assim a respiração. O intestino primitivo se instaura a partir das porções mais proximais do saco vitelino à vez que o corpo é fechado (2º-3º dia). O saco vitelino vai regredindo à medida que se vão esgotando os nutrientes do vitelo que aloja. Pouco antes do nascimento é incorporado à cavidade corporal como divertículo vitelino que fica unido ao jejuno; o divertículo vitelino persiste até seis dias após o nascimento, constituindo uma fonte adicional de nutrientes. -/- Figura 24: Feto de galinho ao fim, perto de ser eclodido. -/- mnios: no segundo dia (-30 horas) de incubação se formam as dobras amnióticas na somatopleura extraembrionária, perto do disco embrionário. Progridem dorsalmente, terminando por convergir e fundir-se cerca de 72 horas de incubação, coincidindo com o fechamento corporal, assim sendo constituído o âmnios, que terminará perdendo todo o contato com o córion. A cavidade amniótica que limita está cheia de um líquido seroso que garante que o embrião seja desenvolvido em um meio aquoso; este líquido é secretado pelo âmnios, mas também composto por substâncias formadas pelos rins, cavidade oral e aparelho respiratório. Córion: após a formação do celoma e o estabelecimento e fusão das dobras amnióticas, a parte da somatopleura extraembrionária que fica mais periférica constitui o córion (também denominado serosa nas aves); permanece formada pela área opaca expandida e mesoderma somático. Progressivamente vai aderindo-se à membrana testácea interna deslocando o albúmen; sobre o dia 12 termina por cobrir toda a superfície interna da casca. Intervém na troca gasosa com o meio ambiente através dos poros da casca e na captação do cálcio desta. Alantóides: o alantóide inicia a sua formação no dia 3 de incubação. Cresce rapidamente, ocupando o espaço exocelômico, terminando por cobrir o âmnios e saco vitelino. Progressivamente, entre os dias 4 a 10, sua parte mais externa se funde com o córion, formando-se o alantocórion, membrana trilaminar que cobrirá a superfície interna da casca, aderindo-se à membrana testácea interna, cujo mesoderma (esplâncnico) se vasculariza intensamente. A partir do dia 7 substitui completamente a área vasculosa como órgão respiratório, sendo garantido o aumento gradual das necessidades de troca gasosa na fase fetal do desenvolvimento (desde o dia 8), de rápido crescimento. A capacidade de capilarização desta membrana é muito maior do que a do saco vitelino. Na cavidade alantóica acumula-se a urina produzida pelos rins, afastando os produtos tóxicos do embrião; a membrana também age sobre este fluido intervindo na manutenção do equilíbrio hídrico e mineral do embrião. -/- Figura 25: Formação do saco vitelino. Limite entre a área vascular e avascular. Seio terminal. -/- O albúmen perde água rapidamente e torna-se menos volumoso e mais viscoso, terminando por desaparecer progressivamente. A ligação do alantocórion à membrana testácea interna faz com que seja marginalizado para uma posição periférica, no polo agudo do ovo. Aqui, o alantocórion que o rodeia constitui o saco do albúmen. O albúmen é a principal fonte de água e proteínas. A água é incorporada ao vitelo, o que, ao tornar-se mais volumoso, provoca que, entre os dias 3 e 4, se rompa a membrana vitelina; apenas restos mortais devem permanecer entre o saco vitelino e o albúmen. Dentro do saco vitelino, a água se acumula principalmente sob o embrião -fluido subembrionário-; este fluido atinge o seu volume máximo (15 ml) no dia 6. As proteínas serão incorporadas principalmente a partir de no dia 12, seja através do saco vitelino, do saco do albúmen ou por ingestão de líquido amniótico, dada a comunicação seroamniótica que se estabelece. Na galinha, a eclosão ocorre aos 21 dias de incubação. REFERÊNCIAS BIBLIOGRÁFICAS -/- Anotações de aulas de Embriologia Básica, Prof. Dr. Edson João da Silva, UFRPE, 2021. BAZER, Fuller W. et al. Novel pathways for implantation and establishment and maintenance of pregnancy in mammals. MHR: Basic science of reproductive medicine, v. 16, n. 3, p. 135-152, 2009. CARTER, Anthony M. Evolution of placental function in mammals: the molecular basis of gas and nutrient transfer, hormone secretion, and immune responses. Physiological Reviews, 2012. CARTER, A. M.; ENDERS, A. C. Placentation in mammals: Definitive placenta, yolk sac, and paraplacenta. Theriogenology, v. 86, n. 1, p. 278-287, 2016. CONSTANTINESCU, G.M.; SCHATTEN, H. Comparative reproductive biology. Carlton: Blackwell Publishing, 2007. 402p. Avicultura: Formação do Ovo. Desenvolvimento Embrionário e Diferenciação Sexual nos Animais Domésticos. Disponível em:. Acesso em: Dezembro de 2021. Diferenciação e Determinação Sexual dos Animais. Fisiologia do Ciclo Estral dos Animais Domésticos. Emanuel Isaque Cordeiro da Silva, 2021. Manejo na Avicultura: Postura, Iluminação e Incubação dos Ovos. Transporte de Gametas, Fertilização e Segmentação. FERRER‐VAQUER, Anna; HADJANTONAKIS, Anna‐Katerina. Birth defects associated with perturbations in preimplantation, gastrulation, and axis extension: from conjoined twinning to caudal dysgenesis. Wiley Interdisciplinary Reviews: Developmental Biology, v. 2, n. 4, p. 427-442, 2013. GALINA, Carlos; VALENCIA, Javier. Reproducción de los animales domésticos. 2006. GEISERT, Rodney D.; SPENCER, Thomas E. Placentation in Mammals. Springer, 2021. GINTHER, O. J. Reproductive Biology of The mare: Basic and Applied Aspects. 2. ed. Cross Plains, Wisconsin: Equiservices, 1992. GUILLOMOT, Michel. Cellular interactions during implantation in domestic ruminants. Journal of Reproduction and Fertility-Supplements only, n. 49, p. 39-52, 1995. KLEIN, C.; TROEDSSON, M. H. T. Maternal recognition of pregnancy in the horse: a mystery still to be solved. Reproduction, Fertility and Development, v. 23, n. 8, p. 952-963, 2011. MIGLINO, Maria Angelica et al. The carnivore pregnancy: the development of the embryo and fetal membranes. Theriogenology, v. 66, n. 6-7, p. 1699-1702, 2006. MOFFETT, Ashley; LOKE, Charlie. Immunology of placentation in eutherian mammals. Nature Reviews Immunology, v. 6, n. 8, p. 584-594, 2006. PRETZER, S. D. Canine embryonic and fetal development: A review. Theriogenology, v. 70, n. 3, p. 300-303, 2008. SENGER, Phillip L. et al. Pathways to pregnancy and parturition. Current Conceptions, Inc., 1615 NE Eastgate Blvd., 2012. SOZEN, Berna; CAN, Alp; DEMIR, Necdet. Cell fate regulation during preimplantation development: a view of adhesion-linked molecular interactions. Developmental biology, v. 395, n. 1, p. 73-83, 2014. SPENCER, Thomas E. et al. Pregnancy recognition and conceptus implantation in domestic ruminants: roles of progesterone, interferons and endogenous retroviruses. Reproduction, fertility and development, v. 19, n. 1, p. 65-78, 2006. VERSTEGEN-ONCLIN, K.; VERSTEGEN, J. Endocrinology of pregnancy in the dog: a review. Theriogenology, v. 70, n. 3, p. 291-299, 2008. WOODING, Peter; BURTON, Graham. Comparative placentation: structures, functions and evolution. Springer Science & Business Media, 2008. FIXAÇÃO DO ASSUNTO -/- 1. Defina e diferencie os processos de desenvolvimento embrionário precoce, alonga- mento e gastrulação. -/- 2. O que é implantação? Caracterize as fases do processo de implantação. -/- 3. Qual a importância do acúmulo de líquido no interior do blastocele? Qual a importân- cia da eclosão do blastocisto? -/- 4. Caracterize os três tipos de implantação e, depois, explique e diferencie os meios de implantação nas fêmeas domésticas. -/- 5. Defina e caracterize os meios de reconhecimento materno da gestação (RMG) nos animais domésticos. -/- 6. O que diferencia o RMG em ruminantes e suínos? -/- 7. Qual o papel do estradiol no RMG em porcas? O que ocorre quando a porca não fica gestante? -/- 8. Explique o RMG em cães e gatos. -/- 9. Defina placentação e sua importância para a reprodução dos animais domésticos. -/- 10. Quais são as classificações da placentação? Classifique a placentação das fêmeas domésticas. -/- 11. Caracterize e diferencie o processo de placentação em fêmeas domésticas. -/- 12. Observe a figura e responda o que se pede:. (shrink)
Вивчення історії релігійної культури на українських теренах ранньомодерного часу передбачає ознайомленість, принаймні у загальних рисах, із тогочасним теологічним дискурсом. Загальне впровадження до основних тенденцій, напрямів, особливостей ранньомодерної католицької та протестантської теологій акумульовано у рецензованому «підручному компендіумі», який вийшов друком у рамках відомої серії Оксфордського університету «Oxford Handbook». Упорядниками видання є професор релігійної історії та історичної теології Ульріх Леенер (Університет Маркетта, США), проф. Річард Мюллер (Теологічна семінарія Кальвіна, США) та проф. Ентоні Ґреґ Роебер (Пенсильванський державний університет, США). Особливу увагу привертає проф. (...) Ульріх Леенер, який впродовж останніх років опублікував концептуальні монографії про ченців епохи Просвітництва, монастирські в’язниці ранньомодерного часу та декілька праць, присвячених католицькому Просвітництву. (shrink)
INTRODUÇÃO A maioria dos alimentos que os bovinos de corte e leite consomem são os alimentos volumosos (forragens, gramíneas ou leguminosas) que é um alimento que possui teor de fibra detergente neutra (FDN) ≥ 25% da matéria seca (MS), ou teor de fibra ≥ 18% da MS. Por possuir grande quantidade de fibra em sua composição é um alimento que possui menor concentração de proteínas, carboidratos não estruturais (CNE) e lipídios. Para que um animal possa manter-se com alimentação volumosa, é (...) necessário a ingestão de grande quantidade desse material. Quando os bovinos recebem apenas forragens, não conseguem ingerir o suficiente para obter a energia, proteínas, minerais e vitaminas necessárias para converter os nutrientes em produtos (carne, leite etc.). Assim, faz-se necessário a inclusão de uma fonte alimentar concentrada em nutrientes na dieta dos bovinos. O alimento concentrado é aquele que contém menor teor de FDN < 25% ou teor de fibra bruta (FB) < 18%. Logo, pelo baixo teor de fibras é um alimento rico em energia e/ou proteínas. Divide-se em concentrados proteicos, os que possuem um teor de proteína bruta (PB) > 20% da MS e em concentrados energéticos, os que possuem < 20% de PB da MS. Para suprir todas as necessidades de mantença, crescimento, reprodução e produção, os bovinos devem receber alimentos suficientes e que forneçam a quantidade necessária dos nutrientes exigidos pelos animais em função da aptidão, estado fisiológico, categoria etc. Nutrientes fornecidos pela dieta (kg/dia) = necessidades dos bovinos (kg/dia) A formulação de rações consiste em combinar, nas quantidades necessárias, os alimentos que serão oferecidos para suprir as necessidades diárias do animal. Uma ração balanceada é aquela que fornece ao animal as proporções e quantidades corretas de todos os nutrientes necessários por um período de 24 horas. Às vezes, o criador possui controle total sobre os tipos e proporções de vários alimentos que compõem a ração. É o caso dos animais em sistema de confinamento, onde se conhece todo e qualquer alimento que o animal ingere e sua respectiva exigência, o que torna a formulação fácil. No entanto, balancear a ração, às vezes, é uma tarefa difícil. Normalmente, os animais em pastejo podem escolher não apenas a quantidade de pasto que consomem, mas também a sua composição. Os animais podem selecionar várias partes da planta e rejeitar outras. Para elaborar um programa alimentar, utilizando os métodos de formulação e balanceamento de rações é necessário, inicialmente, da explanação de alguns conceitos-chave da nutrição e, sem dúvidas, do entendimento e conhecimento das exigências nutricionais dos animais em função da idade, da raça, do estado fisiológico etc., além da composição bromatológica dos alimentos disponíveis para os animais. Sendo assim, a finalidade desse trabalho, em suma, é a explanação de conceitos-chave da nutrição, bem como da elaboração de tabelas dos requerimentos nutricionais diários dos animais, além da elaboração, alicerçado pela literatura disponível, da composição bromatológica dos alimentos, em especial do conteúdo proteico e energético dos mesmos. Por fim, conhecendo a composição dos alimentos e as exigências dos animais de acordo com a categoria, é realizado o balanço para saber, finalmente, se os alimentos suprem os requisitos dos animais e, se não atender os requerimentos, seja necessária uma adição suplementar para suprir todos os requerimentos para que os animais possam se manter e produzir, sempre visando uma elaboração alimentar econômica e viável tanto para os grandes pecuaristas quanto aos pequenos criadores. 1. GENERALIDADES 1.1 Balanceamento de rações Consiste na preparação de alimentos suficientemente nutritivos que cumpram com os requerimentos proteicos, energéticos, vitamínicos e minerais dos animais. Sendo assim, nos deparamos com alguns questionamentos, dentre eles a importância do balanceamento. Quando uma ração não está equilibrada há um excesso e/ou deficiência de determinados nutrientes. Alguns desequilíbrios possuem consequências drásticas e se não forem corrigidos podem causar até a morte do animal (por exemplo, um desequilíbrio de Ca próximo ao parto pode causar a febre do leite e morte do animal se não for tratado imediatamente). Alguns sintomas observados no animal podem auxiliar na identificação dos desequilíbrios, principalmente sintomas relacionados à carência de vitaminas e minerais. No entanto, outros desequilíbrios são difíceis de identificar, uma vez que resultam de algum grau de perda de desempenho. Os bovinos não têm um desempenho tão bom quanto seu potencial genético permitiria quando há algum desequilíbrio na ração. Os desequilíbrios tendem a afetar os animais com alto potencial genético. Nem todos os desequilíbrios alimentares possuem consequências devastadoras, mas todo desequilíbrio nutricional é economicamente inaceitável, uma vez que produz uma perda de produção e perda de nutrientes que poderiam ser utilizados efetivamente pelos animais para suas funções básicas. 1.2 Consumo de MS Matéria seca é a razão do alimento desprovido de umidade. Por exemplo, quando corta-se o capim e expõe-se o mesmo ao sol, irá murchar e logo sua cor mudará de verde para um café ou amarelo escuro em consequência da maior perda de água presente na composição. Quanto mais exposta ao calor mais seca a forragem ficará e esse conteúdo é o que se denomina de matéria seca. Por exemplo, quando o grão de milho perde toda água contida nele sua matéria seca é de 88%, aproximadamente. Cada pasto possui uma porcentagem diferente de umidade e varia em função da idade. Logo, podemos concluir que pastagens jovens possuem mais suculência (maior quantidade de água) e os pastos mais velhos possuem menor suculência, fazendo com que os bovinos prefiram ingerir os pastos mais jovens por possuírem melhor palatabilidade e degustação ao animal. A B Em A podemos observar um pasto velho com uma característica mais seca, ou seja, com uma menor quantidade de água. Por outo lado, em B podemos observar um pasto mais jovem, com maior porcentagem de água em sua composição. Agora, vamos conhecer o consumo de MS pelos bovinos. Na teoria, e recomendável, para cada 100 kg de peso vivo (PV), o bovino deve consumir o equivalente de MS entre 1,8 e 3,5 kg, ou seja, é o mesmo que dizer de 1,8 a 3,5% do PV. Esses valores nos indicam que um animal jovem consome menor matéria seca e vice-versa, e animais adultos consomem maior quantidade de MS. O consumo de MS varia em função do peso do animal, do estado fisiológico e da porcentagem de digestibilidade do alimento, por exemplo, bovinos de até 600 kg podem consumir até 10,5 kg/dia de MS sob um pasto com digestibilidade de 80%. Como regra geral, para saber com que ponto de escala se considera 1,8 e 3,5% usa-se: Para: Vaca em produção leiteira = 3,2% (vaca com 500 kg, 3,2% equivale a 16 kg de MS/dia) Vaca adulta e grande = 3,3 ou 3,4% Novilhas (os) com 300 kg = 2,8% (2,8% de 300 kg equivale a 8,4 kg de MS/dia) Exemplos: Uma bezerra pesa 120 kg. Qual a quantidade de MS que ela deverá consumir? 120 kg bezerra ----------- 100% (correspondente) X kg de MS ------------- 2,7%¹ ¹ - a maioria das pastagens possuem essa porcentagem de MS Pelos cálculos vamos obter: "X=" "120 x 2,7" /"100" "= 3,24 kg de MS" Sendo assim, a bezerra deverá consumir 3,24 kg de MS/dia. Temos uma umidade média de 80% o que indica que o restante é de material seco. 3,24 kg ------------- 20% correspondente X -------------- 80% umidade "X=" "3,24 x 80" /"20" "= 12,96 kg de água" Agora água + material seco: 3,24 kg de MS + 12,96 kg de água = 16,2 kg de forragem verde para a bezerra de 120 kg de PV. As forragens nunca se encontram em forma de material seco e sim de material verde, indicando-nos a presença de água entre 65 e 85% de sua composição. Mas, como conhecer com exatidão a umidade ou a presença de água de um produto? Para se conhecer com exatidão o teor de umidade de um determinado alimento, pode-se seguir os seguintes passos: 1. Separar 1 kg de forragem 2. Pôr no sol ou em um forno para desidratar até que esteja seco o bastante como para moer 3. Pesar e o peso que diminuiu será o conteúdo de água que continha Exemplo: 1000 g de forragem verde ---------- 100% 200 g de forragem seca ---------- X% X = "200 x 100" /"1000" "= 20%" Logo, a matéria seca é 20% e o conteúdo de água é de 100% - 20% = 80%. O esquema abaixo representa a secagem anterior, seja por sol ou em forno. 1.3 Necessidades de água Resumidamente, a água é necessária para o metabolismo, para a produção (leite e carne) e para as necessidades ambientais. A água é o nutriente que as vacas de leite requerem em maior quantidade. A água é um nutriente primordial na manutenção da produção leiteira e cárnea dos bovinos. A produção de leite, por exemplo, reduzirá no mesmo dia em que a água não estiver disponível para as vacas. Muitas vezes, a água é considerada aparte dos outros nutrientes como as proteínas, no entanto, é um nutriente de suma importância para a produção pecuária; pode-se administrar poucas quantidades de alimentos aos animais, mas se faltar água em excesso os animais padecem rapidamente. Os alimentos possuem quantidades variáveis de água (umidade) em sua composição, uma gramínea verde inteira no solo pode conter de 80 a 85% de água e, portanto, conter apenas de 15 a 20% de MS. Em contrapartida, o teor de água da maioria dos alimentos concentrados é de 10%, ou seja, 90% é de MS. Embora a quantidade de água na dieta possa variar consideravelmente, normalmente é pouco significativo, já que os animais devem regular o consumo de água por conta própria, ou seja, o acesso à água de boa qualidade deverá ser de livre escolha dos animais. Entretanto, quando grandes quantidades de alimentos úmidos forem oferecidas (como polpa de beterraba ou grãos de cevada) a ingestão de energia, proteínas, minerais e vitaminas encontradas na MS da ração pode ser reduzida. Para administrar água para os bovinos deve ter em conta que: A quantidade de água para a manutenção do metabolismo está descrita na tabela 1. Tabela 1: água utilizada no metabolismo Para cada kg de MS rústica 2,5 litros Para cada kg de MS suculenta 2 litros Para cada litro de leite 4 litros Para cada kg de carne 1 litro Os principais fatores que limitam a ingestão de água são: A ingestão de MS Produção de leite A temperatura ambiente Ingestão de sódio Na Como citado supra, a temperatura é um dos fatores que influenciam na ingestão de água. Logo, sob clima quente, os animais estabulados devem receber +15% de água dos valores mencionados, os animais sob pastejo devem receber +20%. Sob clima frio, os animais estabulados devem ingerir +10% e os sob pastejo +15%. De forma geral, uma vaca em lactação deverá ingerir de 3,5 a 5,5 litros de água por kg de MS. Por exemplo, uma vaca que produz 10 kg de leite e come 12 kg de MS consumirá 12 x 4,5 = 54 kg ou litros de água/dia. Para bovinos de corte, por exemplo, considerando um animal de dois anos em condições de manejo adequado, o consumo deverá ser de 45 litros/animal/dia ou de 8 a 9 litros/100 kg de PV. 2. REQUERIMENTOS NUTRICIONAIS DOS BOVINOS Antes de explanar os requerimentos nutricionais dos bovinos em produção, faz-se necessário a explanação de alguns conceitos importantes: 2.1 Proteína e energia A proteína é o componente mais importante para o tecido animal e se encontra em concentração no tecido muscular. É essencial para o crescimento e a quantidade requerida vai diminuindo à medida que o animal se desenvolve. O corpo necessita de proteínas para a manutenção e renovação dos tecidos. Também é requerida para a realização de funções produtivas tais como a gestação e a lactação. As rações para os bovinos deverão conter a seguinte concentração de proteína: Tabela 2: porcentagem de proteína em rações para bovinos Etapa produtiva % de proteína na ração Bezerros (as) até os 4 meses 18 – 19% Bezerros (as) em crescimento 4-12 meses 17 – 18% Novilhos (as) em engorda 12-20 meses 14 – 17% Novilhas gestantes (+ de 16 meses) 19 – 20% Vacas gestantes 20% Vacas em produção leiteira 16 – 17% Reprodutores (adultos) 14 – 15% Fonte: adaptação de TEIXEIRA, 1997 e BERCHIELLI et al., 2006. A energia é o componente que o animal necessita para a realização de algumas funções, tais como a movimentação, metabolismo, temperatura corporal, respiração, produção, reprodução, crescimento e muitas outras. O valor energético pode ser expressado de duas formas, em nutrientes digestíveis totais (NDT), mais conhecido no Brasil e em unidades de amido (UA). O NDT é o sistema que calcula a energia total (proteína digestível, fibra crua digestível, extrato não-nitrogenado digestível e gordura digestível), mas levando em consideração as perdas de energia pela digestão do alimento no animal. É notório que os alimentos ricos em fibra crua necessitarão de um maior trabalho digestivo, logo, o gasto energético será maior. Por sua vez, a medida de energia líquida é conhecida como unidades de amido. 2.1.1 Fontes de energia e proteína na ração Os carboidratos fibrosos (CF), presentes nos volumosos, têm baixo teor de energia, mas são necessários para manter a ruminação, a produção de saliva e o pH ruminal para a atividade bacteriana normal. Os carboidratos não fibrosos (CFN) também são nutrientes importantes porque são fontes importantes de energia. Portanto, uma boa porção deve conter os dois. No entanto, a proporção ideal de cada tipo de carboidrato mudará dependendo do nível de produção. Com o aumento da produção de leite, a vaca necessita de mais energia e, portanto, mais concentrada na ração. As fontes de energia e proteína são críticas na formulação de uma boa mistura A porção da proteína bruta na ração que está na forma de nitrogênio não proteico (NNP) é a principal fonte de nitrogênio para o crescimento bacteriano. A deficiência de NNP pode reduzir o crescimento de bactérias e o fornecimento de aminoácidos bacterianos à vaca. O excesso de NNP na ração não é apenas um desperdício, porque não é utilizado pelas bactérias, mas também pode ser tóxico e é necessária energia para desintoxicá-lo e eliminá-lo na urina. Uma porção da proteína bruta na ração também pode ser necessária na forma de proteína resistente à degradação microbiana no rúmen. Vacas de alta produção requerem proteínas resistentes à degradação por bactérias para fornecer aminoácidos adicionais (além daqueles que podem fornecer proteína bacteriana) para absorção no intestino delgado. Assim, em boa parte, tanto a quantidade de proteína quanto a natureza da proteína devem ser cuidadosamente controladas. 2.2 Requerimentos nutricionais dos bovinos de corte. 3. COMPOSIÇÃO DOS ALIMENTOS PARA OS BOVINOS Os alimentos usados na alimentação de bovinos, como de demais espécies de interesse zootécnico, são classificados de acordo com o teor de fibra bruta e de outros nutrientes. Sendo assim, podemos dizer que basicamente são classificados em: 1) Alimentos volumosos: possuem baixo teor energético em sua composição, decorrente do alto teor em fibra ou em água. Possuem menos de 60% de NDT e/ou mais de 18% de fibra bruta (FB) na MS e englobam as forrageiras secas e grosseiras (fenos e palhas), pastagens cultivadas, pastos nativos, forrageiras verdes e silagens. São os de menor custo na propriedade. Para os bovinos os mais utilizados estão as pastagens naturais ou cultivadas (braquiárias e panicuns), capineiras (capim-elefante), silagens (capim, milho, sorgo etc.), cana-de-açúcar e o bagaço de cana hidrolisado. Entre os menos utilizados estão o milheto, feno de gramíneas, silagem de girassol, palhadas de culturas etc. 2) Alimentos concentrados: em função do baixo teor de FB (< 18%), são alimentos com alto teor energético, com mais de 60% de NDT e podem ser divididos em: a) Concentrados energéticos: aqueles com menos de 20% de PB em sua composição, 25% de FDN (fibra em detergente neutro) e em torno de 18% de FB. São exemplos de alimentos concentrados energéticos o milho, sorgo, trigo, aveia, cevada, frutas, nozes e algumas raízes (mandioca, batata etc.). b) Concentrados proteicos: alimentos com mais de 20% de PB, 50% de FDN e 60% de NDT. Como exemplo temos os farelos de soja, de amendoim, de girassol, de algodão, glúten de milho e alguns subprodutos de origem animal como a farinha de peixe, de sangue, de carne e ossos etc. Ainda assim, existem os suplementos minerais e vitamínicos e os aditivos que entram em pequenas quantidades nas rações e são antibióticos, corantes, probióticos, antioxidantes etc. Dentro da nutrição e da alimentação animal, podem ocorrer variações nas composições bromatológicas dos alimentos em função de alguns fatores, tais como as cultivares (variedades) como a planta de sorgo que apresenta variedades com e sem tanino, o armazenamento como as misturas minerais expostas ao sol podem sofrer alterações pelas reações químicas, as condições do solo, teor de água e condições de processamento. Por fim, para a formulação de dietas equilibradas, deve-se fazer uma análise, sempre que possível e viável, dos alimentos que serão utilizados no balanceamento. Sendo assim, as dietas se apresentarão o mais próximo possível das necessidades dos animais e refletirão em desempenhos satisfatórios. A tabela 14, trata da composição de alguns alimentos comumente usados na alimentação dos bovinos de corte e leite e que servirá de base para a posterior formulação de dietas para os mesmos. Após a análise bromatológica dos principais valores dos alimentos para a formulação de rações, faz-se necessário o conhecimento das quantidades dos ingredientes na dieta dos bovinos. Para tanto, a tabela 15 traz os principais alimentos e a quantidade recomendável de cada um sobre a dieta e/ou a ração total dos animais. Tabela 15: níveis recomendados dos principais ingredientes para rações de bovinos INGREDIENTE NÍVEL DE USO Milho grãos Até 70% Farelo de soja 30 a 40% Sorgo grãos Substituto 100% do milho Farelo de trigo 10 a 40% Farelo arroz desengordurado 10 a 30% Farelo amendoim 30 a 40% Farelo de algodão 30 a 40% Torta de girassol 30 a 40% Torta de colza Até 20% Torta de linhaça 5 a 10% Torta de mamona 5 a 10% Torta de gergelim 30 a 40% Farinha de peixe Até 10% Farinha de sangue 1,5 kg Polpa cítrica 20% Caroço de algodão 25% Farinha de penas 0,5 kg Farinha carne e ossos 1,5 kg Farelo de arroz 15% Soja grãos 25% Farelo de girassol 30% Gorduras 5% Resíduos de padaria 20% Grãos de destilaria 60% Grãos de cervejaria 30% Melaços 20% Subprodutos do trigo 30% Feijão 25% Glúten de milho 10% Ureia 1% Casca de algodão 40% Casca de arroz 15% Cama de galinha 15% Fontes: TEIXEIRA, A. S., 1997 e TEIXEIRA, J. C., 1997. 4. SELEÇÃO ECONÔMICA DE INGREDIENTES PARA RAÇÕES Uma das preocupações dos técnicos em nutrição animal é a minimização do custo das fórmulas de rações. Existem alguns métodos utilizados para minimizar os custos, dentre eles o método com auxílio do computador para cálculo de fórmulas e o método do valor nutricional parcial, isto é, o método onde os alimentos são selecionados de acordo com seus custos por kg em relação a outros ingredientes básicos da ração. 4.1 Uso do computador Através de programas específicos, os computadores selecionam os ingredientes com relação ao custo, construindo e fornecendo a ração mais barata dentro da finalidade de minimização do custo. Para que seja evitado que a ração escolhida pelo computador (mais barata), seja a pior dentro do aspecto nutricional, deve-se tomar as seguintes medidas: Estabelecer um controle de limite máximo para os ingredientes selecionados de forma econômica, para evitar que os mesmos ultrapassem os limites recomendados pelas técnicas nutricionais. Estabelecer nesse controle um limite mínimo para os ingredientes, que não foram selecionados, mas que a pesquisa aconselha serem incluídos à ração. Mesmo essas medidas sendo tomadas, a resposta final provém dos animais através de provas biológicas, como a conversão alimentar, custo para produzir 1 kg de carne etc. 4.2 Valor nutricional parcial Esse método é baseado em alguns critérios, dos quais: Existência de dois ingredientes padrões como o milho e a soja, que servirão de base na determinação do custo de 1 kg de proteína e de 1 Mcal de energia metabolizável, de energia digestível, de energia líquida (energia produtiva) ou 1 kg de nutrientes digestíveis totais (NDT). No nosso caso, como constituem a base de 60 a 80% das rações, os ingredientes aconselháveis para servirem de padrões são o milho, o farelo de soja ou o farelo de algodão. Este método também parte da premissa de que, quando se compra 1 kg de milho por um dado preço Vm, na verdade está se comprando 93 g de proteína e 3,52 Mcal de ED. Quando se compra 1 kg de farelo de soja por um preço Vs, está se comprando 450 g de proteína e 3,21 Mcal de ED. Alicerçados por esses dados e no fato de que proteína e energia não possuem cotação comercial, pode-se determinar os valores relativos de 1 kg de proteína (a) e de 1 Mcal de ED (b) através das equações: Equação do milho: 0,093 + 3,52 a = Vm Equação da soja: 0,450 + 3,21 b = Vs Para que se obtenha o valor nutricional parcial, multiplica-se a composição de proteína do ingrediente a ser selecionado de forma econômica pelo custo relativo de 1 kg de proteína, procedendo-se da mesma forma para a energia e somando-se os dois é obtido o valor nutricional parcial que era esperado. Pode-se incluir, também, o valor da composição mineral e vitamínica do ingrediente cotado a preço comercial desses nutrientes. Pode-se, portanto, calcular o valor nutritivo parcial levando-se em consideração mais nutrientes, como os minerais, como é o caso do Ca e P. Para tanto, deve-se tomar, como padrões, para calcular o custo de 1 kg de Ca e de 1 kg de P, isto é, o calcário calcítico e o fosfato bicálcico, respectivamente. 4.3 Relação valor nutricional parcial/preço comercial Através da divisão do valor nutritivo parcial encontrado nos cálculos pelo preço comercial do ingrediente é obtida a relação (R) valor nutritivo parcial/preço comercial de ingredientes. Alicerçados por essa premissa, podemos obter as seguintes conclusões: R = 0 o ingrediente incluído na fórmula, não reduz e nem aumenta os custos; R > 1 o ingrediente incluído na fórmula reduz o custo da ração. Ela será maior quanto maior for a relação; R < 1 a inclusão do ingrediente à fórmula aumenta o custo e será maior quanto menor for o valor da relação. 4.4 Seleção econômica do farelo de trigo Vamos selecionar o farelo de trigo que possui 16% de PB e 2,77 Mcal de ED e custa R$ 1,80 (dados de jan. 2021). O farelo de soja custa R$ 2,85 o kg e contém 45% de PB e 3,21% Mcal de ED. O milho, por sua vez, custa R$ 0,71 o kg e contém 9,3% de PB e cerca de 3,52 Mcal de ED. Para calcular o custo relativo de 1 kg de PB e de 1 Mcal de ED, usa-se os dados do milho e do farelo de soja, montando-se o seguinte sistema de equação: Equação do milho: 0,093x + 3,52y = 0,71 Equação do farelo de soja: 0,450x + 3,21y = 2,85 Resolvendo esse sistema, obtemos: x = R$ 6,00/kg de proteína y = R$ 0,04/Mcal de ED Para calcular o valor nutritivo parcial do farelo de trigo, juntamos os dados do FT com os resultados obtidos da resolução supra, assim obtemos: Valor nutritivo parcial = 0,16 x 6,00 + 2,77 x 0,04 = 1,06 Cálculo da relação valor nutritivo parcial e preço comercial, obtemos: R = "1,06" /"1,80" = 0,59 Com base no valor da relação supra 0,59, podemos dizer que em cada real pago pelo farelo de trigo será pago 0,59 centavos de real em valor nutritivo parcial em relação ao milho e ao farelo de soja tomados como padrões. Portanto, quando se incluir o farelo de trigo na ração ocorrerá o aumento do custo da mesma. Também, no caso do valor nutritivo parcial, são realizadas as mesmas restrições de controle para o uso de computadores, com o objetivo de que a ração mais econômica não seja a pior com relação a disponibilidade e carga nutricional. 5. MÉTODOS DE FORMULAÇÃO DE RAÇÕES Para a formulação de dietas para os bovinos, é necessário o conhecimento de alguns conceitos para a tomada de decisões quanto a dieta dos animais. Um dos passos-chave para a tomada de decisões é o conhecimento dos alimentos que irão compor a mistura de concentrados. A quantidade de proteína é o primeiro nutriente a ser calculado e computado, visando a determinação do nível de proteína desejável na mistura dos concentrados (tabela 2). As regras de manuseio descritas a seguir podem auxiliar na tomada de decisões para formulação de rações. Quando as vacas leiteiras recebem um alimento com elevado teor proteico, tal como as farinhas de origem animal, os farelos como o de soja, girassol etc. ou as pastagens consorciadas, os concentrados deverão ter 10% de proteína digestível (PD) ou 13% de PB; Para a suplementação da mistura diária dos alimentos, tais como o feno de alfafa e silagem de milho, os concentrados deverão conter ao redor de 12% de PD ou, aproximadamente, 16% de PB; Com uma dieta com baixo teor proteico, como baseada em silagem de milho e feno de aveia, os concentrados a serem fornecidos deverão conter, aproximadamente, de 13,5 a 16% de PD, ou seja, de 18 a 21% de PB. Os alimentos disponíveis nem sempre se encaixam nessas três regras citadas. Por exemplo, a proporção do feno de alfafa para a silagem de milho poderá variar muito afetando a necessidade de proteína exigida à adequada suplementação, através dos concentrados. Existem outros fatores que podem influenciar na tomada de decisões. A checagem das entradas e saídas ou consumo-produção pode fornecer meios de ajuste a essas variações. O fornecimento de proteínas em excesso não é prejudicial à saúde do animal, mas também não é aconselhável, dado que os suplementos proteicos são mais caros que os mais pobres em proteínas. Sendo assim, evitar o excesso de consumo de nutrientes torna-se um problema fundamentalmente econômico. Se a diferença de preços entre o suplemento proteico e um alimento energético for pequena, a importância do problema desaparece. 5.1 Procedimentos para o balanceamento de rações a) caracterização dos animais Caracterizar bem os animais a serem alimentados, em termos de categoria, idade, peso vivo, produção estimada (ganho de peso, produção de leite, teor de gordura do leite) etc. b) obtenção das exigências nutricionais Verificar os requerimentos nutricionais dos animais no que tange a energia, proteína bruta, cálcio, fósforo, aminoácidos etc., de acordo com a caracterização do animal, mencionado no item a). c) levantamento e quantificação dos alimentos disponíveis Levantar e quantificar os alimentos que estão disponíveis para o programa alimentar. Nesse momento, faz-se necessário mencionar o preço dos alimentos por kg. d) levantamento da composição bromatológica Relacionar a composição química dos alimentos a serem utilizados. Considerar na relação os nutrientes de maior interesse ou aqueles levantados nas exigências nutricionais. e) Balanceamento da ração Balancear os nutrientes levantados nas tabelas usando qualquer dos métodos descritos no item 5.2. f) ajuste final Ajustar a ração e outros nutrientes, se houver interesse, e verificar se todas as exigências foram atendidas e não haja excessos e se a combinação de alimentos é mais econômica, mediante o custo da ração por kg ou custo da ração por animal por dia. g) programa de alimentação Elaborar um programa para uso dos alimentos ou da ração incluindo as recomendações práticas. 5.2 Métodos usados no balanceamento O balanceamento de rações é a preparação equilibrada de uma porção alimentar onde se misturam vários produtos com o objetivo de suprir a necessidade nutricional dos animais. Existem muitos métodos para o balanceamento de rações, no entanto, vamos discorrer sobre os principais. A finalidade deste tópico é a abordagem dos vários métodos, e seus tratamentos matemáticos, usados no preparo de fórmulas de ração. Vamos preconizar apenas a metodologia matemática do cálculo, sem preocupar-se com a viabilidade das rações calculadas, que constituirão apenas sob exemplos hipotéticos. Todavia, outros exemplos já resolvidos serão dados conforme a viabilidade econômica e nutricional da ração para os bovinos. Após a compreensão e entendimento dos métodos aplicados e explicados nesse trabalho, será tratado a formulação de rações específicas e práticas para a alimentação racional dos bovinos. 5.2.1 Método da tentativa Aqui nenhum esquema é utilizado. O cálculo é feito através de tentativa, aumentando ou diminuindo as quantidades dos alimentos, até que as exigências do animal sejam atendidas. Dentro desse método temos a tentativa e erro e tentativa e técnica da substituição. A técnica das tentativas é trabalhosa e exige alguma experiência do formulador. 1. Como exemplo, será balanceada uma ração para uma vaca leiteira com uma exigência de 1,1 kg de PB e 6,41 NDT. Os alimentos disponíveis e sua composição bromatológica são: Alimentos Nutrientes MS (%) PB (%) NDT (%) Capim Napier 25 1,6 12 Fubá de Milho 88 9,3 80 Farelo de Algodão 90 30,0 63 Farelo de Trigo 89 15,0 63 Baseando-se nas exigências da vaca e na composição dos alimentos disponíveis, calculamos a ração por tentativa, ajustando as quantidades de alimentos até que as exigências sejam supridas. Desse modo, obtemos a dieta balanceada: Alimentos Kg MS (kg) PB (kg) NDT (kg) Capim Napier 25 6,25 0,4 3,0 Fubá de Milho 2,7 2,38 0,25 2,16 Farelo de Algodão 1,0 0,9 0,3 0,63 Farelo de Trigo 1,0 0,89 0,15 0,63 TOTAL 29,7 10,42 1,1 6,42 EXIGÊNCIAS 10,0 1,1 6,41 Transformando as quantidades dos alimentos concentrados para uma mistura percentual, obtemos: Alimentos Consumo/vaca/dia (kg) % Fubá de Milho 2,7 57,4 Farelo de Algodão 1,0 21,3 Farelo de Trigo 1,0 21,3 TOTAL 4,7 100 2. Em uma segunda tentativa, vamos determinar uma ração de 100 kg para um lote de vacas com uma exigência de 18% de PB, os alimentos disponíveis são o milho com 9% de PB e Farinha de Peixe com 53% de PB. (9% de PB = 90 g PB/kg). 1ª tentativa: usando 50% de milho + 50% de farinha de peixe, obtemos: PB da mistura: (90 x 0,5) + (530 x 0,5) = 310 g/kg A mistura acima possui muito mais proteína do que o desejado (180 g/kg). Faz-se necessário o aumento da incorporação do milho (matéria-prima menos proteica) e a diminuição da incorporação da farinha de peixe (matéria-prima mais proteica). Em uma segunda tentativa, obtemos: 2ª tentativa: 90% de milho + 10% de farinha de peixe PB da mistura: (90 x 0,9) + (530 x 0,1) = 134 g/kg A mistura possui menos proteína que o desejado, sendo assim, é necessário aumentar a incorporação da farinha de peixe (mais proteica) e diminuir a de milho (menos proteico), logo obtemos: 3ª tentativa: 79,5% de milho + 20,5% de farinha de peixe, teremos: PB da mistura: (90 x 0,795) + (530 x 0,205) = 180,2 g/kg Por fim, em 100 kg de ração com 18% de PB a mistura deverá ser composta por 79,5% de milho e 20,5% de farinha de peixe. 3. Empregando a técnica da tentativa e substituição para o exemplo supra, vamos obter: Deseja-se encontrar as porcentagens em que milho (9% PB) e farinha de peixe (53% PB) devem ser misturados de forma a obter uma mistura de 100 kg com 18% de PB. (Como sabemos 1% de PB equivale a 10 g PB/kg). 1ª tentativa: 50% milho + 50% farinha de peixe PB da mistura: (90 x 0,5) + (530 x 0,5) = 310 g/kg A mistura possui 310 g de PB/kg, sendo o teor desejado de 180 g, ou seja, teremos que diminuir o teor proteico em 130 g (310 – 180). Para diminuir o teor proteico da mistura é necessário diminuir a % de farinha de peixe e aumentar a % de milho. A % que se retira a farinha de peixe é igual a % de aumento do milho. Desse modo, obtemos o cálculo do fator de substituição: A farinha de peixe possui 530 g PB/kg O milho possui 90 g PB/kg A diferença do teor proteico entre a farinha de peixe e o milho (fator de substituição) = 440 g PB. Dessa forma, partiremos para o cálculo da quantidade a ser substituída, dada por: A substituição de 100% (FP → M) ---------- 440 g PB X ---------- 130 g PB Pelo princípio da regra de três, obtemos: 100 x 130 = 1300/440, então X = 29,5%. Temos que diminuir 29,5% da farinha de peixe e aumentar 29,5% o milho. Cálculo da nova fórmula: Milho = 50 + 29,5 = 79,5% Farinha de peixe = 50 – 29,5 = 20,5% Por fim, a mistura deverá ser composta por 79,5% de milho e 20,5% de farinha de peixe. 4. Deseja-se calcular 100 kg de ração utilizando o farelo de trigo, farinha de carne, fubá de milho e farelo de soja, observando as seguintes condições: PB deve ser igual a 17,89% e EM igual a 2.900 Kcal/kg. A recomendação é usar o farelo de trigo até 20% da ração total; farinha de carne até 10% da ração total; farelo de soja até 40% da ração total; sal 0,8% e pré-mistura de vitaminas e minerais 0,2%. A composição bromatológica dos alimentos mencionados é disposta na tabela: Alimentos PB (%) EM (Kcal/kg) Farelo de trigo 16 1.526 Farinha de carne 50 1.835 Fubá de milho 9 3.416 Farelo de soja 45 2.283 A fórmula para a energia metabolizável é: "EM" ("kcal/kg" )"=" "Quantidade do ingrediente x EM kcal/kg" /"100" " " 1ª tentativa: observando as recomendações citadas, fixa-se as quantidades de farelo de trigo, farinha de carne, fubá de milho e farelo de soja de modo a equilibrar a PB e EM da ração. Assim, tomamos 63 kg de fubá de milho, logo a quantidade do farelo de soja será: Fubá de milho + farelo de soja = 84 kg Farelo de soja = 84 – 63 = 21 kg Composição da ração em 1ª tentativa Alimentos Quantidade (kg) PB (kg) EM (kcal/kg) Farelo de trigo 10 1,6 152,6 Farinha de carne 5 2,5 91,75 Fubá de milho 63 5,67 2152,08 Farelo de soja 21 9,45 479,43 Sal 0,8 Vitaminas e minerais 0,2 TOTAL 100 19,22 2875,86 EXIGÊNCIAS 100 17,89 2900 DÉFICE 24,14 Como houve um défice de 24,14 kcal/kg de energia metabolizável, aumentamos a quantidade de fubá de milho para 66 kg e diminuímos a quantidade de farelo de soja para 18 kg. Sendo assim, faz-se uma nova tentativa com a finalidade do equilíbrio da PB e EM da ração. Composição final da ração Alimentos Quantidade (kg) PB (kg) EM (kcal/kg) Farelo de trigo 10 1,6 152,6 Farinha de carne 5 2,5 91,75 Fubá de milho 66 5,94 2254,56 Farelo de soja 18 8,1 410,94 Sal 0,8 Vitaminas e minerais 0,2 TOTAL 100 18,14 2909,85 EXIGÊNCIAS 100 17,89 2900 Por fim, a ração calculada apresenta 18,14% de PB e 2909,85 kcal/kg de EM o que satisfaz plenamente as exigências nutricionais de proteína e energia metabolizável desejadas. Formulação na prática I: Pelo método da tentativa, descrito supra, formular uma mistura para uma vaca de 450 kg de PV, com uma produção de 15 kg de leite/dia com 4,0% de gordura. 1º passo: Estabelecer as exigências: Para um animal com essas características as exigências estabelecidas são: Exigências de uma vaca de 450 kg de PV em energia, PB, Ca e P Discriminação NDT (kg) PB (g) Ca (g) P (g) Mantença 3,44 403 17 14 Lactação 4,89 1305 40 27 TOTAL 8,33 1708 57 41 2º passo: Alimentos disponíveis e sua composição Os alimentos disponíveis são silagem de milho, capim elefante napier, milho triturado, farelo de soja, farelo de trigo e pedra calcária em pó. É necessário estabelecer a composição bromatológica dos alimentos disponíveis, colocando as porcentagens de NDT, PB, Ca e P. Composição bromatológica dos alimentos disponíveis Alimentos NDT (%) PB (%) Ca (%) P (%) Silagem de milho 18,1 2,2 0,1 0,06 Capim elefante N. 13,4 1,2 0,12 0,07 Milho triturado 80 9,3 0,02 0,33 Farelo de soja 73 45 0,32 0,67 Farelo de trigo 63 16 0,14 1,24 Pedra calcária em pó - - 38 - 3º passo: Ração de volumosos diários A proporção entre volumosos e concentrados depende de alguns fatores entre os quais está a qualidade e a disponibilidade das forragens, o custo dos concentrados, o preço do leite etc. Na prática, recomenda-se as seguintes normas de fornecimento: Limites de alimentos volumosos diários sobre o PV do animal Alimentos Limite aconselhável sobre PV (%) Feno de boa qualidade 2 a 3 Silagem 4 a 6 Raízes e tubérculos 2 a 3 Capim tenro 6 a 8 A associação entre dois ou mais destes volumosos seria feito pelo critério da proporcionalidade. Quando as vacas dispõem de bom pasto, admite-se que os requerimentos de mantença e produção de até 5 kg de leite/dia, sejam supridos por meio do pastoreio. Todavia, faz-se necessário enfatizar que a qualidade das pastagens é variável conforme diversos fatores, sendo os principais a adubação, clima e idade da planta. Para esse cálculo, suponhamos a seguinte ração de volumosos: Silagem de milho ---------- 18 kg Capim elefante ------------- 9 kg 4º passo: Dedução da composição bromatológica dos alimentos volumosos Nutrientes contidos em 18 kg de silagem de milho e 9 kg de capim elefante, exigências totais e défice ou excesso Discriminação NDT (kg) PB (kg) Ca (g) P (g) 18 kg de silagem 3,26 0,396 18 10 9 kg de capim elefante 1,206 0,108 10 6 Total (1) 4,466 0,504 28 16 Exigências totais (2) 8,33 1,708 57 41 Défice (1-2) - 3,864 - 1,204 - 29 - 25 5º passo: Formular a ração dos alimentos concentrados corretivos do défice Como ocorre défice de proteína, torna-se necessária uma dosagem bastante alta de farelo de soja (matéria-prima com maior teor proteico). Quantidade de nutrientes fornecidos por 39 kg de milho triturado, 35 kg de farelo de soja, 25 kg de farelo de trigo e 1 kg de pedra calcária Discriminação NDT (kg) PB (kg) Ca (g) P (g) 39 kg de milho triturado 31,2 3,63 7,8 128,7 35 kg de farelo de soja 25,55 15,75 112 234,5 25 kg de farelo de trigo 15,75 4,0 35 310 1 kg de pedra calcária - - 380 - TOTAL 72,5 23,38 534,8 679,2 Agora, é necessário verificar a quantidade diária que deve ser fornecida. Para tal, é verificado primeiro a quantidade necessária para completar as exigências em energia (NDT). Na fórmula obtém-se através de uma regra de três, a quantidade de mistura que fornece 3,864 kg de NDT: 100 kg de mistura fornece 72,5 kg de NDT X kg fornecerão 3,864 kg que é o défice da ração volumosa, então: 100 ---------- 72,5 X ---------- 3,864 X = 100 x 3,864/72,5 X = 5,33 kg Resta verificar se os 5,33 kg de mistura cobrem o défice de proteína que é de -1,204. Novamente, aplicamos a regra: 100 ---------- 23,38 5,33 --------- X X = 5,33 x 23,38/100 X = 1,246, portanto, satisfaz plenamente o défice da dieta de volumosos fornecida. Deficiência em NDT, PB, Ca e P que são atendidas com 5,3 kg da mistura Discriminação NDT (kg) PB (kg) Ca (g) P (g) Deficiências 3,864 1,204 29 25 5,3 kg de mistura 3,864 1,246 29 36 Diferença 0 0,042 0 +11 Ração completa para a produção de 15 litros de leite/dia/vaca Dieta Ração (kg) Silagem de milho 18 Capim elefante 9 Mistura de concentrados 5,3 Essa mistura satisfaz plenamente os requisitos. O pequeno excesso de proteína seria usado pelo organismo como fonte energética, caso houvesse uma mistura de concentrados. Os níveis de Ca e P mostram-se dentro dos limites aceitáveis. O sal iodado poderá ser fornecido separado e à vontade, ou ser incorporado à ração dos concentrados na base de 0,5%. Formulação na prática II: Deseja-se formular 100 kg de ração balanceada com 14% de PB para novilhos em etapa final de engorda. Depois de formulada e equilibrada faz-se necessário calcular a quantidade necessária para cada animal segundo o PV. Planejamento inicial Alimentos PB (%) % disponível na fazenda Pasto 10 50 Cevada 10 45 Farinha semente de algodão 41 5 1º passo: Calcular a proteína total dos alimentos disponíveis. A – Pasto: 50 kg ---------- 100% do produto disponível X ----------- 10% de proteína X = 50 x 10/100 X = 5 kg de proteína no pasto B – Cevada: 45 ---------- 100% X ---------- 10% X = 45 x 10/100 X = 4,5 kg de proteína C – Farinha de semente de algodão: 5 ---------- 100% X ---------- 41% X = 5 x 41/100 X = 2,05 kg de proteína Somando-se a quantidade total de proteína disponível nos alimentos obtemos: 5 + 4,5 + 2,05 = 11,55 kg de proteína em 100 kg de mistura Isso significa que a mistura possui 11,55% de PB em sua composição. A % desejada é de 14% e a mistura possui 11,55%, ou seja, há um défice de 2,45%. Logo, faz-se necessário a incorporação de um alimento rico em PB, nesse caso, aumentar a quantidade de FSA e diminuir a de cevada. A % de PB da FSA é de 41% e a de cevada é de 10%, logo há uma diferença de 31%, que denominamos de fator de substituição e o transformamos em 0,31. Logo, temos o valor de substituição (0,31) e a quantidade de proteína a ser adicionada, então faz-se necessário a divisão da proteína faltante pelo valor de substituição: 2,45/0,31 = 7,9 A porcentagem a ser substituída é de 7,9%, aproximando para 8%. Logo, devemos diminuir 8% a incorporação da cevada e aumentar 8% a quantidade de FSA. Vejamos o planejamento: Revisando a fórmula inicial e incluindo os novos valores, obtemos: Alimentos Quantidade (kg) Nova quantidade (kg) Proteínas (%) Proteínas aportadas (%) Pasto 50 50 10 5,0 Cevada 45 – 8 = 37 10 3,7 FSA 5 + 8 = 13 41 5,33 TOTAL 100 100 - 14,03 Logo, achamos a porcentagem de proteína desejada na mistura que é de 14%, o que satisfaz plenamente as exigências dos novilhos em engorda a pasto com a suplementação concentrada de cevada e FSA no cocho. Conclui-se, então, que para balancear uma ração de 100 kg com 14% de PB para novilhos em engorda é necessário 50 kg de forragem com 10% de PB, 37 kg de cevada com 10% de PB e 13 kg de farinha de semente de algodão com 41% de PB. 5.2.2 Método do quadrado de Pearson É a técnica mais utilizada para cálculo de rações em função de sua simplicidade. A ração é calculada levando-se em consideração o valor relativo ou percentual de um dado nutriente, que é a proteína. Esse método estabelece as proporções entre dois alimentos, ou entre duas misturas de alimentos, de forma a obter um valor real para a proteína em relação ao teor proteico dos dois alimentos misturados. Para esse método é necessário o conhecimento prévio de alguns conceitos, tais como: Usar de preferência um alimento proteico e outro energético; O teor de proteína escolhido para a mistura deve estar compreendido entre o teor proteico dos alimentos escolhidos; Os dados à esquerda e no centro do quadrado devem estar expressos em porcentagem ou na mesma unidade para a facilitação do cálculo. Se desejarmos, por exemplo, fazer 78 kg de mistura com 14% de PB, para usarmos esse método temos que transformar os 14 kg de PB para % e o resultado será 18% (14 x 100/78); Os dados à esquerda referem-se aos alimentos e ao teor proteico dos mesmos, o dado no centro refere-se ao teor de proteína final da ração, ou seja, ao objetivo do cálculo, os dados à direita se referem as partes em que cada alimento irá compor a ração; A diferença efetuada diagonalmente deverá ser expressa em valor absoluto, isto é, subtraindo o menor valor do maior. Para elucidar melhor esse método vamos calcular exemplos. Cálculo de ração com dois alimentos 1. Deseja-se uma mistura com 18% de PB utilizando-se o fubá de milho 9% de PB e farelo de soja 45% de PB. Para solucionarmos o problema devemos realizar o seguinte: 1º desenhar um quadrado e colocar no seu centro a % de proteína desejada na mistura que é -/- 18%. 2º colocar em cada ângulo do lado esquerdo do quadrado, a % de proteína de cada alimento que irá compor a mistura. Nesse caso, será 9% de PB para o fubá de milho (FM) e 45% de PB para o farelo de soja (FS). FM 9% FS 45% 3º fazer a diferença entre os números, diagonalmente, colocando os resultados nos ângulos do lado direito, em valor real e absoluto, isto é, subtrair os maiores valores dos menores. Assim obtemos a subtração entre 45 – 18 = 27 e 18 – 9 = 9. Dessa forma: FM 9% 27 partes de FM FS 45% 9 partes de FS 4º os resultados são expressos em partes de cada alimento que temos que incluir para compor uma mistura com 18% de PB. Logo, temos que juntar as partes, ou seja, 27 partes do FS e 9 partes do FM, totalizando 36 partes totais. 5º as quantidades de cada alimento devem ser expressas em % do total. Sendo assim, se para 36 partes de mistura tem-se que incluir 27 partes de FM, então, para 100 partes teremos 75 de FM (27 x 100/36). O restante será de FS, ou seja, 25 partes (100 – 75). Pelo princípio da regra de três obtemos esses resultados. Para 100 partes ou 100 kg de mistura, teremos: 36 partes de mistura ---------- 27 partes de FM 100 partes de mistura ---------- X partes X = 100 x 27/36 X = 75 partes ou 75% de FM que, para 100 kg de mistura, corresponde a 75 kg. O restante corresponde ao FS, onde temos: 100 partes de mistura – 75 partes de FM = 25 partes ou 25% de FS que, para 100 kg de mistura, -/- corresponde a 25 kg. -/- Resumindo os resultados em um quadro, teremos: Alimento Kg PB (kg) Cálculo para achar a PB (kg) Fubá de Milho 75 6,75 Se 9% é 100 em x é 75, logo 9 x 75/100 = 6,75 Farelo de soja 25 11,25 Se 45% é 100 em x é 25, logo 45 x 25/100 = 11,25 TOTAL 100 18,0 A quantidade de FM e FS na mistura satisfaz plenamente os requisitos de 18% de PB na mistura. 2. Usando o exercício 2 do item 5.2.1 – Determinar a % em que o milho 9% PB e farinha de peixe 53% PB devem ser misturados de forma a obter uma ração de 100 kg com 18% de PB. M 9% 35 partes de M FP 53% 9 partes de FP Somando as partes de milho e farinha de peixe, obtemos: 35 + 9 = 44 partes totais. Agora calculamos a incorporação dos alimentos, mediante uma regra de três simples: A - Farinha de peixe: 100% da mistura ---------- 44 partes X -------------------- 9 partes X = 100 x 9/44 X = 20,5% de FP ou 20,5 kg. B - Milho: 100% da mistura ---------- 44 partes X -------------------- 35 partes X = 100 x 35/44 X = 79,5% ou kg de milho Ou, de outra forma: 100% – 20,5% da FP = 79,5% ou kg de milho. Verificando os resultados, vamos transformar as % PB de milho e farinha de peixe em g/kg, dessa forma vamos obter 9% PB milho é igual a 90 g PB/kg e 53% PB da farinha de peixe é igual a 530 g PB/kg, obtemos: REFERÊNCIAS BIBLIOGRÁFICAS ANDRIGUETTO, J. M. et al. Nutrição Animal–Alimentação Animal Aplicada. São Paulo: Nobel, 3ª edição, v. 2, 1988. ARAÚJO, L. F.; ZANETTI, M. A. (Eds.). Nutrição Animal. 1ª ed. Barueri: Manole, 2019. BERCHIELLI, Telma Teresinha; PIREZ, Alexandre Vaz; OLIVEIRA, Simone Gisele de. Nutrição de ruminantes. FUNEP,, 2006. CAMPOS, J. Tabelas para o cálculo de rações. Universidade Federal de Viçosa, 1972. CHEEKE, Peter R. Applied animal nutrition: feeds and feeding. Pearson Prentice Hall;, 2005. GOES, Rafael Henrique de Tonissi et al. Alimentos e alimentação animal. UFGD: Coleção Cadernos Acadêmicos, 2013. GONÇALVES, J. N. Manual do produtor de leite. Viçosa, MG: Aprenda Fácil, 2012. GONÇALVES, L. C.; BORGES, Iran; FERREIRA, Pedro Dias Sales. Alimentação de gado de leite. Belo Horizonte: FEPMVZ, 2009. GONÇALVES, Lúcio Carlos et al. Alimentos para gado de leite. Belo Horizonte: FEPMVZ, 2009. HYND, Philip. Animal Nutrition: From Theory to Practice. CSIRO PUBLISHING, 2019. ISLABAO, Narciso; RUTZ, F. Manual de cálculo de rações. Pelotense, sd, 1978. KRUG, E. E.; FAVRETTO, D.; CAMARGO, S. R. Alimentação do gado leiteiro. Porto Alegre: Cooperativa Central Gaúcha de Leite Ltda, 1985. LANA, R. de P. Sistema Viçosa de formulação de rações. Viçosa: Universidade Federal de Viçosa, 2007. NATIONAL RESEARCH COUNCIL et al. Nutrient requirements of dairy cattle: 2001. National Academies Press, 2001. NATIONAL ACADEMIES OF SCIENCES, ENGINEERING, AND MEDICINE et al. Nutrient requirements of beef cattle. 2016. NEIVA, Rogério Santoro. Produção de bovinos leiteiros. Lavras: UFLA, 1998. NEVES, André Luis Alves et al. Tabelas nordestinas de composição de alimentos para bovinos leiteiros. Brasília, DF: Embrapa, 2014., 2014. PEIXOTO, A. M.; MOURA, J. C.; FARIA V. P. Curso de alimentação de bovinos. Piracicaba, SP. FEALQ, 1992. POND, Wilson G. et al. Basic animal nutrition and feeding. John Wiley & Sons, 2004. SALMAN, A. K.; OSMARI, E. K.; DOS SANTOS, M. G. R. Manual prático para formulação de ração para vacas leiteiras. Embrapa Rondônia-Documentos (INFOTECA-E), 2011. SILVESTRE, J. R. A.; VILELA, H. Métodos de balanceamento de rações. EMATER-MG, 1984. TEIXEIRA, A. S. Alimentos e alimentação dos animais. Vol. I, v. 5, 1997. TEIXEIRA, J. C.; TEIXEIRA, LFAC. Alimentação de bovinos leiteiros. FAEPE, Lavras, 1997. VALADARES FILHO, S. de C. et al. Tabelas brasileiras de composição de alimentos para bovinos. UFV, 2006. VALADARES FILHO, S. de C. et al. Tabelas de composição de alimentos e exigências nutricionais para bovinos no Brasil. SIMPÓSIO DE PRODUÇÃO DE GADO DE CORTE, v. 2, p. 291-358, 2001. (shrink)
J. L. Schellenberg claims that the weakness of evidence for God’s existence is not merely a sign that God is hidden, “it is a revelation that God does not exist.” In Divine Hiddenness : New Essays, Michael J. Murray provides a “soul-making” defense of God’s hiddenness, arguing that if God were not hidden, then some of us would lose what many theists deem a good thing: the ability to develop morally significant characters. In this paper, I argue that Murray’s soul-making (...) defense not only fails to defend God’s hiddenness, it produces an argument for the nonexistence of God. (shrink)
The proper sensible criterion of sensory individuation holds that senses are individuated by the special kind of sensibles on which they exclusively bear about (colors for sight, sounds for hearing, etc.). H. P. Grice objected to the proper sensibles criterion that it cannot account for the phenomenal difference between feeling and seeing shapes or other common sensibles. That paper advances a novel answer to Grice's objection. Admittedly, the upholder of the proper sensible criterion must bind the proper sensibles –i.e. colors– (...) to the common sensibles –i.e. shapes– so as to account for the visual phenomenal character of shapes. But, as Grice rightly objected, neither association, nor ontological dependence will do –I spend some time isolating why dependence is a bad answer here, basically because the dependence of shape on colors is generic, and that genericity is arguably not part of the phenomenal content of perception. -/- Grice is wrong, however, to think that once association and dependence have been rebutted, there is no other way to attach color to extension. The right way to connect proper and common sensibles is rather trivial, although it seems to have been widely neglected: proper sensibles FILL common ones. To see a shape, by contrast to feeling it, is to perceived as filled by some color. To feel a shape, is to perceive it as, say, filled by pressure. Filling in is the phenomenal connection between proper and common sensibles. -/- One important corollary of that proposal is that proper sensibles –color, pressure, noise, taste...– have to belong to the category of stuffs, in the sense of uncountable entities. Against the widespread view that colors are properties, which have countable instances, the last part of the paper argues that colors are phenomenal stuffs, which fill some visual area. One commits a category mistake in asking: "How many tropes/instances of this determinate redness is there on that ladybird". One should rather ask "How much of this determinate redness is there on that ladybird". (shrink)
INTRODUÇÃO -/- A produção bovina no Brasil é fundamentalmente em condições de pastoreio, isto é, à pasto. Dado que as pastagens e as forragens não suprem as exigências minerais dos bovinos, principalmente na seca, a suplementação mineral desses animais torna-se uma prática essencial e obrigatória para obtenção de êxito na produção de carne e leite. Negligenciar os requerimentos minerais dos bovinos pode levar ao aparecimento de alterações metabólicas diretamente relacionadas com o desempenho produtivo do rebanho, além de complicações mínimas ou (...) expressivas sobre o sistema reprodutivo e a fertilidade dos animais. Os requisitos minerais dependem do nível de produção e de cada categoria animal, logo, as práticas e atividades destinadas ao aumento na produção de carne e a taxa de crescimento dos animais exigem maior atenção à suplementação mineral. A formulação de suplementos minerais permite corrigir os desequilíbrios e deficiências desses elementos nas dietas dos animais criados para engorda à pasto. Sendo assim, para formular um suplemento mineral adequado é necessário, acima de tudo, conhecer as deficiências e os desequilíbrios minerais na região, as exigências nutricionais dos animais em função do seu estado produtivo e sua condição metabólica, além da condição mineral do alimento base (gramíneas, forragens, leguminosas etc.) e a composição das fontes minerais e sua biodisponibilidade. A finalidade deste trabalho é fornecer ao leitor a informação necessária para formular um suplemento mineral, considerando o aporte da dieta base, os requerimentos minerais dos animais e as fontes de minerais disponíveis no mercado. -/- 1. OS MINERAIS E SUAS FUNÇÕES -/- Dentro da nutrição animal, os minerais cumprem diferentes e essenciais funções dentro do organismo, logo desempenham um papel de destaque entre os nutrientes. As quantidades exigidas de cada mineral variam em função da espécie, idade e estado fisiológico, isto é, estado produtivo. Na produção animal, é dada ênfase a energia e a proteína como sendo nutrientes imprescindíveis para o bom desempenho e crescimento do animal, no entanto, há os defensores de que os minerais são mais importantes quando consideram o fósforo como elemento constituinte das proteínas, da ATP e de diversas enzimas. Dado que os alimentos não possuem o aporte de minerais requeridos pelos animais, a suplementação é uma prática de manejo indispensável. Em sistema de criação intensiva, esse manejo é fácil uma vez que se conhece a dieta e a quantidade de alimentos que o animal ingere, logo se conhece a composição mineral do alimento e o cálculo é feito para fornecer o défice de mineral do alimento, por exemplo, o grão de milho seco moído na dieta fornece 0,05% de cálcio, dada que a exigência de Ca para bovinos de corte é de 0,25%, é necessário suplementar um composto que forneça os 0,2% de défice da dieta. Por sua vez, em sistema de criação extensiva, a suplementação mineral não é uma tarefa fácil, uma vez que não se conhece a composição nem a quantidade dos alimentos que os animais comem no período de um dia, no entanto é feita uma estimativa da ingestão dos alimentos disponíveis à pasto para se calcular a quantidade a ser suplementada. Dentro da nutrição animal, é comum dividir-se os minerais em macro e micro, de acordo com a exigência do animal. Os macrominerais ocorrem em concentração superior a 100 mg/kg e costumam ser expressos em porcentagem. Já os microminerais são os elementos que o animal exige em menor quantidade, sendo inferior a 80 mg/kg. O fato de um mineral ocorrer em maior quantidade no corpo do animal não significa menor grau de importância. Para que um mineral seja considerado essencial foi estabelecida quatro condições primordiais de funções no organismo, logo esses minerai precisam: -/- Estar presente nos tecidos dos animais em concentrações constantes; A deficiência deve causar a presença de anormalidades fisiológicas e/ou estruturais, desde que a dieta possua todos os outros elementos em concentrações ideais e não tóxicas. Um exemplo seria o raquitismo com a falta demasiada de Ca; A adição desse mineral essencial deve reverter o quadro da anormalidade; As anormalidades que foram induzidas pela deficiência de um dado elemento deverá ser acompanhada de alterações bioquímicas que são revertidas ou prevenidas quando a deficiência cessa. • MACROMINERAIS -/- Os macrominerais que os bovinos de corte requerem incluem o cálcio, magnésio, fósforo, potássio, sódio, cloro e enxofre. Geralmente esses minerais acumulam-se mais nos ossos do que outra parte do corpo. a) Cálcio e fósforo (Ca e P) O cálcio e o fósforo são os principais componentes minerais do esqueleto. Cerca de 99% do Ca total do corpo e 80% do P total do corpo são armazenados nos ossos. Os estoques esqueléticos de Ca e P são usados para atender a inadequações dietéticas de curto prazo. Deficiências de longo prazo de qualquer um pode causar ossos enfraquecidos e, com isso, os ossos podem até quebrar. -/- Segundo a literatura, a presença Ca é de extrema importância para as funções: Formação dos ossos e dentes; Regulação dos batimentos cardíacos e irritabilidade dos nervos; Coagulação do sangue e do leite; Produção de leite (lactação); Ativação de enzimas como a lípase pancreática e fosfatase ácida; -/- O P, por sua vez é imprescindível para as funções: Formação dos ossos e dentes; Produção de leite (lactação); Regulação do mecanismo ácido-base; Metabolismo dos nutrientes (carboidratos, proteínas, lipídeos, vitaminas) Constituição de enzimas como a pepsina e xantina oxidase; Constituição das proteínas. -/- O Ca e o P também desempenham papéis importantes em outras funções corporais. Uma diminuição em um ou ambos pode causar uma diminuição no ganho de peso e/ou uma diminuição na eficiência do ganho. Durante a lactação, quantidades baixas de ambos reduzirão a produção de leite. Uma vaca leiteira de alta produtividade requer três vezes mais Ca do que uma vaca não-lactante. Uma deficiência de P pode atrasar a puberdade nas novilhas e pode atrasar o regresso do cio das vacas adultas no pós-parto. Os bovinos também precisam de quantidades corretas de Ca para que os sistemas nervoso e muscular funcionem corretamente. O uso adequado de Ca e P é afetado não só pela quantidade de cada mineral ingerido, mas também pela sua proporção. A relação Ca:P ideal é de cerca de 1,5:1, com uma faixa de 1:1 a 4:1 sendo satisfatória. Em algumas rações de alta concentração, razões superiores a 2:1 têm sido bem sucedidas; essa é uma característica da relação sinérgica entre o Ca e o P, em que um auxilia na absorção do outro. Deve-se estar atento a relação citada, uma vez que uma relação para bovinos superior a 4:1 pode causar a presença de cálculos renais. A maioria das gramíneas possuem uma quantidade satisfatória de Ca. Leguminosas como alfafa, amendoim, e feno de soja são boas fontes de Ca, mas a silagem de milho e sorgo são más fontes de Ca. Em geral, a maioria dos concentrados são fontes relativamente pobres em Ca. Uma exceção é a polpa cítrica, que é relativamente alta em concentração de cálcio (1,9%). O milho, os subprodutos do milho e os grãos de sorgo têm um teor de cálcio particularmente baixo, e os bovinos alimentados com cereais ou dietas à base de silagem de milho necessitam de suplementação desse mineral. A maioria das forragens é pobre em P, particularmente no final da estação de crescimento. O gado é mais propenso a possuir deficiência em P durante o inverno, quando, muitas vezes, sobrevivem alimentados com forragens secas. Os concentrados contêm concentrações moderadas a elevadas de P. Os suplementos proteicos, como a farinha de sementes de algodão e a farinha de soja, contêm concentrações moderadas, ao passo que muitos dos alimentos derivados, como os grãos de destiladores, de glúten de milho e a farinha de trigo, apresentam concentrações elevadas de P. A deficiência tanto de Ca quanto de P pode causar raquitismo em animais jovens e osteomalácia, isto é, perda da massa óssea em animais adultos. A deficiência em conjunto de ambos causa retardo no crescimento e piora na conversão ou eficiência alimentar, todavia a deficiência do P é mais severa já que o mesmo é constituinte das proteínas. Como os solos do Brasil são deficientes em P, as pastagens são pobres em fornecer o elemento, sendo a suplementação o melhor método de prevenção da deficiência e até do botulismo quando os animais ingerem ossos na busca pelo mineral. Apesar desses minerais não serem considerados tóxicos, a presença de excesso de um pode prejudicar a utilização do outro. O excesso de Ca é mais comum que o de P, de acordo com a ocorrência do Ca e o alto custo do P. Segundo o NRC, 2005 os níveis máximos para bovinos são de 1,5% para o Ca e de 0,7% para o P. Já na dieta as exigências requeridas para bovinos de corte é de 0,2 a 0,3% de Ca e de 0,19 a 0,25% de P (NRC, 2016). Já para bovinos leiteiros na dieta o Ca deve estar presente entre 0,4 e 0,6% e o P entre 0,2 a 0,4% (NRC, 2004) dependendo do nível de produção leiteira da vaca. As melhores fontes de Ca e P são o milho, farelo de soja, farelo de trigo e o farelo de algodão. b) Sódio e cloro (Na e Cl) O Na está presente na ordem de 0,15% do corpo animal. Já que sua função é mais fisiológica que nutricional sua deficiência é comum. Uma das principais funções deste elemento está associada a manutenção da pressão osmótica e sobre o equilíbrio ácido-base além de participar da absorção de carboidratos. Ainda assim, aumenta a retenção de líquidos e, em fêmeas primíparas, um problema comum é o edema de úbere em função do baixo desenvolvimento circulatório, tendo como principal meio de prevenção e/ou tratamento a diminuição do mineral na dieta. O Na também é um componente da saliva dos ruminantes que auxilia na manutenção do pH ruminal para uma boa digestão. O Cl é fundamental na regulação da pressão osmótica, do transporte de CO2 e O2 pelo sangue, e no equilíbrio ácido-base. Além disso, é constituinte do ácido clorídrico que é secretado pelo abomaso e cumpre um papel determinante na digestão das proteínas. O sódio e o cloro (sal) proporcionam a função adequada dos sistemas nervoso e muscular. Ajudam a regular o pH do corpo e a quantidade de água retida no mesmo. Uma deficiência destes elementos provoca perda de apetite e ganhos de peso ineficientes ou perda de peso corporal. O Na é geralmente deficiente em dietas, mas os níveis de Cl são geralmente adequados. Ambos os minerais estão presentes em tecidos moles e fluidos e há muito pouco armazenamento desses elementos, de modo que uma fonte diária e constante deve ser fornecida. Geralmente, os ruminantes necessitam de 0,1% de Na presente na ração. As necessidades diárias de Na para animais em crescimento e fêmeas gestantes não lactantes é de 1,5 g/100 kg de PV. A temperatura ambiente também influencia sobre a exigência do animal, de modo que quando a temperatura está entre 25 e 30 ºC é adicionado 0,1 g/100 kg de PV para mantença, já em temperaturas superiores a 30 ºC é requerido um adicional de 0,5 g/100 kg de PV também para mantença. Para crescimento o animal entre 150 e 600 kg de PV exige cerca de 1,4 g/kg de ganho de peso. Os bovinos exigem cerca de 0,1% de sódio em sua dieta diária. A deficiência de Na afeta o apetite, ganho de peso, armazenamento de energia e a síntese de proteína e gordura. Logo, os principais sintomas se manifestam no consumo de terra, urina, diminuição do apetite, perda de peso e pelagem opaca. Os ruminantes são os mais afetados, uma vez que o capim apresenta uma concentração baixa e deficiente de Na em sua composição. A intoxicação por Na pode ser agravada pela deficiência de K. No entanto, a intoxicação pode ser evitada desde que haja água em abundância e disponível aos animais à vontade. O nível máximo tolerável de sal na dieta do bovino deve ser de 4,5%. Para os bovinos a ingestão de 0,40 g/100 kg de PV já diminui a ingestão de alimentos. Para o Cl os requerimentos se resumem basicamente através do Na, uma vez que o animal é suplementado através do NaCl. Uma maneira prática de atender às exigências de Cl é o fornecimento da mesma quantidade de Na, ou seja, uma relação 1:1. Logo, como os bovinos requerem 0,1% de Na para o Cl seriam as mesmas. Detalhadamente, para a mantença o bovino exige 2,25 g/100 kg de PV e de 1 g/100 kg de PV para crescimento em animais entre 150 e 600 kg, já para o último terço da gestação o ideal é o animal ingerir 1 g/dia de Cl. A deficiência de Cl dá-se pela carência de Na, uma vez que a suplementação é conjunta. No entanto, os principais sintomas da deficiência é a perda de peso, anorexia, letargia, polidipsia e poliúria. Em temperaturas maiores, as perdas de Cl pela sudorese são maiores que as perdas de Na. O excesso de Cl na dieta causa alterações no equilíbrio ácido-base. A intoxicação ocorre pelo consumo elevado de NaCl possuindo, com isso, os mesmos sintomas do Na. O animal consumirá voluntariamente mais sal quando a forragem é jovem e suculenta (com 88% de absorção) do que quando amadurecida. O gado alimentado com silagem consumirá mais sal do que os alimentados com feno, e o consumo é maior em bovinos alimentados com dietas de altas fibras (volumosos) do que naqueles com dietas de alta concentração (rações). A principal fonte de Na e Cl é o cloreto de sódio (NaCl) com 39% de Na e 60% de Cl possuindo uma absorção aparente de 100%. Como regra geral, o gado consome 0,005 a 0,010% do seu peso corporal de sal diariamente. Por exemplo, uma vaca adulta pesando 550 kg deve consumir cerca de 27,5 gramas de sal/dia (550 kg x 0,00005 = 27,5 gramas). c) Magnésio (Mg) O magnésio é essencial para o funcionamento adequado de enzimas e do sistema nervoso e para o metabolismo eficiente dos carboidratos. Está presente na proporção de 0,05% do corpo do animal, sendo que 80% destes estão presentes nos ossos e o restante nos tecidos moles (o tecido muscular possui mais Mg do que Ca). O Mg é utilizado como solução tamponante do rúmen se utilizado na ordem de 6 a 10 kg por tonelada de ração. As principais funções do Mg no organismo são a formação do esqueleto (ossos e dentes); transferência dos impulsos nervosos; como ativador de enzimas como as hexoquinases e atpases e participa da digestão da celulose no rúmen. Os principais sintomas da deficiência de Mg são a queda da pressão sanguínea, hiperirritabilidade, incoordenação motora, convulsão e, em casos mais graves, a morte. Uma deficiência de Mg é incomum, exceto para vacas pastando gramíneas em crescimento ou pequenas pastagens de grãos durante o final do inverno e início da primavera, o que pode causar tetania dos pastos (doença rara no Brasil), uma desordem metabólica grave e às vezes fatal. Uma alta taxa de nitrogênio e fertilização de potássio no solo contribui para a manifestação e/ou agravação do quadro de tetania das pastagens (TP). O excesso de K inibe a absorção de Mg tanto na forragem como nos animais (relação de antagonismo). A TP geralmente ocorre após um longo período frio combinado com altos níveis de nitrogênio e fertilização do pasto com K. As vacas em lactação são particularmente suscetíveis a TP. A TP geralmente pode ser evitada alimentando os bovinos com uma mistura mineral contendo óxido de magnésio. Uma mistura mineral contendo 10 a 14% de Mg consumido a 110 gramas por dia deve fornecer Mg adequado. A ingestão adequada de sal também é importante para a prevenção da TP. Deve-se evitar usar blocos duros para complementar o sal quando o gado está em risco de TP; logo, o mais indicado é o fornecimento de sal em uma forma solta para permitir o consumo adequado de sal e de forma à vontade. Quando a TP não é um risco, os blocos podem ser usados para complementar os minerais. Os animais com tetania respondem quase imediatamente a uma infusão intravenosa de gluconato de cálcio e magnésio. Os bovinos de corte requerem cerca de 1 a 2 g de Mg/kg de alimento. Na formulação de 1 tonelada de ração o elemento deverá compor entre 6 a 10 kg do total. Caso haja deficiência, é mais fácil fornecer o Mg como suplemento mineral na ordem de 15 g/vaca/dia e para o tratamento da deficiência é necessária a injeção subcutânea de 200 a 300 ml de sulfato ou lactato de Mg a 20%. O nível máximo de inclusão do Mg na dieta é de 0,6% (NRC, 2005). O criador pode suplementar o animal junto com o bicarbonato de sódio na ordem de 270 g de bicarbonato e 180 g de óxido de Mg/vaca/dia. No organismo animal, apenas 16% do elemento é absorvido. Mesmo o milho, pobre em minerais, fornece 1,2 g/kg do mineral, quantidade suficiente para os bovinos de corte. As principais fontes de Mg são os farelos de trigo, algodão e de soja, o milho, a farinha de carne e ossos, o sulfato e o carbonato de Mg (com 44% de coeficiente de absorção) e o óxido de Mg (entre 28 e 49% de coeficiente de absorção). Figura 1: bloco de sal rosa do Himalaia para bovinos e equinos. d) Potássio (K) O K é o terceiro mineral mais abundante do corpo e é um dos elementos primordiais para o animal, no entanto sua ingestão deverá ser diária, uma vez que não há depósito do mesmo no organismo animal. As principais funções do K são sobre o equilíbrio ácido-base através da neutralização dos ácidos; na pressão osmótica; no balanço iônico com outros elementos; na transmissão nervosa; como freio para os batimentos cardíacos; na prevenção da tetania quando há excesso de Ca ou a deficiência de K; além de participar da síntese proteica, do metabolismo de carboidratos, da formação de glicogênio, da quebra da glicose e na quantidade de água retida no corpo. A temperatura ambiente é um dos fatores que interfere na quantidade de K a ser exigida pelo gado. Estudos do NRC, 2001 demonstram que a uma temperatura entre 25 e 30 ºC é necessária a adição de 0,04 g de K para cada 100 kg de PV para mantença; temperaturas superiores a 30 ºC exigem a adição de 0,4 g de K para cada 100 kg de PV para mantença. As gramíneas, particularmente no início do crescimento, contêm quantidades adequadas de K para o gado em pastoreio e a suplementação é raramente necessária. No entanto, o K pode, ocasionalmente, ser encontrado em baixas concentrações em forragens estocadas ou feno que recebeu água da chuva antes do enfardamento, uma vez que o K é solúvel e vai lixiviar a partir da forragem. Uma deficiência de K é difícil de ocorrer em condições de pastejo, no entanto, quando se fornece uma dieta rica em concentrado como as usadas em sistema de confinamento, uma deficiência pode ocorrer; o consumo elevado de sal (NaCl) e condições estressantes também podem ocasionar uma deficiência. Os sinais de deficiência são de difícil percepção, no entanto, incluem um retardo no crescimento (carência no metabolismo proteico), fraqueza muscular, paralisia, redução do consumo de alimentos, perda de peso, queda de pelo e consumo de terra na tentativa de suprir o mineral no organismo. A intoxicação é rara, no entanto, o nível máximo permitido é de 2% da dieta dos bovinos de corte. O excesso de K é excretado na urina. Em geral os grãos possuem uma menor concentração do elemento do que as forragens. As forragens geralmente possuem níveis superiores a 1% em sua composição com uma absorção de 85%, o que as torna a melhor fonte de K para o gado que exige 0,65% de K na dieta. Outras fontes de K são o cloreto e o sulfato do mesmo com uma absorção superior a 90%. e) Enxofre (S) O enxofre é uma parte dos aminoácidos sulfurados essenciais como a metionina, cistina, cisteína, homocisteína e taurina que compõem as proteínas. Como o rúmen sintetiza os aminoácidos sulfurados, a suplementação para bovinos de corte pode ser através de fontes de S inorgânicas. As principais funções do S limitam-se a constituição de compostos orgânicos essenciais para o organismo, podemos citar compostos da cartilagem, do trato gastrintestinal e reprodutivo e da queratina presente nos chifres, cascos, pele e pelos. Também atua como pontes dissulfeto sobre enzimas como a glutationa peroxidase (do metabolismo oxidativo) e ainda sobre o equilíbrio iônico usado para a formulação de dieta aniônica para vacas no pré-parto. Uma deficiência de enxofre na dieta de bovinos de corte não é provável que ocorra em condições normais de alimentação, porém é bastante comum. Um dos sintomas da deficiência do mineral é o baixo desenvolvimento e crescimento do animal já que o mesmo é primordial para a síntese proteica. Outros sintomas da carência estão relacionados com a formação inadequada dos compostos que são constituídos pelo elemento e que estão presentes nos chifres, pelos, cascos e pele. Por sua vez, é mais provável que o elemento esteja presente em excesso, o que pode interferir no metabolismo do cobre, resultando em uma deficiência de Cu (relação de antagonismo). Além disso, o excesso de S pode reduzir a ingestão de alimentos e causar uma condição de lesão cerebral conhecida como polioencefalomalacia (PEM). O excesso de S causa intoxicação que é comum em bovinos de corte já que sua dieta é suplementada com o elemento. O nível considerado tóxico é de 0,3% em dietas com alto concentrado e de 0,5% em dietas com alta forragem. Os bovinos de corte requerem a presença de enxofre na dieta na razão entre 0,08 e 0,16% (NRC, 2016). A principal fonte de S seria a flor de enxofre ou enxofre elemental que possui 96% do mineral, mas com menor biodisponibilidade. Outras fontes de S são o ventilado com 70% de S e os compostos misturados, isto é, que não possuem somente S como o sulfato de magnésio com 13%, sulfato de P com 18% e sulfato de sódio com 35% de S. Certos subprodutos, como os grãos de destiladores e o glúten de milho, contêm concentrações mais elevadas de S, que devem ser tidas em conta no equilíbrio da ração. O S é frequentemente adicionado indiretamente à mistura mineral através de formas de sulfato dos microminerais. • MICROMINERAIS Os bovinos de corte requerem cerca de 10 microminerais. Sete dos 10 microminerais estabeleceram requisitos, incluindo ferro, manganês, cobre, zinco, selênio, cobalto e iodo. Os microminerais cromo, molibdênio e níquel não têm uma exigência estabelecida e não são, normalmente, adicionados a misturas minerais na dieta dos bovinos de corte. Apenas três dos microminerais (cobre, zinco e selênio) são susceptíveis de ser deficientes em dietas de bovinos à pasto. Além disso, os microminerais acumulam-se mais no fígado que em qualquer outra parte do corpo, com exceção de manganês que se acumula mais nos ossos que no fígado. a) Cobalto (Co) O cobalto funciona como um componente da vitamina B12, que é sintetizada no rúmen pelas bactérias. Somente 3% do mineral na dieta é utilizado na síntese da vitamina. As principais funções do elemento estão associadas a vitamina que desempenha um papel de importância no organismo como matéria-prima dos microrganismos ruminais para a formação de propionato (ácido graxo volátil importante na síntese da glicose), síntese de purinas e pirimidinas, síntese de metionina, formação de proteínas, metabolismo de carboidratos e gorduras, além de ser necessária para a síntese de hormônios da tireoide. Os bovinos de corte exigem a presença do elemento em 0,15 mg/kg de dieta. A deficiência inclui sinais como diminuição do consumo de alimentos, crescimento retardado, anemia, baixa imunidade por dano na função dos neutrófilos e pelagem opaca. Os bezerros e novilhos são mais susceptíveis a deficiência. Na prática, geralmente é adicionado na mistura mineral em aproximadamente 10 ppm (0,01 g/kg) para garantir que não haja deficiência. A intoxicação por Co é difícil de ocorrer, no entanto afetam os animais que não recebem suplementação, quando há intoxicação os principais sintomas são a diminuição do consumo de alimentos, perda de peso e alterações no sangue. Os bovinos toleram níveis máximos de até 25 mg/kg/dieta. Os requerimentos do mineral aumentam conforme é fornecida uma dieta fundamentalmente concentrada. A maioria das forragens e subprodutos da agroindústria possuem níveis adequados de Co (entre 0,1 e 0,5 mg Co/kg de MS), no entanto os solos alcalinos limitam a absorção do mineral pelas plantas. Estudos indicam que a adição de Co na ordem de 0,25 a 0,35 mg/kg de MS aumentam a digestão de forragem de baixa qualidade e aumenta a população de bactérias anaeróbias no rúmen em até 50%. Dietas de grãos exigem mais Co do que dietas à base de forragem, e o Co deve sempre ser incluído na mistura mineral ao alimentar os animais com dietas à base de grãos. As principais fontes de suplementação de Co para os bovinos é o sulfato (25% Co) e o óxido (72% Co). b) Cobre (Cu) O cobre é um dos elementos com maior incidência de deficiência micromineral dos bovinos. O Cu é um componente importante de muitos sistemas enzimáticos essenciais para o crescimento e desenvolvimento do animal. Suas funções estão relacionadas com o crescimento adequado, o correto funcionamento dos glóbulos vermelhos já que libera ferro pela ação da ceruloplasmina, formação de colágeno, produção de melanina, a reprodução e a imunidade. Em conjunto com o Mo e o S faz parte de sistemas enzimáticos envolvidos com o metabolismo de vitaminas e nucleotídeos. No entanto, pela relação de antagonismo, esses dois elementos podem diminuir o grau de absorção de Cu no organismo, logo para os animais mantidos a pasto é ideal manter o balance entre o Cu e Mo entre 2:1 e 4:1. A quantidade de Cu absorvível é menor nas forragens do que em silagens e fenos. Os bovinos de corte exigem 10 mg/kg/dieta de Cu diariamente, caso não atendida essas exigências a deficiência e complicações começam a aparecer precocemente. Os sinais de deficiência incluem fertilidade reduzida, anestro pós-parto, retardo da puberdade, diminuição das taxas de concepção, diminuição da libido, diminuição do processo de espermatogênese em touros, baixa imunidade e, com isso, aumento da susceptibilidade a doenças, além da pigmentação reduzida da pelagem (pelo preto muda para vermelho), e anemia já que o Cu está relacionado com a transformação do Fe para ser utilizado pelo organismo. Deficiências alimentares podem ocorrer, como no caso as gramíneas do gênero Brachiaria que possuem baixa concentração do mineral, mas a maioria das deficiências é causada pelo consumo de antagonistas, o que reduz a absorção de Cu. Uma vez que o elemento atua em conjunto com outros minerais como Fe, Mo, S, Se e Zn, pode ser apresentada uma deficiência caso esses minerais estejam em excesso, logo não podem superar os seguintes valores: > 0,4% para o S, > 500 ppm para o Zn, > 400 ppm para o Fe e > 150 ppm para o Mo, uma vez que afetam a absorção do Cu no intestino. Deve-se dar ênfase que em bovinos a carência deste elemento pode causar mortes súbitas em animais gordos em virtude da fibrose do miocárdio. De todos os minerais o Cu é o que apresenta maior risco de intoxicação. A intoxicação por Cu é comum em bovinos, uma vez que são sensíveis. O nível máximo que os bovinos suportam é de 40 mg/kg. Caso haja excesso na dieta produz-se hemólise, icterícia, metahemoglobinemia, necrose e morte. O Cu deve ser suplementado como sulfato de cobre (25% Cu), cloreto de cobre tribásico (TBCC) ou uma forma orgânica complexa, já que o óxido de cobre é muito mal absorvido. Também podem ser utilizados o carbonato (51%) ou o hidróxido (63%). A adubação da pastagem também pode ser uma forma, porém não há garantias de absorção pela planta. c) Iodo (I) O iodo é um mineral essencial para a função dos hormônios da tireoide (T3 e T4) que regulam o metabolismo energético e é importante para a manutenção da taxa metabólica. Os bovinos de corte exigem uma quantidade de 0,5 mg/kg de dieta diariamente deste mineral. A incorporação do I na dieta animal é de 0,4 mg/kg para bezerros e de 1,3 g/dia para novilhas não prenhes. No último terço da gestação as vacas exigem cerca de 1,5 g/dia, enquanto vacas em lactação de 4 a 4,5 g/dia. Quando essas exigências não são atendidas, a deficiência produz aumento no tamanho da tireoide, diminuição da taxa metabólica, retardamento do crescimento, baixo peso ao desmame, aumento da susceptibilidade a doenças, problemas podais, além dos problemas e falhas reprodutivas. As vacas que apresentam deficiência de I apresentam retenção de placenta e os bezerros podem nascer cegos, prematuros, sem pelos ou até mesmo mortos. A intoxicação não é comum e quando ocorre deve-se a possíveis erros na formulação da dieta. Produz-se então o aumento da secreção nasal e ocular, além da salivação sinais apresentados em bezerros com uso prolongado o I orgânico. Já os sintomas posteriores se resumem no aumento da taxa metabólica, diminuição da ingestão de alimentos, baixa imunidade e problemas na fertilidade. Os bovinos toleram um nível máximo de 50 mg/kg de ração. Com a eliminação do excesso os animais tendem a se recuperar precocemente. O I raramente é deficiente em determinados rebanhos de vacas. É geralmente suplementado como di-hidroiodeto de etilenodiamina (EDDI). A suplementação legal máxima de EDDI é de 50 mg/cabeça/dia. Em alguns casos, o EDDI foi incluído em dietas para evitar a podridão dos cascos; no entanto, a quantidade de EDDI necessária para evitar a podridão dos cascos é muito maior do que os requisitos e provavelmente não vai evitar a podridão dos cascos quando incluído no máximo legal. Porém as fontes mais comuns de suplementação prática são o iodato de cálcio e o iodato de potássio com 60% de I. A concentração de I nas forragens varia bastante, entre 0,01 mg/kg até a 1 mg/kg, e depende do solo em que estão cultivadas. d) Ferro (Fe) O ferro é principalmente necessário para a formação da hemoglobina (0,355%) molécula encarregada do transporte de O2 e CO2 no organismo; também é componente da mioglobina e de enzimas que auxiliam na respiração celular; além disso faz parte de componentes que transportam o elemento pelo organismo e que depositam o mineral nos tecidos. Os requerimentos de Fe são baixos, bovinos exigem a presença de 50 mg do mineral por kg de dieta diária. A eficiência de absorção do elemento é maior em animais jovens (bezerros (as) e novilhos (as)) possuindo um coeficiente de 60%, no entanto a eficiência de absorção cai para 2% em animais adultos. Os animais jovens podem estar susceptíveis a deficiência uma vez que a dieta é fundamentalmente láctea e que o leite da vaca possui uma baixa presença do mineral em sua composição (37 mg/l). Os bezerros são mais susceptíveis a deficiência de Fe, já que o leite é pobre no mineral. Quando há a carência os sintomas incluem anemia, imunidade baixa, aumento na presença de doenças, diminuição do consumo de alimentos, baixo índice de crescimento e diminuição do ganho de peso e, em casos graves, a morte. A deficiência de Fe é raramente observada em bovinos alimentados com volumosos já que diversos solos possuem o mineral disponível em níveis adequados para a absorção pelas plantas. As plantas forrageiras dos trópicos oferecem níveis elevados do mineral em sua composição, na ordem de 80 a 300 ppm/kg de MS. A intoxicação por Fe é difícil de acontecer, entretanto a quantidade máxima permitida para bovinos é de 500 mg/kg de dieta. A intoxicação está associada com um baixo consumo de alimentos, diminuição do ganho de peso e na eficiência alimentar, diarreia, hipotermia e morte em casos graves. As bactérias ruminais utilizam o Fe livre para seu crescimento, portanto um excesso do elemento aumenta a susceptibilidade a problemas como a acidose metabólica. Alimentos ricos em Fe geralmente são os de origem animal. As sementes de leguminosas são mais ricas do que as forragens frescas. O óxido de ferro (70%) é frequentemente incluído em misturas minerais, mas não está disponível para o animal já que não é absorvível, servindo apenas como um agente corante para dar ao mineral uma cor vermelha escura. O sulfato de ferro (20%) está disponível para o animal e deve ser usado se a suplementação com Fe for necessária. Outras fontes de suplementação são o carbonato ferroso (42%), cloreto férrico (21%) e o fosfato de ferro (28%). e) Manganês (Mn) O manganês é necessário para a reprodução, desenvolvimento fetal e do úbere. À medida que a concentração na dieta aumenta, a concentração do mineral é incrementada nos tecidos reprodutivos, sugerindo uma relação direta entre o Mn e a fertilidade. Está relacionado com várias funções dentre as quais estão a ativação e constituição de diversas enzimas, metabolismo de lipídeos e carboidratos e o crescimento ósseo. Os requerimentos variam de acordo com o estado fisiológico e de produção. Por exemplo, a exigência para bovinos de corte varia entre 20 e 40 mg/kg de dieta. Animais em crescimento e ganho requerem 20 mg/kg na dieta, enquanto vacas gestantes e em lactação exigem 40 mg/kg na dieta. O leite da vaca contém 0,03 mg/kg ou por litro, o que faz com que os animais jovens ou recém-nascidos possam apresentar deficiência desse mineral. A deficiência de Mn é rara e pouco provável que seja um problema para os bovinos à pasto no Brasil. A carência causa alteração no crescimento, anormalidades do esqueleto e das articulações, encurtamento dos tendões em recém-nascidos, baixo peso ao nascimento e alterações reprodutivas como degeneração testicular, esterilidade, anestro, cios silenciosos, falta de cio e abortos. A intoxicação por Mn é difícil de ocorrer, uma vez que os níveis máximos são elevados para bovinos sendo 2 g/kg na dieta. Entretanto, o Mn atua com outros minerais que podem afetar seu limite total. As pastagens do Brasil possuem níveis acima das exigências dos animais, uma vez que há disponibilidade do elemento no solo, entretanto há algumas áreas deficientes. Os pastos do gênero Brachiaria possuem níveis adequados de Mn (120 e 400 ppm/kg de MS). O óxido de manganês e o sulfato de manganês (27%) são a forma mais comum desse mineral usado em misturas minerais com um coeficiente de absorção de 0,75%. As dietas à base de milho possuem baixas concentrações de Mn e a suplementação faz-se necessário caso haja alimentação com essas dietas. Em dietas com alto excesso de Ca e P inibe-se a absorção e aumenta-se a excreção do elemento nas fezes. Em bezerros, o alto excesso de Fe também diminui a absorção de Mn. f) Selênio (Se) Por muito tempo esse mineral foi taxado de tóxico aos animais, no entanto a partir do século XX é que se descobriu a essencialidade deste elemento nas funções antioxidantes, no metabolismo de lipídeos, no processo de imunidade e na síntese de hormônios da tireoide. O selênio é um mineral relativamente deficiente em algumas áreas do Brasil. Os bovinos requerem em média 0,1 mg/kg na dieta, tolerando até o nível máximo de 5 mg/kg na dieta. A deficiência de Se causa doença do músculo branco (semelhante à distrofia muscular) em bezerros recém-nascidos, também pode fazer com que os bezerros sejam fracos ao nascer e aumentar sua suscetibilidade a doenças de calefação como os batedores, além de aumentar a taxa de mortalidade pré-desmame. Taxas aumentadas de placentas retidas e desempenho reprodutivo ruim são frequentemente observadas em vacas com deficiências desse mineral. A intoxicação por Se não é rara, porém níveis superiores a 5 mg/kg tornam-se tóxicos aos bovinos. A intoxicação pode ser crônica apresentando baixa vitalidade, pelos ásperos, perda de apetite, crescimento do casco e anemia; ou aguda apresentando cegueira, salivação e paralisia. Há plantas que acumulam Se a ponto de ocasionar intoxicação aguda no animal, essa maior concentração está relacionada com a presença do mineral no solo. Geralmente, solos ácidos (pH < 6) são pobres neste elemento, em contrapartida, solos alcalinos (pH > 8) são ricos em Se. As folhas das plantas apresentam de 1,5 a 2 vezes mais Se que os talos; e as sementes possuem uma concentração alta. Muitos subprodutos da agroindústria, com exceção dos derivados do leite, possuem uma alta concentração de Se. A farinha de pescado possui, em média, mais de 1 mg de Se/kg de MS, porém sua eficiência de absorção é baixa. Plantas forrageiras possuem um coeficiente de absorção de 31% e os concentrados possuem uma eficiência de 61% de absorção pelo animal. A suplementação com esse mineral aumenta seu teor no leite da vaca que é de 0,01 a 0,025 mg/kg ou por litro, o que é benéfico ao animal jovem. A FDA (fibra em detergente ácido) permite que o selênio seja usado em um nível não superior a 0,3 ppm (ou até 0,10 mg/kg) da matéria seca na dieta total de bovinos de corte. Nas zonas em que ocorrem deficiências, o ideal é a administração do nível legal máximo. A FDA permite que até 120 ppm sejam incluídos em uma mistura sal-mineral para alimentação de escolha livre. O Se é geralmente adicionado a misturas minerais na forma de selenito de sódio (45%), mas há as formas orgânicas do elemento como o selênio levedura e o selênio metionina ambos com teores variando entre 1000 e 2000 mg de Se/kg de produto. O selênio é muito tóxico e deve ser usado apenas na forma pré-misturada. A deficiência de Se não deve ser um problema se as quantidades adequadas de Se são balanceadas no suplemento mineral. No entanto, a concentração de Se no suplemento e na ingestão rotulada não deve resultar numa ingestão total superior a 3 mg por dia. Assim, um mineral marcado para a ingestão de 0,10 gramas por cabeça por dia não pode exceder 26 ppm de Se. O Se pode ser suplementado na ração, na mistura mineral, na forma de pellets ou mesmo injetável. g) Zinco (Zn) Este elemento pode ser encontrado nos ossos, sangue e nos pelos. O Zn é um elemento que possui funções catalíticas, estruturais e regulatórias. É um importante componente de sistemas enzimáticos que afetam o metabolismo de lipídeos, proteínas, glicose, hormônios da tireoide e ácidos nucleicos. Também é de suma importância para a espermatogênese e o desenvolvimento dos órgãos sexuais primários e secundários no macho e para uma resposta imune adequada e a calcificação dos ossos. Além disso, é fundamental para a saúde da pele e dos cascos. Os Bovinos de corte exigem 30 mg de Zn/kg na dieta, tolerando níveis de até 500 mg/kg/ração. Os depósitos deste elemento são baixos no organismo. A utilização de formas orgânicas como o zinco metionina melhoram o ganho de peso de bovinos à pasto. Quando as exigências não são atendidas a deficiência pode produzir crescimento retardado, perda de apetite, baixa eficiência alimentar, alopecia, lesões podais e na pele, baixa taxa de concepção, aumento de distocias, alteração do estro e na resposta imunológica e, nos machos, retardamento da puberdade e diminuição dos testículos e da libido. Quando é fornecido níveis superiores ao máximo legal há intoxicação, porém é de difícil manifestação e os sintomas se reduzem a recusa na ingestão de alimentos, fraqueza e anemia. O zinco é um elemento de marginal a deficiente na maioria das forragens brasileiras. O gado tem uma capacidade limitada para armazenar Zn e a suplementação é sempre necessária. A absorção de Zn é de 15% e está intimamente ligada à absorção de cobre, e a relação zinco-cobre deve ser mantida em aproximadamente 3:1. Além disso, altos níveis de ferro podem diminuir a absorção de zinco. A absorção do Zn diminui uma vez que a proporção de ferro para zinco excede 2:1. Altas concentrações de Ca na dieta diminuem a absorção e aumentam os requerimentos de Zn. Algumas forragens possuem boa disponibilidade de Zn o que é essencial para a metionina, quando isso não acontece, faz-se necessário a suplementação com Zn tanto para o funcionalismo enzimático quanto para a saúde dos cascos e, assim, melhorar os ganhos diários e a eficiência alimentar. Nas forragens, o nível de Zn é relativamente baixo (20 ppm), enquanto os grãos de cereais possuem em média 35 ppm. Deve-se suplementar os bovinos em pastejo e sob condições de estresse. As fontes proteicas são ricas em Zn enquanto as energéticas são pobres. Para a suplementação prática, a forma orgânica tem apresentado melhores resultados, dentre as inorgânicas tanto o sulfato (22 a 30%) quanto o óxido (70 a 80%) possuem boa disponibilidade, sendo o óxido o mais recomendável e utilizado. h) Molibdênio (Mo) O Mo é um mineral exigido em doses pequenas, porém essencial. Frequentemente estuda-se este mineral juntamente com o Cu, uma vez que este interfere na absorção do mesmo. É um importante componente e atuante em enzimas que afetam o metabolismo de purinas, pirimidinas e niacinas. Além disso, é constituinte de enzimas do leite e dos tecidos. Como é um mineral exigido em doses pequenas, a deficiência é difícil de ocorrer. Os sintomas de deficiência são análogos aos do Cu, podendo haver anemia e crescimento retardado em função da dificuldade de utilização do Fe. A intoxicação é comum em animais criados à pasto sob um solo com pH elevado. Como a maioria dos solos do Brasil são ácidos é pouco comum a intoxicação, entretanto podem acontecer tendo como principais sintomas os mesmos da deficiência de Cu, podendo haver ainda anemia, diarreia e diminuição da espermatogênese. Os bovinos toleram um nível máximo de 5 mg de Mo/kg/dieta. A absorção de Mo é melhorada com suplementação de Cu, da mesma forma, já que Mo e Cu são antagonistas, uma das formas de minimizar a intoxicação por Mo é o fornecimento de Cu. Geralmente os alimentos possuem níveis acima das exigências dos animais, porém em concentrações não tóxicas. As principais fontes de suplementação são o molibdato de sódio (40%) e molibdato de amônio (54%). i) Níquel (Ni) Apesar de ser um mineral considerado essencial, sua função principal não é bem definida, sabe-se que participa da ativação de enzimas sobre o metabolismo proteico e energético, e importante para as bactérias por participar das hidrogenases e urease. A absorção é relativamente baixa variando entre 1 e 5%. Possui interações com o Fe, Zn, Ca e Mg. A falta de Ni pode prejudicar a absorção de Fe, por outro lado, concentrações grandes de Fe prejudicam a absorção de Ni. Se houver falta de Ni o nível de Zn no organismo animal poderá diminuir. No que se refere a deficiência, devido a concentração adequada do mineral nos alimentos a carência em condições normais é de difícil acontecimento. As exigências para os bovinos são pequenas, é recomendável uma dieta que contenha 0,3 ppm de Ni. A intoxicação por Ni é quase ou sempre rara, uma vez que para que haja sintomas de intoxicação será preciso a presença de Ni em 3000 vezes a exigência, isto é, os bovinos toleram o elemento em até 1000 mg/kg de ração. A principal fonte de suplementação é o cloreto de níquel hexahidratado (50%). Os alimentos geralmente possuem níveis adequados do elemento, exceto os energéticos que são ricos em amido e pobres em minerais. As pastagens possuem até 3,5 mg de Ni/kg de MS e os concentrados proteicos como o farelo de soja e o de girassol possuem até 8 mg de Ni/kg de MS, ou seja, possuem teores maiores que as exigências dos animais sendo as melhores fontes para sua suplementação natural. A tabela 1 descreve as principais funções dos macros e microminerais e as principais fontes para os bovinos de corte criados no sistema de pastejo. Tabela 1: os minerais e suas funções nos bovinos de corte Macro Funções Fonte Composição corporal (%) Ca Formação dos ossos e dentes, função nervosa e muscular Pastos e forragens 1,33 P Reprodução, formação de ossos e dentes (relação íntima com Ca) Grãos 0,74 Mg Crescimento, reprodução e funções metabólicas Suplemento mineral 0,04 K Funções metabólicas Pastos e forragens 0,19 N Funções metabólicas, formação de aminoácidos nitrogenados no rúmen Forragens e grãos — Na Cl Regulação da pressão osmótica e equilíbrio ácido-base, manutenção do líquido corporal, impulsos nervosos, contração muscular e do coração, auxiliam na passagem de nutrientes, na retirada de resíduos das células e absorção de vitaminas hidrossolúveis (riboflavina, tiamina e ácido ascórbico) Sal comum 0,16 0,15 S Síntese de aminoácidos sulfurados, de vitaminas do complexo B, componente de enzimas e hormônios (insulina e ocitocina), crescimento microbiano Forragens e suplemento mineral 0,11 Micro Funções Fonte Composição corporal (%) Cr Resposta imune, fator de tolerância a glicose Grãos 0,3 Co Componente da vitamina B12 Leguminosas Cu Formação da hemoglobina, metabolismo tecidual Forragens e grãos I Produção de hormonas da tireoide, metabolismo energético Pastos e forragens Mn Reprodução Pastos e forragens Mo Atividade enzimática Pastos e forragens Se Antioxidante Forragens e grãos Zn Atividade enzimática, glutationa peroxidase Leguminosas Fonte: OLIVEIRA, 2005 e adaptação de GILL et al., 2004. 2. MINERAIS TÓXICOS Alguns minerais são considerados tóxicos para os bovinos mesmo em dosagens muito pequenas. Todavia, alguns ainda podem ser considerados essenciais, mas em dosagens recomendadas por especialistas. a) Arsênio (As) É um elemento considerado tóxico e inibidor de vários sistemas enzimáticos. É encontrado em inseticidas e pesticidas, logo o manejo de aplicação de produtos nas pastagens pode ser crucial para a intoxicação dos animais. As plantas absorvem pouco ou quase nada desse mineral através do solo. O nível máximo desse elemento deve ser de 30 mg/kg/ração. Já as exigências situam-se entre 25 e 50 µg/kg, bem abaixo dos níveis que se encontram nos alimentos. b) Cádmio (Cd) Esse elemento pode ser encontrado em plantas e nos tecidos dos animais. As plantas, por sua vez, refletem o nível do elemento presente no solo. Os fertilizantes e os fosfatos utilizados na nutrição animal podem conter níveis preocupantes em sua composição. Experimentos com esse mineral indicaram problemas no crescimento e na reprodução. Em dietas normais, o nível desse elemento é maior que as indicações. Como é de difícil excreção, este elemento tende a acumular-se no organismo ocasionando danos hepáticos e destruição do epitélio intestinal além de diminuir o desempenho produtivo do animal. O nível máximo deve ser de 10 mg/kg/ração. c) Chumbo (Pb) O Pb pode ser preocupante em pastagens próximas a rodovias. As fontes de elementos minerais como a de manganês podem conter altos níveis de chumbo. Os principais efeitos deste elemento são tóxicos e estão associados a diminuição da ingestão de alimentos e da imunidade, efeitos neurológicos, cólicas e anemia. A recomendação máxima deve respeitar uma concentração de até 100 mg/kg/ração. d) Flúor (F) Na prática, o F é o elemento tóxico de maior importância, uma vez que em quantidades pequenas (1 mg/kg/dieta) pode aumentar a resistência dos dentes ou ainda destruir os microrganismos que atacam o mesmo, já em quantidades maiores pode atacar e destruir os dentes. Apesar de estimular a enzima piruvato quinase, ele é um potente inibidor de vários sistemas enzimáticos. Já que o F possui uma relação direta com o P, uma forma prática de evitar a intoxicação é manter uma relação de 60:1 entre ambos. O nível máximo tolerável para os bovinos é de 40 mg/kg/dieta. e) Mercúrio (Hg) É um mineral tóxico sem precedentes. Pode ser encontrado naturalmente no solo, mas também através da ação do homem e em produtos da agricultura como fungicidas. A recomendação máxima de Hg é de 2 mg/kg/dieta. As fontes de Hg são a água e alimentos contaminados. Em decorrência de água contaminada, a farinha de peixe e pescados podem conter níveis elevados. 3. MINERAIS PRESENTES NAS GRAMÍNEAS As gramíneas brasileiras possuem boa disponibilidade de macro e microminerais em sua composição bromatológica (tabela 2). No entanto, segundo a literatura, nos trópicos há uma deficiência ou toxidez natural de alguns minerais essenciais para os bovinos, como o Ca, P, Co, Mn, Se e Zn, sendo os principais minerais que apresentam essas características benéficas ou desvantajosas no Brasil (Adaptação de McDowell, 1999). Com isso, faz-se necessário a suplementação em épocas de deficiência, ou a atenção imediata aos níveis tóxicos em épocas de maior disponibilidade desses minerais. Na época das chuvas em demasia, o solo fica com um pH baixo, derivado do excesso de Al no solo, uma forma de aumentar o pH tornando-o mais neutro possível e de diminuir a presença do Al tóxico aos animais é a calagem com calcário. Os solos do Brasil possuem características particulares conforme cada região, no entanto, é fácil afirmar que o país possui uma deficiência natural de elementos essenciais como o P. Uma das formas mais econômicas para aumentar a concentração de minerais de gramíneas e forrageiras é a adubação do solo onde são cultivadas. No entanto, para o P a forma mais eficiente e econômica é o fornecimento do mesmo no cocho. Adubar o solo para muitos pode ser desperdício de dinheiro, no entanto, a afirmação é errada. As características bromatológicas de gramíneas, forrageiras e leguminosas podem ser alteradas com a simples administração de minerais ou de adubos orgânicos ao solo. Com a adubação do solo, com nitrogênio por exemplo, para o melhor desempenho e composição química das plantas forrageiras, pode influenciar também no consumo de alimentos por animal, na massa seca, taxa de lotação e no ganho de peso diário (figura 2). Um estudo realizado no Quênia com 58 gramíneas cultivadas em solos com as mesmas características dos solos brasileiros, revelaram as seguintes variações na concentração de minerais em kg de MS: cinzas 4% ou 12,2%; Ca 0,09 a 0,55%; P 0,05 a 0,37%. Essa concentração mineral depende da interação de vários fatores, dentre os quais estão o solo, a espécie forrageira, o estado de maturidade, o rendimento, o manejo das pastagens e o clima. Geralmente, as plantas herbáceas e leguminosas possuem uma maior concentração tanto de minerais quanto de outros nutrientes essenciais. Deve-se enfatizar que a idade da planta influencia em sua composição mineral (tabela 3), uma vez que ocorre o processo de diluição e da translocação dos minerais para o sistema radicular da planta. As principais espécies de gramíneas do Brasil são a Brachiaria decumbens, Panicum maximum e Pennisetum purpureum com as seguintes características minerais. Tabela 2: principais minerais presentes nas gramíneas brasileiras Espécie Mineral (g/kg) N P K Ca Mg S Brachiaria decumbens 17 2,6 17,7 5,3 3,4 1,4 Brachiaria humidicola (%) - 0,13 – 0,2 1,1 – 1,7 0,13 – 0,2 0,17 – 0,21 0,11 – 0,18 Panicum maximum 18,8 1,7 21,1 6,4 2,6 1,2 Pennisetum purpureum 23,5 2,1 24,8 4,4 2,5 1,0 Fonte: Adaptação de vários autores. Tabela 3: variação da composição mineral em função da idade da planta Forrageira Idade (dias) Composição da Matéria Seca N P K Ca Mg Zn Mn % ppm Colonião 28 2,4 0,14 2,33 0,34 0,23 34 - 70 1,26 0,08 2,53 0,31 0,14 32 - Gordura 28 2,54 0,18 2,3 0,27 0,25 135 106 70 1,34 0,05 1,7 0,2 0,18 97 136 Elefante 28 - 0,33 2,38 0,61 0,42 40 138 140 - 0,11 0,34 0,43 0,36 33 128 Pangola 28 - 0,19 1,32 0,56 0,39 35 192 140 - 0,12 0,37 0,66 0,39 31 317 Jaraguá 28 - 0,28 1,68 0,4 0,46 51 - 84 - 0,11 0,57 0,23 0,58 37 - Fonte: Adaptação de BERCHIELLI et al., 2006. -/- Figura 2: Efeito da adubação nitrogenada sobre o desempenho de bovinos de corte. Fonte: Pastagem com Ciência, Instagram: sobre adaptação de MOREIRA, L. M. et. al., 2011. 4. FATORES QUE AFETAM A INGESTÃO DE MINERAIS Controlar a ingestão de minerais no nível desejado é uma tarefa difícil uma vez que a ingestão flutua. Deve-se, então, monitorar a ingestão dos minerais por muitas semanas para antes da implementação de um manejo que altere a ingestão dos mesmos. Se a ingestão for muito alta ou baixa, deve-se mover o cocho de suplementação para mais perto ou mais longe da fonte de água em várias áreas da pastagem. Quando o gado está consumindo o suplemento em excesso o sal é muitas vezes adicionado para reduzir a quantidade de minerais que o gado ingere. O nível de sal possui um impacto significativo sobre a ingestão de minerais e é facilmente alterado para o controle da quantidade de suplemento que o animal ingere; no entanto, deve-se levar em consideração a adição do sal ao se determinar a correta ingestão diária. Por exemplo, se um suplemento mineral possuir uma recomendação de taxa de alimentação de 113 g/dia é misturado em uma proporção de 50:50 com sal branco, então o gado deve consumir 226 g/dia desse suplemento. Isso forneceria para o animal a quantidade inicial de 113 g/dia do mineral mais 113 g/dia de sal adicionado. Quando o consumo é insuficiente, deve-se mudar para um suplemento mais seco, melado ou alterar a marcas para um mineral mais palatável ao gado. Além disso, deve-se ter em mente que os bezerros podem consumir quantidades significativas de minerais e isso deve ser considerado antes da diminuição do nível de alimentação, isto é, diminuição do consumo de MS/dia. Se a ingestão de minerais for inadequada, deve-se adicionar um alimento mais palatável a mistura, com uma característica de sabor ao animal. Alimentos como o farelo de algodão, farelo de soja, melaço e grãos de destilaria melhoram a palatabilidade e a ingestão dos suplementos. A ingestão do suplemento pode melhorar quando o cocho estiver perto da fonte de água ou quando se troca a marca do suplemento escolhendo um com mais palatabilidade. Monitorar regularmente o consumo de minerais para manter um registro do número de animais e das quantidades de consumo é importante para combater a ingestão em potencial ou deficiente do suplemento evitando possíveis problemas de deficiência e/ou intoxicação. 4.1 Alimentadores minerais A colocação do alimentador (cocho) é uma parte importante do fornecimento de minerais para o rebanho. Deve certificar-se que exista um número adequado de cochos para a taxa de lotação existente na pastagem. Uma forma prática é a existência de um cocho para cada 30 ou 50 animais. As melhores áreas para a localização dos cochos são perto das fontes de água, em lugares sombreados e perto das melhores áreas de pastagem. Deve-se verificar os cochos pelo menos uma vez por semana para mantê-los limpos para o fornecimento de um suplemento fresco em todos os momentos. Um bom alimentador deve manter o suplemento seco, ser portátil e resistir aos animais e corrosão. Os cochos abertos não são indicados. Os cochos metálicos não são indicados, sendo os de madeira, fibra de vidro ou de plástico os mais indicados e de longa duração. Os cochos permanentes feitos de concreto funcionam bem, mas a portabilidade é um problema. No caso de suplementos minerais, com consumo médio diário de 50 a 150 g/cabeça, deve-se ter 4 cm linear de cocho/UA isso para um cocho de 30 cm de profundidade, 40 cm de largura no topo e 30 cm de largura no fundo, pois essas dimensões permitem acesso dos dois lados do cocho e diminuem embates entre os animais. 4.2 Forma do suplemento Os minerais soltos em uma mistura para livre escolha é uma forma desejável e recomendável para vacas reprodutoras e/ou com crias. Para os animais com dietas completas, o suplemento é mais otimizado e uma forma de fornecimento é em uma mistura TMR, sigla em inglês para ração totalmente misturada. Ao suplementar com um produto em forma de bloco (figura 1), os microminerais devem ser superiores aos que estão contidos em uma mistura solta, uma vez que o animal consome de 28 a 56 g/dia. Além disso, alguns blocos contêm apenas vestígios de sal mineralizado, que acaba não suprindo as necessidades de macrominerais dos animais, como o Ca e o P. Deve-se ler o rótulo do produto cuidadosamente para certificar-se de que o mesmo contém todos os minerais necessários ao animal. Esse tipo de produto em bloco é utilizado para suplementar os animais que não tiveram acesso aos minerais por um longo período. Desta forma, o animal consumirá mais minerais sob a forma solta caso seja concedido o acesso de livre escolha. Esses blocos são utilizados na finalidade de fornecer os requerimentos minerais dos animais em um curto período evitando o consumo excessivo. Não deverá ser fornecido sal branco puro e um dado mineral separadamente, uma vez que a ingestão desse elemento será muito baixa já que o animal desejará apenas o sal. Os suplementos comerciais proteicos e energéticos às vezes são fortificados com minerais. Esses suplementos vêm nas formas de rações peletizadas, melaço líquido, blocos à base de melaço líquido, duro ou prensado ou ainda na forma de blocos à base de grãos. Não é necessário o fornecimento de um suplemento mineral de livre escolha junto com o suplemento comercial proteico ou energético. 4.3 Estação A ingestão de minerais geralmente é maior quando a forragem está com boa disponibilidade e diminui durante o outono ou períodos de seca. A composição mineral da forragem diminui conforme a maturidade da planta (idade). As forragens maduras são consumidas em menores quantidades através da seletividade dos animais, o que reduz ainda mais a ingestão de minerais. Em contrapartida, forrageiras em crescimento possuem melhor capacidade mineral do que as maduras. Além disso, o conteúdo mineral é maior em forrageiras cultivadas em solos com maior fertilidade ou solos adubados química ou organicamente. As plantas geralmente são mais fertilizadas e digestíveis durante a primavera; ou como no Brasil só possuímos duas estações bem definidas, a época dos dois meses antes da transição do período chuvoso para o primeiro mês do período seco demonstra melhor carga mineral para a planta; isso leva a uma maior ingestão natural de minerais através da disponibilidade da pastagem e redução do consumo de suplementos durante essa época do ano. 4.4 Método de suplementação ou alimentação Os animais jovens às vezes são alimentados com uma ração baseada em grãos ou silagem misturada na propriedade. A mistura completa de minerais em rações mistas é difícil; apenas uma pequena quantidade de minerais é necessária e se separa facilmente do maior tamanho das partículas de grãos e forragens. Logo, é mais recomendável usar um suplemento mineral que possua maior taxa de disponibilidade e alimentação, seja incluso na ração, separadamente no cocho para livre escolha ou em outras formas de fornecimento como água ou injetável. Um trabalho foi realizado para comparar a suplementação de um suplemento mineral de livre escolha ou misturar os minerais na ração todos os dias. O mineral continha um ionóforo (Bovatec®). Os resultados do trabalho, no qual as novilhas foram alimentadas com feno de milho, silagem de milho e minerais em um cocho de livre escolha ou onde os minerais foram cobertos (113 g/dia) na alimentação cada dia estão presentes na tabela 4. Tanto a suplementação coberta na ração quanto a de livre escolha apresentaram resultados de ganho diário semelhantes. As novilhas com livre escolha de ingestão do suplemento consumiram cerca de 14 g/cabeça/dia muito menos que o desejado de 113 gramas diárias por animal, mas estavam dentro da faixa necessária para a eficácia do ionóforo. Se quantidades específicas de um mineral ou aditivo alimentar particular são necessárias por dia, é desejável o uso de top-dress ou misturar o mineral na ração todos os dias ao invés de permitir o consumo de livre escolha. Ao oferecer o suplemento para livre escolha dos animais é necessária a monitoração do consumo para obter a certeza de que a ingestão diária é adequada. Esse controle servirá para que se possa inserir aditivos como um ionóforo ou antibiótico para aumentar a eficácia dos minerais no animal. Tabela 4: desempenho das novilhas suplementadas com livre escolha ou na mistura total Item Livre escolha Mistura da ração Peso inicial (kg) 260 262 Peso final (kg) 334 334 Ganho total (kg) 74 72 Ganho diário (kg) 0,875 0,848 Ingestão mineral (g/dia) 99,8 113 Fonte: ARTHINGTON & SWENSONT, 2004. 5. BIODISPONIBILIDADE DOS MINERAIS O tipo de minerais na dieta pode afetar a eficiência de produção e a relação custo-benefício da suplementação. Quando se adquire um sal mineralizado é importante ter em conta a concentração dos minerais e sua biodisponibilidade (tabela 5). A biodisponibilidade de sulfatos e cloretos é maior que a biodisponibilidade dos óxidos. Uma exceção é o óxido de magnésio, que é absorvido o suficiente para ser usado na suplementação dos bovinos de corte. No entanto, deve-se evitar o uso de óxido de cobre, uma vez que é quase ou nada absorvível. O óxido de ferro também é mal absorvido e geralmente é usado para adicionar cor à mistura mineral. Por causa da boa disponibilidade do Fe nas forragens e alimentos no Brasil, o gado raramente requer uma suplementação do elemento, logo a adição do mineral não deverá afetar o desempenho dos animais e pode ser benéfico, uma vez que o Fe pode interagir com outros minerais e impedir sua absorção como citado supra. Os minerais geralmente são incluídos em suplementos na forma inorgânica, mas também podem ser combinados com um aminoácido ou proteína, formando um composto orgânico (referido como complexos proteinados ou quelados). Os suplementos que utilizam a forma orgânica incluem os que fornecem os minerais Cu, Zn, Co e Mn juntamente a um aminoácido, geralmente a metionina, ou proteína. A biodisponibilidade relativa de Cu, Mn e Zn de diferentes fontes é maior em comparação com fontes inorgânicas, conforme descrito na tabela 5. Os minerais orgânicos custam mais do que os inorgânicos; portanto, um aumento no desempenho deve ser realizado para compensar o mais caro. A resposta das fontes orgânicas é variável e são recomendados em determinadas situações. As fontes orgânicas foram eficazes no aumento da eficiência reprodutiva de novilhas sob condições de estresse nutricional, ou ainda na redução da morbilidade e mortalidade de animais recém-desmamados que são altamente susceptíveis à doença respiratória bovina. Para vacas, o fornecimento de fontes orgânicas de minerais é utilizado nos dois últimos meses antes do parto; já para bezerros esse tipo de suplementação é recomendado apenas durante o período de desmame. No entanto, a metionina de zinco pode ser fornecida continuamente durante o período de alimentação visando a diminuição de problemas podais. Tabela 5: biodisponibilidade relativa¹ de microminerais orgânicos e inorgânicos Mineral Sulfato Óxido Carbonato Cloreto Orgânico (complexo/quelado) Cu 100 0 - 105 130 Mn 100 58 28 - 176 Zn 100 - 60 40 159 a 206 ¹ avaliação da biodisponibilidade relativa com respeito a fonte de sulfato. Fonte: Adaptação de vários autores. 6. IDENTIFICANDO UMA DEFICIÊNCIA MINERAL A deficiência mineral em bovinos de corte é difícil de se estimar e de diagnosticar e, silenciosamente, pode ocasionar grandes prejuízos à saúde do animal e ao financeiro. A maioria das deficiências estão relacionadas com o Ca, P e S, mas também com o Zn, Cu e Se. As deficiências minerais são classificadas em primárias e secundárias, de acordo com o grau de manifestação. A deficiência primária ocorre quando o animal ingere forragens que são deficientes em um determinado elemento como o Mg, ou ainda quando não é fornecido a suplementação adequada com sal mineralizado, o que se torna a causa mais comum desse grau de deficiência. Esse tipo de deficiência raramente ocorre em rebanhos bem manejados e que possuem alimentos como forrageiras de boa qualidade nutricional e que são suplementados adequadamente e na época ideal. Essas falhas são mais fáceis de resolver. Por sua vez, a deficiência secundária ocorre quando o animal consome um excesso de minerais antagonistas de outros elementos, que interferem na absorção normal ou no metabolismo um do outro. No caso de deficiência de Cu, o animal pode estar consumindo esse elemento em q. (shrink)
REPRODUÇÃO ANIMAL: O CICLO ESTRAL DE BOVINOS LEITEIROS – Desenvolvimento Folicular, Corpo Lúteo e Etapas do Estro ANIMAL REPRODUCTION: THE OESTROUS CYCLE OF DAIRY BOVINES -Follicular Development, Corpus Luteum and Stages of Estrus Apoio: Emanuel Isaque Cordeiro da Silva Departamento de Zootecnia da UFRPE E-mail: [email protected] WhatsApp: (82)98143-8399 FISIOLOGIA CLÍNICA DO CICLO ESTRAL DE BOVINOS LEITEIROS 1. RESUMO A fêmea bovina apresenta ciclos estrais em intervalos de 19 a 23 dias e estes só são interrompidos durante a gestação ou devido (...) a alguma patologia. O estro é o período de aceitação da cópula e tem uma duração de 8 a 18 horas. Durante o metaestro ocorre a ovulação e se desenvolve o corpo lúteo. O diestro é o estágio mais longo do ciclo e é caracterizado pela presença de um corpo lúteo. Se a gestação não for estabelecida, o endométrio segrega prostaglandina F2α(PGF2α) o que induz a luteólise, reiniciando assim um novo ciclo. 2. EIXO HIPOTÁLAMO-HIPÓFISE-OVÁRIO As hormonas são substâncias produzidas por diferentes células do organismo que exercem funções específicas em outras células (células brancas). Algumas hormonas atuam na mesma célula que a secreta (atividade autocrina), outras nas células vizinhas (atividade parácrina) e outras são transportadas pelo sangue e exercem a sua função em células de outros órgãos (atividade endócrina). Existem outros tipos de hormônios que comunicam a diferentes indivíduos e são conhecidos como feromônios. Os feromônios regulam diferentes funções, entre as quais se destacam as reprodutivas. O hipotálamo encontra-se na base do cérebro, é formado por núcleos pares de neurônios e comunica-se com a hipófise através de um sistema circulatório especializado conhecido como sistema porta-hipotálamo-hipofisário. Os neurônios da área ventromedial e da área pré-óptica do hipotálamo secretam a hormona libertadora das gonadotropinas (GnRH), que por sua vez chega à hipófise através do sistema porta-hipotálamo-hipofisário e estimula a secreção da hormona luteinizante (LH) e da hormona folículo estimulante (FSH). A LH mantém um padrão de secreção paralelo à secreção da GnRH; ou seja, uma parcela de GnRH corresponde a uma parcela de LH, ao contrário da FSH que tem uma produção basal elevada inibida pelo estradiol e inibina, por este motivo, a sua secreção não apresenta um padrão pulsante semelhante à LH. A GnRH tem duas formas de secreção: a primeira é pulsante ou tônica, regulada por estímulos externos (fotoperíodo, bioestimulação, amamentação) e por estímulos internos (metabolitos, hormonas metabólicas, hormonas sexuais); a segunda forma é pré-ovulatória ou cíclica e é estimulada pelos estrogênios durante o estro e inibida pela progesterona. A secreção de alguns hormônios, bem como diversos processos fisiológicos, são sincronizados com a duração do dia e da noite (ritmos endógenos). A luz é percebida pelos fotorreceptores da retina e o sinal luminoso chega à glândula pineal através de conexões neuronais (trato retino-hipotalâmico). Na glândula pineal, o estímulo produzido pela luz inibe a síntese da melatonina. Desta forma, a duração do dia e da noite (fotoperíodo) é registada pelas variações nas concentrações da melatonina. Na vaca, sabe-se que o fotoperíodo influencia alguns processos reprodutivos, embora não seja, em sentido estrito, uma espécie com um padrão reprodutivo sazonal. Os feromônios sexuais são excretados através da urina, fezes e fluidos corporais; eles são percebidos pelo epitélio olfatório e órgão vomeronasal. Posteriormente, algumas vias nervosas, estimulam no hipotálamo a frequência dos pulsos de secreção da GnRH. A exposição a feromonas femininas provoca no macho um aumento na frequência de secreção do LH e isto por sua vez aumenta as concentrações de testosterona. Os feromônios masculinos induzem na fêmea um aumento da frequência de secreção do LH, estimulando o crescimento folicular e a secreção de estradiol. A estimulação sexual provocada pelo macho ou pela fêmea é denominada bioestimulação. As alterações na condição corporal estão positivamente correlacionadas com as concentrações séricas de insulina, fator de crescimento semelhante à insulina tipo I (IGF- I) e leptina. Assim, quanto maior a classificação da condição corporal, maior é a concentração sérica destas hormonas, que atuam como sinais que chegam ao hipotálamo e modificam a frequência de secreção da GnRH. Por exemplo, a transição do anestro para a ciclicidade coincide com um aumento da condição corporal e das concentrações de insulina, IGF- I e leptina (figura 1). Figura 1. A transição do anestro para a ciclicidade coincide com um aumento da condição corporal e das concentrações de insulina, IGF- I e leptina. Estas hormonas atuam como sinais que chegam ao hipotálamo e aumentam a frequência de secreção da GnRH. Fonte: GALINA, et al. 2008. Os estrogênios podem ter um feedback positivo ou negativo sobre a secreção da GnRH, o que depende da fase do ciclo reprodutivo. Em animais pré-púberes e em anestro pós-parto, os estrogênios inibem a secreção de GnRH, mas durante o período de proestro e estro há uma estimulação para a secreção de GnRH. A progesterona reduz a secreção da GnRH, bem como a resposta da hipófise à GnRH, inibindo assim a maturação folicular e a ovulação. Por esta razão, a progesterona foi utilizada com sucesso como contraceptivo em humanos e para o controle artificial da reprodução em animais domésticos (figura 2). Figura 2. Retroalimentação entre o hipotálamo, hipófise e o ovário. A GnRH estimula na hipófise a síntese e secreção de LH e FSH. Na fase pré-púbere e no anestro pós-parto, os estrogênios inibem a secreção de GnRH, enquanto no proestro e estro, estimulam-na. A progesterona inibe a secreção da GnRH e diminui a resposta da hipófise à GnRH. Os estrogênios e a inibina suprimem a secreção de FSH diretamente na hipófise. Fonte: GALINA, et al. 2008. Os neurônios secretores da GnRH não têm receptores para estrogênios nem progesterona, pelo que estas hormonas não têm forma de regular diretamente a secreção da GnRH. Existe um grupo de neurônios hipotalâmicos que exprimem o gene Kiss-1 que codifica o peptídeo kisspeptina. Os neurônios secretores da GnRH têm receptores para este peptídeo, de modo que a kisspeptina fornece a informação aos neurônios secretores da GnRH em relação às concentrações de hormônios sexuais. A kisspeptina é um potente estimulador (secretagogo) da secreção da GnRH e é muito provável que nos próximos anos venha a fazer parte dos recursos hormonais para o controle artificial da reprodução, não só nos bovinos, mas em todas as espécies domésticas. 3. DESENVOLVIMENTO FOLICULAR O ovário é responsável pela produção de ovócitos e pela síntese de hormônios sexuais, estrogênios e progesterona, que promovem e regulam a fertilização do ovócito e a manutenção da gestação. O ovócito encontra-se no interior do folículo ovárico rodeado por células granulosas que participam de forma ativa no seu crescimento e maturação. As experiências in vitro demonstram a dependência dos ovócitos das células da granulosa, assim, quando os ovócitos são induzidos a amadurecer devem estar rodeados por várias camadas de células da granulosa para que este processo seja bem sucedido, caso contrário, não adquirem o potencial para desenvolver um embrião. Embora as células da teca interna não estejam em contato direto com o ovócito, seu papel na maturação deste o exercem mediante a produção de andrógenos, mesmos que são convertidos em estrogênios pelas células da granulosa. Além disso, as células da teca favorecem o estabelecimento da rede capilar que apoia o desenvolvimento folicular. Por outro lado, os novos conhecimentos indicam que o ovócito não é um elemento passivo no desenvolvimento folicular, mas regula a função das células foliculares; o que significa que ele próprio participa na criação de um microambiente ideal para a sua maturação. Além disso, é possível que o ovócito tenha um papel na ativação do desenvolvimento dos folículos primordiais. A fêmea bovina nasce com aproximadamente 200 mil folículos, dos quais muito poucos se ativam e iniciam seu crescimento, e a maior parte deles sofre atresia em diferentes etapas de desenvolvimento. Ao nascimento, os folículos estão na fase mais elementar e são conhecidos como folículos primordiais. Posteriormente estes folículos se ativam e se transformam em folículos primários e secundários; até este momento os folículos não têm antro (etapa pré-antral) e seu desenvolvimento é independente das gonadotropinas. Quando os folículos formam o antro são conhecidos como folículos terciários e seu desenvolvimento é dependente das gonadotropinas (etapa antral). O crescimento folicular no estágio antral ocorre em forma de ondas e cada onda começa com um aumento nos níveis de FSH, o qual promove o crescimento de um grupo de cinco a seis folículos (~4 mm de diâmetro); este processo é conhecido como recrutamento. Subsequentemente, um único folículo continua a crescer (folículo dominante), o que provoca um aumento das concentrações de estrogênios e inibina, uma diminuição das concentrações de FSH e atresia dos folículos subordinados, pois eles dependem totalmente desta hormona, enquanto o folículo dominante continua o seu desenvolvimento estimulado pela LH. O folículo dominante perdura de quatro a seis dias e se não chega a ovular, sofre atresia. Após a atresia do folículo dominante, diminuem-se os níveis de estrogênio e inibina, observa-se um aumento das concentrações de FSH e inicia-se uma nova onda folicular. O folículo dominante que está presente quando o corpo lúteo sofre regressão, continua seu desenvolvimento e ovula, em resposta ao pico pré-ovulatório de LH. Além de promover a liberação do ovócito, a secreção pré-ovulatória de LH regula a formação do corpo lúteo a partir das células foliculares, processo conhecido como luteinização. Durante o ciclo estral são apresentadas de duas a três ondas foliculares. As vacas com três ondas foliculares têm uma fase lútea mais longa e, consequentemente, um ciclo estral mais longo, de 22 a 23 dias; enquanto as vacas com duas ondas apresentam um ciclo estral de 18 a 21 dias. Nas vacas leiteiras, cerca de 70% apresentam duas ondas foliculares, enquanto 30% exibem três ondas (figura 3 e 4). Nas vacas com duas ondas foliculares, o período de dominação folicular é maior do que nas de três ondas. O tempo de dominação influencia o potencial dos ovócitos para desenvolver um embrião viável; assim, a porcentagem de concepção é menor quando ovulam folículos que tiveram mais dias de dominação dos que quando ovulam folículos com menor tempo de dominação (figura 5). Figura 5. O crescimento folicular no estágio antral ocorre na forma de ondas. Cada onda começa com um aumento nas concentrações de FSH, o que promove o recrutamento de cinco a seis folículos (~4 mm de diâmetro). Posteriormente um único folículo continua crescendo (folículo dominante), enquanto seus companheiros (subordinados) sofrem atresia. O folículo dominante perdura de quatro a seis dias e se não chega a ovular, sofre atresia. Após a atresia do folículo dominante observa-se um aumento das concentrações de FSH, iniciando-se uma nova onda folicular. 3.1 Ovulação múltipla Nos últimos anos tem-se observado um aumento na proporção de vacas com ovulação múltipla (20% x 1% em novilhas), o que tem provocado um aumento da proporção de partos gêmeos (8% x 1% em novilhas). A frequência de vacas com ovulação múltipla está associada com a alta produção de leite; de modo que, as vacas que produzem menos de 40 kg mostram 6% de ovulações múltiplas e aquelas que produzem mais de 50 kg alcançam até 50%. A causa deste fenômeno ainda é obscura, contudo, observaram-se diferenças nas concentrações de FSH, de tal forma que as vacas que desenvolvem de dois a três folículos dominantes numa onda folicular, apresentam níveis de FSH mais elevados que as vacas que têm apenas um folículo dominante. Em vacas em lactação, a concentração de progesterona é baixa devido ao aumento do metabolismo hepático, o que aumenta a sua taxa de eliminação. Foi observado que as vacas que tiveram uma fase lútea com níveis de progesterona mais elevados, no ciclo anterior à inseminação, apresentam menos ovulações múltiplas em comparação com as vacas que tiveram níveis de progesterona mais baixos. Propõe-se que as baixas concentrações de progesterona permitam um aumento da frequência de secreção da GnRH e, consequentemente, da LH e da FSH, favorecendo a predominância múltipla e, eventualmente, a ovulação de mais de um folículo. Nos rebanhos leiteiros, as gestações gêmeas não são desejáveis porque aumenta o risco de perda da gestação e, se esta chegar ao término, haverá o risco de perda da gestação e, se esta for concluída, o risco de distorcia é consideravelmente mais elevado (figuras 6, 7, 8 e 9). Figura 6. As baixas concentrações de progesterona sérica nas vacas em lactação permitem um aumento da frequência de secreção da GnRH, bem como o aumento da LH e da FSH. Isto favorece a dominação múltipla e eventualmente a ovulação de mais de um folículo. Esta figura mostra a dominância de dois folículos em cada onda folicular (codominância). Figura 7. Ovários de uma vaca leiteira em diestro com três folículos dominantes. Figura 8. Ovários de uma vaca leiteira com três corpos lúteos. Figura 9. Ovários de uma vaca leiteira com dois corpos hemorrágicos. Fonte: Acervo pessoal do autor. IFPE, 2017-18. 4. DESENVOLVIMENTO E CONTROLE DA FUNÇÃO DO CORPO LÚTEO Quando o folículo dominante completa sua maturação, ele produz níveis de estrogênio suficientes para provocar a liberação máxima da GnRH, o que desencadeia o pico pré-ovulatório da LH. Esta secreção de LH provoca a ovulação e inicia as mudanças para que o folículo se transforme em um corpo lúteo, processo conhecido como luteinização. A luteinização compreende todas as mudanças morfológicas, endócrinas e enzimáticas que ocorrem no folículo ovulatório até que este se transforme num corpo lúteo. O processo de luteinização começa a partir da elevação pré-ovulatória de LH; mesmo antes da ovulação. A luteinização do folículo dominante (≥8 mm de diâmetro) pode ser induzida hormonalmente pela injeção de GnRH ou gonadotropina coriónica humana (hCG). A ovulação ocorre em média 30 horas após o pico pré-ovulatório de LH. A secreção pré-ovulatória de LH desencadeia a liberação de enzimas proteolíticas e de mediadores da inflamação na parede folicular, as quais degradam o tecido conjuntivo e ocasionam morte celular. Posteriormente, a PGF2α induz contrações da teca externa, levando à ruptura folicular e à expulsão do ovócito. Após a ovulação, as células da teca interna e da granulosa migram e distribuem-se nas paredes do folículo. As células da teca interna se diferenciam e se multiplicam em células lúteas pequenas, enquanto que as células da granulosa se hipertrofiam e dão origem às células lúteas grandes. Estas alterações são facilitadas pela ruptura da membrana basal que separa a camada celular da granulosa da teca interna. Em forma paralela começa a formação de uma ampla rede de capilares que se distribuem em todo o corpo lúteo em formação, e chegam a constituir até 20% do volume desta estrutura (figuras 10 e 11). A progesterona é o principal produto de secreção do corpo lúteo. No quinto dia do ciclo estral, as concentrações séricas desta hormona são superiores a 1 ng/ ml, indicando que o corpo lúteo adquiriu a sua plena funcionalidade. A progesterona atua basicamente sobre os órgãos genitais da fêmea, sendo responsável pela preparação do útero para o estabelecimento e manutenção da gestação. Na mucosa do oviduto e do útero, estimula a secreção de substâncias que promovem o desenvolvimento do embrião, até que este comece a nutrir-se através da placenta. A progesterona suprime a resposta imunitária do útero, o que é necessário para tolerar o embrião, já que este é um tecido estranho para a vaca. Além disso, a progesterona evita as contrações do útero, fecha o colo do útero e modifica as características do muco cervical, tornando-o mais viscoso, impedindo a passagem de agentes estranhos para o interior do útero. Na glândula mamária estimula o desenvolvimento do sistema alveolar, preparando-a para a síntese e a secreção de leite. 5. REGRESSÃO DO CORPO LÚTEO A regressão lútea é um processo ativo ocasionado pela secreção uterina da PGF2α. O mecanismo pelo qual se inicia a síntese e secreção da PGF2α depende de uma interação entre o corpo lúteo, os folículos e o útero. Os estrogênios produzidos no folículo dominante desempenham um papel importante no início da secreção de PGF2α, uma vez que promovem a síntese de receptores para oxitocina. Além disso, os estrogénios estimulam no endométrio a produção da fosfolipase A e da ciclooxigenase; enzimas indispensáveis para a síntese da PGF2α. Durante o ciclo estral, a progesterona inibe a síntese da PGF2α através da supressão da formação de receptores para o estradiol. Após um período de 12 a 14 dias de exposição à progesterona, as células endometriais tornam-se insensíveis à progesterona. Quando isso ocorre, as células endometriais sintetizam receptores para estradiol, permitindo que o estradiol produzido no folículo dominante estimule a síntese de receptores para oxitocina. Neste momento, o endométrio está pronto para sintetizar e secretar PGF2α, em resposta ao estímulo da oxitocina. A primeira secreção de oxitocina é de origem hipotalâmica, o que desencadeia o primeiro pulso de PGF2α. Os seguintes episódios de PGF2α são induzidos pela oxitocina produzida no corpo lúteo. A PGF2α é secretada em episódios (pulsos) com intervalos de seis a oito horas, sendo necessários cinco a seis episódios para a luteólise ocorrer. Se a PGF2α não seguir este padrão de secreção, a regressão do corpo lúteo falhará. Além da PGF2α de origem uterina, o corpo lúteo também produz PGF2α, que aumenta o efeito luteolítico. A falta de sensibilidade à PGF2α observada nos corpos lúteos imaturos (primeiros cinco dias após a ovulação) deve-se ao fato de, neste período, o corpo lúteo ainda não produzir PGF2α (figura 12, 13 e 14). 6. ETAPAS DO CICLO ESTRAL O ciclo estral é dividido em quatro etapas bem definidas. 6.1 Estro Neste estágio a fêmea aceita a cópula ou a monta de outra vaca. O estro é provocado pelo aumento significativo das concentrações de estradiol produzido pelo folículo pré-ovulatório e pela ausência de um corpo lúteo. A duração desta etapa é de 8 a 18 horas. 6.2 Metaestro O metaestro é a etapa posterior ao estro, tem uma duração de quatro a cinco dias. Durante esta etapa ocorre a ovulação e se desenvolve o corpo de lúteo. Após a ovulação, observa-se uma depressão no lugar ocupado pelo folículo ovulatório (depressão ovulatória) e, posteriormente, se desenvolve o corpo hemorrágico (corpo lúteo em processo de formação). Durante o metaestro, as concentrações de progesterona começam a aumentar até atingirem níveis superiores a 1 ng/ml, momento a partir da qual considera-se que o corpo lúteo atingiu a maturidade. O momento em que as concentrações de progesterona são superiores a 1 ng/ml toma-se como critério fisiológico a determinação do fim do metaestro e o início do diestro. Um evento hormonal que se destaca neste período consiste na apresentação do pico pós-ovulatório de FSH, o qual desencadeia a primeira onda de desenvolvimento folicular. Algumas vacas apresentam sangramento conhecido como sangramento metaestral (figura 15). 6.3 Diestro O diestro é o estágio de maior duração do ciclo estral, de 12 a 14 dias. Durante este estágio o corpo lúteo mantém sua plena funcionalidade, o que se reflete em concentrações sanguíneas de progesterona, maiores que 1 ng/ml. Além disso, nesta fase, pode-se encontrar folículos de tamanho diferente devido às ondas foliculares. Após 12-14 dias de exposição à progesterona, o endométrio começa a secretar PGF2α em um padrão pulsátil, ao qual termina com a vida do corpo lúteo e com o diestro. Em termos endócrinos, quando o corpo lúteo perde a sua funcionalidade, ou seja, quando as concentrações de progesterona diminuem abaixo de 1 ng/ml, finaliza-se o diestro e começa o proestro. Convém mencionar que durante esta fase, a LH é secretada com uma frequência muito baixa e a FSH tem incrementos responsáveis pelas ondas foliculares. 6.4 Proestro O proestro caracteriza-se pela ausência de um corpo lúteo funcional e pelo desenvolvimento e maturação do folículo ovulatório. O proestro na vaca dura de dois a três dias. Um evento hormonal característico desta etapa é o aumento da frequência dos pulsos de secreção de LH que levam à maturação final do folículo ovulatório e ao aumento do estradiol sérico, que desencadeia o estro. Para além da classificação do ciclo estral acima descrita, existe outra que divide o ciclo em duas fases: progestacional (lútea) e estrogênica (folicular). A fase progestacional inclui o metaestro e o diestro, e a fase estrogênica ao proestro e estro (figura 16). Figura 16. Etapas do ciclo estral. Adaptado e elaborado a partir de FERREIRA, 2010. 7. CONCLUSÕES PRÉVIAS O ciclo estral dura de 19 a 23 dias. A vaca é receptiva durante 8 a 18 horas (estro). Ao nascimento uma bezerra tem cerca de 200 mil folículos primordiais. Durante o ciclo estral se apresentam de duas a três ondas foliculares. De cinco a seis folículos são recrutados em cada onda folicular. Cerca de 70% das vacas têm duas ondas foliculares e 30% apresentam três ondas. Entre 10 e 20% das vacas têm ovulações múltiplas (dois a três folículos) e 8% têm partos gêmeos. A ovulação ocorre 30 horas após o pico pré-ovulatório de LH. A secreção pré-ovulatória de LH é de 15 a 30 ng/ml. 12 a 14 dias são necessários para que o endométrio se torne insensível à progesterona e comece a secretar PGF2α. - São necessários cinco a seis pulsos de PGF2α com um intervalo de oito horas para ocasionar a luteólise. O corpo lúteo não é sensível à PGF2α nos primeiros cinco dias do ciclo estral. Emanuel Isaque Cordeiro da Silva – Departamento de Zootecnia da UFRPE Recife, 2020. REFERÊNCIAS BIBLIOGRÁFICAS ALVES, Nadja Gomes; PEREIRA, Marcos Neves; COELHO, Rodrigo Michelini. Nutrição e reprodução em vacas leiteiras. Revista Brasileira de Reprodução Animal, p. l1248-l1248, 2009. ARBOLEDA, José Leonardo Ruiz; URIBE-VELÁSQUEZ, Luis Fernando; OSORIO, José Henry. Factor de crecimiento semejante a insulina tipo 1 (IGF-1) en la reproducción de la hembra bovina. Vet. zootec, v. 5, n. 2, p. 68-81, 2011. BARUSELLI, Pietro Sampaio; GIMENES, Lindsay Unno; SALES, José Nélio de Sousa. Fisiologia reprodutiva de fêmeas taurinas e zebuínas. Revista Brasileira de Reprodução Animal, v. 31, n. 2, p. 205-211, 2007. COLE, H. H.; CUPPS, P. T. Reproduction in domestic animals. 1ª ed. Londres: Academic Press, 1977. DA SILVA, Emanuel Isaque Cordeiro. Características Gerais dos Bovinos/General Characteristics of Cattle Bovine. Disponível em: ———. Acesso em: Fevereiro de 2020. DA SILVA, Emanuel Isaque Cordeiro. Definição de Conceitos Básicos na Reprodução Animal: Fertilidade, Fecundidade e Prolificidade-Suínos. Philarchive. Disponível em: ———. Acesso em: Fevereiro de 2020. DA SILVA, Emanuel Isaque Cordeiro. REPRODUÇÃO ANIMAL: OVULAÇÃO, CONTROLE E SINCRONIZAÇÃO DO CIO. Disponível em: ———. Acesso em: Fevereiro de 2020. DO VALLE, Ezequlel Rodrigues. O ciclo estral de bovinos e métodos de controle. Campo Grande: EMBRAPA-CNPGC, 1991. FERREIRA, A. M. Reprodução da fêmea bovina: fisiologia aplicada e problemas mais comuns. Juiz de Fora: Editar, 2010. GALINA HIDALGO, Carlos et al. Reproducción de animales domésticos. México: Limusa, 1988. HAFEZ, E. S. E.; HAFEZ, B. Reprodução animal. São Paulo: Manole, 2004. McDONALD, L.E. Veterinary endocrinology and reproduction. 3.ed. Philadelphia: Lea & Febiger, 1980. MELLO, R. R. C. et al. Desenvolvimento folicular inicial em bovinos. Revista Brasileira de Reprodução Animal, v. 37, n. 4, p. 328-333, 2013. MELLO, Raquel Rodrigues Costa et al. Aspectos da dinâmica folicular em bovinos. Agropecuária Científica no Semiárido, v. 10, n. 4, p. 01-06, 2015. NEBEL, Ray; DEJARNETTE, M. Anatomía y fisiología de la reproducción bovina. SELECT SIRES INC, v. 6, 2011. PALMA, Gustavo A. Biotecnología de la reproducción. Balcarce: Instituto Nacional de Tecnología Agropecuaria, 2008. PEREIRA, Elias de Oliveira. Fisiologia da reprodução em vacas leiteiras: REVISÃO DE LITERATURA. TCC Medicina Veterinária. Ituverava: FAFRAM, 2019. PETERS, A. R.; BALL, P. J. H. Reprodução em bovinos. São Paulo: Editora Roca, 2006. PRIETO-GÓMEZ, Bertha; VELÁZQUEZ-PANIAGUA, Mireya. Fisiología de la reproducción: hormona liberadora de gonadotrofinas. Rev Fac Med UNAM, v. 45, n. 6, p. 252-57, 2002. SALISBURY, Glenn Wade; LODGE, J. R.; VANDEMARK, N. L. Fisiología de la reproducción e inseminación artificial de los bóvidos. Zaragoza: Acribia, 1978. VIVEIROS, Ana Tereza de Mendonça. Fisiologia da reprodução de bovinos. Lavras: UFLA, 1997. (shrink)
FISIOLOGIA DA REPRODUÇÃO BOVINA: 2 - ESTRO E SERVIÇO -/- -/- INTRODUÇÃO -/- -/- A identificação de vacas em cio (estro ou cio) é, sem dúvida, a prática mais importante no manejo da reprodução do rebanho leiteiro. Apesar dos avanços no conhecimento da fisiologia da reprodução a nível celular e molecular, a identificação de vacas em estro continua sendo o problema reprodutivo mais importante e o que mais causa prejuízos econômicos. Na indústria de laticínios no Brasil, seu impacto não foi (...) estimado, porém, a estimativa feita por países como os Estados Unidos onde se perdem 300 milhões de dólares por ano pode dar uma ideia, atribuída apenas à baixa eficiência na detecção de estros. Por que é cada vez mais difícil detectar vacas em estro? A resposta está relacionada aos aspectos intrínsecos da vaca leiteira moderna, associadas as práticas de manejo dos rebanhos atuais, caracterizados por possuírem grande número de vacas nos plantéis. -/- -/- 2.1 Como saber que uma vaca está em cio/estro? -/- -/- O comportamento estral é causado por um aumento no estradiol sérico produzido pelo folículo ovulatório. O aumento do estradiol provoca mudanças de comportamento e modificações na genitália externa e interna. A vaca mostra-se inquieta, sua vocalização aumenta, ela anda mais, tenta montar em outras vacas e aceita montar no touro ou em outra vaca, bem como urinam com mais frequência (micção frequente). A vulva fica levemente inflamada, à palpação retal o útero pode ser visto com tônus ou turgor (duro e contraído) e ao massagear o colo do útero observa-se que sai abundante muco cristalino da vulva. O mecanismo clássico proposto na regulação do estro é baseado principalmente no papel do estradiol; no entanto, estudos recentes indicam que o GnRH pode participar da regulação do estro ao nível do hipotálamo. O estro possui duração entre 8 e 18 horas e a intensidade do mesmo é afetada por fatores ambientais e intrínsecos a vaca moderna (figuras de 1 a 6). -/- -/- -/- Figura 2: A observação do grupo sexualmente ativo facilita a identificação das vacas em estro. -/- Figura 1: As vacas em estro formam grupos ativos (grupo sexualmente ativo) separados do resto das vacas. A conformação desses grupos facilita a observação do estro. -/- -/- A formação de grupos de vacas é um fator ideal para a detecção de vacas em cio, elas ficam juntas e começam a montar uma nas outras, a cheirar a urina de ambas etc. comportamentos que podem ser visualizados de longe pelo tratador e diagnosticado o cio o mais breve possível para o manejo reprodutivo adotado pela propriedade seja para monta natural ou controlada e/ou inseminações artificiais (IA) e artificiais em tempo fixo (IATF). -/- -/- Figura 3: O único comportamento positivo do estro é a aceitação da monta de outra vaca. É frequente que a vaca que realiza a monta também esteja em estro, o que só será afirmado até que ela aceite a monta de outra vaca. -/- -/- Figura 4: Cada monta dura de 5 a 7 segundos -/- Figura 5: A vaca leiteira aceita de 5 a 30 montas distribuídas entre 8 e 18 horas. -/- Figura 6: Além das mudanças comportamentais, os estrogênios causam alterações na genitália interna. Uma delas é a produção de muco cervical, que juntamente com o turgor uterino, constituem os sinais genitais do estro. -/- -/- O cio pode ser dividido em três fases, a inicial, a fase de cio verdadeiro e a fase final. O cio verdadeiro quando é observado, é caracterizado pelo momento em que a vaca aceita claramente a monta. Por sua vez, os sinais de início e final de cio se misturam, apresentam nervosismo e inquietação, cheiram e lambem a vagina e a urina de outras vacas, apoiam a cabeça na garupa de outras fêmeas etc. (figura 7). Uma das sugestões adotadas nas propriedades para facilitar a identificação do cio em um rebanho é realizada pelos funcionários com a utilização de um bastão ou fita de coloração da garupa das vacas. -/- Figura 7: Principais sinais que demonstram que a vaca está entrando em cio. As imagens mostram o início do cio, cio verdadeiro e final do cio. -/- CONTINUA. BAIXE O PDF!!! -/- RESUMO -/- -/- < >Nos Estados Unidos, 300 milhões de dólares são perdidos devido à baixa eficiência na detecção do estro. A eficiência na detecção do estro no Brasil é de 40 a 50%. A meta de eficiência para detecção de estro é > 60%. Com a observação das vacas em dois períodos diários de três horas cada (manhã e tarde), consegue-se uma eficiência na detecção de estro de 80%. Menos de 20 por cento das vacas devem ter um intervalo de serviço duplo e nenhum de mais de 48 dias. A taxa de prenhez é obtida multiplicando-se a eficiência na detecção do estro pela porcentagem de concepção e dividindo por 100 (50 * 30/100 = 15%). A taxa de prenhez em rebanhos norte-americanos é de 15%. Nos Estados Unidos, para cada ponto percentual que diminui a taxa de prenhez, não há mais de US$ 12 a US$ 15 por vaca por ano. No Brasil, para cada ponto percentual que aumenta a taxa de prenhez, na faixa de 15 a 20%, é gerada uma renda anual adicional de $ 190 reais por vaca. Não mais que 25% das vacas devem estar vazias no 150º dia pós-parto. Não mais do que 8% devem as vacas ser cobertas no 250º dia pós-parto. 8% das vacas devem engravidar a cada mês. O estro ocorre 48 a 120 horas após o tratamento com PGF2α. 80% é a precisão na palpação do corpo lúteo. Quatorze dias devem decorrer entre duas injeções de PGF2α. Menos de 25% das vacas incluídas no programa de pré-sincronização devem chegar à IATF. No momento da ovulação, a primeira injeção de GnRH deve ser aplicada entre o quinto e o nono dia do ciclo estral. A inseminação cronometrada é realizada 14-16 horas após a segunda injeção de GnRH. O tratamento com dispositivos intravaginais liberadores de progesterona dura 12 dias. Se a duração do tratamento é menor deve-se injetar PGF2α ao retirá-lo. -/- -/- REFERÊNCIAS BIBLIOGRÁFICAS -/- -/- ATUESTA, Jorge; DIAZA, Angela Gonella. Control hormonal del ciclo estral en bovinos y ovinos. Spei Domus, v. 7, n. 14, 2011. -/- COLAZO, Marcos Germán; MAPLETOFT, Reben. Fisiología del ciclo estral bovino. Ciencia Veterinaria, v. 16, n. 2, p. 31-46, 2017. -/- Fisiologia Clínica do Ciclo Estral de Vacas Leiteiras: Desenvolvimento Folicular, Corpo Lúteo e Etapas do Estro. Belo Jardim: IFPE, 2020. -/- Fisiologia da Reprodução Animal: Ovulação, Controle e Sincronização do Cio. Belo Jardim: IFPE, 2020. -/- DOBSON, H. et al. The high‐producing dairy cow and its reproductive performance. Reproduction in domestic animals, v. 42, p. 17-23, 2007. -/- DO VALLE, Ezequlel Rodrigues. O ciclo estral de bovinos e métodos de controle. EMBRAPA-CNPGC., 1991. -/- FURTADO, Diego Augusto et al. Inseminação artificial em tempo fixo em bovinos de corte. Revista científica eletrônica de medicina veterinária, v. 16, p. 1-25, 2011. -/- GALON, Nadav. The use of pedometry for estrus detection in dairy cows in Israel. Journal of Reproduction and Development, v. 56, n. S, p. S48-S52, 2010. -/- HOPPER, Richard M. (Ed.). Bovine reproduction. John Wiley & Sons, 2014. -/- LOPEZ, H.; SATTER, L. D.; WILTBANK, M. C. Relationship between level of milk production and estrous behavior of lactating dairy cows. Animal reproduction science, v. 81, n. 3-4, p. 209-223, 2004. -/- MACMILLAN, Keith L. Recent advances in the synchronization of estrus and ovulation in dairy cows. Journal of Reproduction and development, v. 56, n. S, p. S42-S47, 2010. -/- MUNIS DE OLIVEIRA, G. Fisiologia da Reprodução Bovina e Métodos de Controle do Ciclo Estral. Trabalho de conclusão do curso de especialização em Reprodução e Produção de Bovinos–UCB. Rio de Janeiro, Brasil, 2006. -/- O'CONNOR, MICHAEL L. Estrus detection. In: Current therapy in large animal theriogenology. WB Saunders, 2007. p. 270-278. -/- RIPPE, Christian A. El ciclo estral. In: Dairy Cattle Reproduction Conference. 2009. p. 111-116. -/- ROELOFS, Judith et al. When is a cow in estrus? Clinical and practical aspects. Theriogenology, v. 74, n. 3, p. 327-344, 2010. -/- VIVEIROS, Ana Tereza de Mendonça. Fisiologia da reprodução de bovinos. Lavras: UFLA, p. 62, 1997. (shrink)
GAMETOGÊNESE -/- Emanuel Isaque Cordeiro da Silva Instituto Agronômico de Pernambuco Departamento de Zootecnia – UFRPE Embrapa Semiárido -/- • _____OBJETIVO -/- Os estudantes bem informados, estão a buscando conhecimento a todo momento. O estudante de Veterinária e Zootecnia, sabe que a Reprodução é uma área de primordial importância para sua carreira. Logo, o conhecimento da mesma torna-se indispensável. No primeiro trabalho da série fisiologia reprodutiva dos animais domésticos, foi abordado de forma clara, didática e objetiva os mecanismos de diferenciação (...) sexual dos embriões em desenvolvimento, quais os genes envolvidos nesse processo e tudo mais. Nesse segundo trabalho, a abordagem será teórica, mas também clara, sobre a formação primordial dos gametas femininos e masculinos, através da ovogênese nas fêmeas e a espermatogênese nos machos. Esse trabalho visa levar a importância do processo de formação dos gametas e a produção hormonal das gônadas, bem como o entendimento sobre as interações com o eixo hipotálamo-hipofisário. -/- •____INTRODUÇÃO -/- A reprodução sexual é um processo mediante a qual dois organismos da mesma espécie unem seu material genético para dar lugar a um organismo fixo com combinação única de genes; para isso, cada organismo produz células que contém a metade do material genético característico da espécie. Essas células haploides (1n) são denominadas gametas; ao combinar-se um gameta masculino com um feminino produz-se uma célula diploide (2n) (zigoto ou ovo) a partir da qual se forma o embrião. A grande maioria das espécies com reprodução sexual são anisogâmicas, o que significa que produzem dois tipos de gametas diferentes: os gametas masculinos são microscópios, móveis e produzem-se em grande quantidade, enquanto que os femininos são grandes, imóveis e produzem-se em menor quantidade. O tipo de gameta que um indivíduo produz é o que define seu sexo; sobre os animais o macho é o indivíduo que produz grandes quantidades de espermatozoides e a fêmea produz uma menor quantidade de óvulos, enquanto que nas plantas as gônadas masculinas são as produtoras pólen e as femininas produzem oosferas. Os gametas são diferentes do resto das células do organismo, as quais se chamam células somáticas; essas últimas são diploides porque contém dois pares de cromossomos, um par herdado do pai do indivíduo e o outro da mãe. As células somáticas, ademais, se dividem por mitose, ao qual os cromossomos se duplicam antes de cada divisão celular e cada uma das células filhas recebe um complemento diploide idêntico dos cromossomos, logo todas as células somáticas de um indivíduo possuem o mesmo material genético, embora cada tipo celular expresse diferentes combinações de genes. Em contraponto, os gametas são células haploides porque possuem somente um par de cromossomos e a metade do material genético característico da espécie. Cada um dos cromossomos em um gameta é resultado da recombinação dos genes contidos nos cromossomos paterno e materno do indivíduo que originam o gameta, e cada um destes possuem uma combinação única de genes. Os gametas se formam a partir das células germinais, que são células que em sua origem são diploides e elas de “comprometem” a manter-se como uma linha celular especial que em determinado momento sofrerá o processo de meiose para dar origem aos gametas haploides, sejam óvulos ou espermatozoides segundo o sexo do animal. Como descrito no trabalho sobre a diferenciação sexual, as células germinativas primordiais originam-se no epiblasto do embrião, e migram desde o saco vitelino até colonizar as cristas gonodais, onde, por sua vez, proliferam-se e se organizam junto com as células somáticas da gônada primitiva para formar o testículo ou o ovário. As células germinais masculinas e femininas tem a mesma origem embrionária. As gônadas indiferenciadas em um embrião possuem três tipos celulares: as células que dão origem aos gametas (ovogonia ou espermatogonia), as precursoras de células que nutrem os gametas em desenvolvimento (células da granulosa no ovário; células de Sertoli no testículo) e as precursoras de células que secretam hormônios sexuais (células da teca no ovário; células de Leydig no testículo). As células germinais são as únicas estruturas do organismo que têm a capacidade de dividir-se por meiose sofrendo uma redução no número de seus cromossomos, sendo responsável pela transmissão da carga genética aos descendentes. Em contraste, as células somáticas somente se dividem por mitose. A formação dos gametas compreende fases sequenciais de mitose, meiose e pós-meiose. Esses processos são altamente organizados e necessitam de um preciso e bem coordenado programa de expressão genética. Uma das características importantes da gametogênese é a redução cromossômica, que através da meiose, reduz pela metade o número de cromossomos e produz células distintas entre si, devido a trocas de material genético entre os pares de cromossomos provenientes do pai e da mãe, o que ocorre no processo de “crossing over” durante a primeira fase da meiose. A gametogênese é o processo mediante o qual as células germinais de cada sexo se multiplicam, dividem e diferenciam até formar os gametas. No caso da formação dos gametas masculinos o processo recebe o nome específico de espermatogênese, e para os gametas femininos é denominado como ovogênese. Embora os dois processos alcancem o objetivo comum de produção das células haploides, por onde compartilham algumas características, existem diferenças marcadas entre eles devido a necessidade de produzir um número muito distinto de gametas, de tamanho diferente, e com características de motilidade também distintas. -/- •___ESPERMATOGÊNESE -/- A espermatogênese é o processo mediante o qual se produz os gametas masculinos denominados espermatozoides. Durante a vida fetal as células germinais e as células somáticas do testículo em formação organizam-se em túbulos seminíferos que se derivam dos cordões sexuais primários e conformam a maior parte da medula do testículo. Na etapa fetal cada tubo seminífero é delimitado por uma membrana basal, recoberta na parte interior pelas células precursoras das células de Sertoli (um tipo de células somáticas). No exterior do túbulo localizam-se as células precursoras das células de Leydig ou intersticiais (figura 1), que também são células somáticas. Entre a membrana basal e as células de Sertoli encontram-se algumas células germinais denominadas espermatogonias de reserva A0 (denominadas gonócitos) que serão o único tipo de células germinais presentes no testículo enquanto o animal não alcançar a puberdade. As células de Sertoli estabelecem na região basal uniões oclusoras entre si, formando parte da barreira hemato-testicular. As espermatogonias A0 localizam-se por dentro da membrana basal do túbulo seminífero, embora fora da barreira hemato-testicular. Figura 1: fase neonatal. Nota-se a grande infiltração de tecido intersticial em quase 50% da seção originando que os túbulos sejam pequenos e redondos em sua maioria. O citoplasma e núcleo das células pré-Leydig são notadas claramente por essa ser uma espécie suína onde o tecido intersticial está claramente diferenciado. Hematoxilina-eosina (X 220.5). Fonte: Embrapa. -/- O número de células de Sertoli no testículo depende da influência do hormônio folículo estimulante (FSH) presente durante a vida fetal e as primeiras etapas de vida pós-natal. A população de células de Sertoli ao chegar a puberdade se manterá fixa durante o resto da vida do animal; existe uma relação positiva entre o tamanho e a população de células de Sertoli e a capacidade de produção de espermatozoides do testículo. As células de Sertoli são as únicas células somáticas que estão no epitélio seminífero, e sua função é a nutrição, sustentação e controle endócrino das células germinais. As células de Sertoli participam ativamente no processo de liberação dos espermatozoides para a luz do túbulo. Nesse momento, as células de Sertoli realizam a fagocitose de parte do citoplasma do espermatozoide dos chamados corpos residuais. As células de Sertoli também fagocitam as células germinais que se degeneram no curso normal da espermatogênese. Essas células ainda sintetizam grande quantidade de proteínas, como por exemplo as proteínas ABP (androgen hinding protein), que transportam andrógenos para todo o aparelho reprodutivo, transferrinas, que transportam ferro para a respiração celular das células germinais e também às inibinas, que regulam a liberação de FSH pela hipófise, através de um sistema de retroalimentação (feedback) negativa (figura 2). Figura 2: epitélio seminífero, células de Sertoli (flecha) (400 X). Fonte: Embrapa. -/- Antes da puberdade dos túbulos seminíferos observam-se ao corte como estruturas de diâmetro pequeno, sem luz, e conformados unicamente pelas células de Sertoli e espermatogonias de reserva e rodeados por abundante tecido intersticial, ao que estão presentes as células precursoras das células de Leydig. Ainda antes da puberdade, a diferenciação celular manifesta-se primeiro pela presença de espermatócitos primários, os quais se degeneram em geral na fase de paquíteno, por falta de estimulação hormonal. A partir de que o animal chega a puberdade inicia-se o processo de espermatogênese, que se manterá durante toda a vida do animal, exceto em espécies de animais silvestres muito estacionais, ao qual pode se suspender durante a época não reprodutiva para voltar e ser retomada na época ou estação reprodutiva. Depois da puberdade, os túbulos seminíferos possuem um diâmetro muito maior; em seu interior observa-se um grande número de células germinais de todos os tipos, diferentes estádios de divisão, e em seu lúmen contém líquido e espermatozoides. Ainda sobre o alcancei da puberdade, as espermatogonias começam a dividir-se aceleradamente por mitose, enquanto que no espaço intersticial as células mesenquimais também começam a se diferenciar e a dar origem as células de Leydig (figura 3). A partir dessa etapa as células de Leydig (totalmente diferenciadas) são também evidentes no exterior do túbulo, junto com as células mioides ou peritubulares que o rodeiam o que ao contrair-se são responsáveis por controlar o avanço dos fluidos e as células presentes no lúmen do túbulo. As células mioides estão situadas ao redor do túbulo, e é creditado a elas a promoção da contração e da integridade estrutural do túbulo. Esse tipo celular apenas se diferencia na puberdade pela ação dos andrógenos (figura 4). As interações entre as células de Sertoli e as mioides parecem ter um papel importante na manutenção das funções do testículo. Durante o processo de espermatogênese, as espermatogonias de reserva dividem-se periodicamente e enquanto algumas células fixas permanecem como espermatogonias de reserva, outras proliferam e sofrem uma seção de divisões mitóticas durante as quais se vão diferenciando até formarem espermatócitos primários (espermatocitogênese ou fase de mitose), logo sofrem divisões especiais mediante as quais reduzem seu número de cromossomos (fase de meiose), e ao final trocam de forma para converter-se em espermatozoides (espermatocitogênese) (figura 5). Cada uma dessas etapas da espermato- gênese será descrito detalhadamente adiante, antes é necessário a explicação de algumas características das células de Sertoli e de Leydig que ajudarão a entender seu papel durante a espermatogênese. Figura 3: células de Leydig no espaço intersticial do testículo bovino adulto PAS (400 X). Fonte: Embrapa. -/- Figura 4: o estabelecimento da puberdade pela presença de espermatozoides no túbulo. Hematoxilina-eosina (400 X). Fonte: Embrapa. Figura 5: fases mitóticas das espermatogonias (A0 e B) para formação de um espermatócito primário e as duas fases de meiose que se sucedem antes da espermatogênese. Fonte: ZARCO, 2018. -/- Ao início da espermatocitogênese as uniões oclusoras entre as células de Sertoli se abrem por etapas (como as comportas de um submarino) para permitir a passagem das espermatogonias em direção ao centro do túbulo seminífero sem que se estabeleça uma continuidade entre o exterior e o interior da barreira hemato-testicular. Uma vez ultrapassada essa barreira, as sucessivas gerações de espermatogonias, espermatócitos, espermátides e espermatozoides irão se localizar em direção ao interior do túbulo seminífero, em estreita associação com as células de Sertoli. Em consequência, as células de Sertoli dividem o túbulo seminífero em dois compartimentos; o compartimento basal (debaixo das uniões oclusoras das células de Sertoli), ao qual residem as espermatogonias de reserva, e o compartimento adluminal (em direção ao centro do túbulo), cujos espaços entre as células de Sertoli desenvolvem o resto do processo de espermatogênese (meiose e espermatocitogênese). Esse feito é importante porque durante a vida fetal as únicas células germinais existentes eram as espermatogonias de reserva, pelo que os antígenos expressados por gerações mais avançadas (espermatogonias intermediárias, secundárias, espermátides e espermatozoides) não são reconhecidos como próprios do corpo pelo sistema imunológico. Logo, o anterior implica que deve existir uma barreira entre eles e o sangue para evitar um ataque imunológico. Em todas as etapas da espermatogênese, as células de Sertoli atuam como células de suporte para as células germinais, que sempre permanecem recoberta pela membrana das células de Sertoli. Também atuam como células nutricionais já que proporcionam o meio em que as células germinais se desenvolvem e maturam, assim como as substâncias que regulam e sincronizam as sucessivas divisões e transformações das células germinais. As células de Sertoli produzem hormônios, como estrógenos e inibina que atuam sobre a hipófise para regular a secreção das gonadotropinas que controlam a espermatogênese. As células de Leydig que residem no exterior do túbulo seminífero também são importantes para a espermatogênese: produzem a testosterona que estimula e mantém a espermatogênese, bem como serve como substrato sobre o qual atua como aromatizador das células de Sertoli para transformá-las em estrógenos. Como supracitado, para seu estudo podemos dividir a espermatogênese em três fase: espermatocitogênese, meiose e espermiogênese (figura 6). Agora, serão descritas cada uma dessas etapas. Em algumas espécies, incluindo no homem, os macrófagos representam o segundo tipo celular intersticial mais numeroso no testículo, depois das células de Leydig. Os macrófagos e vários subtipos de linfócitos são identificados nós testículos de ovinos e ratos. Eles estão intimamente associados com as células de Leydig e atuam juntamente na regulação da esteroidogênese. Figura 6: fluxograma da espermatogênese. -/- Espermatocitogênese -/- A espermatocitogênese, também chamada de etapa proliferativa ou de mitose, consiste numa série de divisões mitóticas sofridas pelas células descendentes de uma espermatogonia de reserva. Uma vez que a célula se divide, abandona o estado de reserva e começa um processo de diferenciação. As espermatogonias de reserva (denominadas espermatogonias A0 na rata ou As nos humanos) são células que existem desde a vida fetal e que permanecem mitoticamente inativas durante a infância. Uma vez que alcançam a puberdade começam a dividir-se em intervalos regulares, e as células filhas podem permanecer como espermatogonias de reserva ou abandonar a reserva e ingressar na dita espermatocitogênese. Uma vez abandonada a reserva, as células filhas que vão se formando em cada divisão permanecem unidas por pontes citoplasmáticas, constituindo um clone que se divide sincronicamente. As células que se formam depois de cada divisão continuam sendo espermatogonias, porém cada geração é ligeiramente diferente da anterior. Na rata, por exemplo, as espermatogonias tipo A0 ao dividir-se originam espermatogonias do tipo A1, que em sucessivas divisões formam espermatogonias dos tipos A2, A3 e A4, as quais, por sua vez, sofrem outra mitose para formar espermatogonias intermediárias e uma mais para formar espermatogonias do tipo B. Essas últimas se diferenciam (sem se dividir) em espermatócitos primários, processo em que termina a fase de espermatocitogênese, que literalmente significa processo de geração de espermatócitos. As espermatogonias tipo A0 são a fonte para a contínua produção de gametas. A metade delas se dividem e formam células iguais (as chamadas células tronco) e a outra metade forma as espermatogonias A1, que sofre novas divisões mitóticas e formam os tipos 2, 3 e 4. O tipo A4 sofre mitose para formar a intermediária (A In), que por mitose, forma a tipo B (figura 6). Esses tipos de espermatogonias podem ser identificadas em evoluções histológicas de acordo com sua organização topográfica na membrana basal dos túbulos seminíferos ou mediante seu conteúdo de heterocromatina. Outra maneira de diferenciação se baseia em marcadores moleculares específicos que distinguem as espermatogonias tronco (A0) das demais, com os fins de isolamento, desenvolvimento in vitro e transplante. As tipo B passam por mitose para formarem os espermatócitos primários; estes iniciam a primeira etapa da meiose formando os espermatócitos secundários; na segunda etapa da divisão meiótica, cada espermatócito secundário se divide e formam as chamadas espermátides. Quando o testículo alcança seu desenvolvimento total, a meiose completa-se e as espermátides originadas se convertem em espermatozoides. Um dos maiores sinais característicos desse fenômeno é o alargamento das espermátides e sua migração em direção ao lúmen do túbulo seminífero (figuras 4, 7 e 8). Figura 7: espermatogonias marcadas por imuno-histoquímica, anticorpo monoclonal TGFa (400 x). Figura 8: fases de divisões meióticas (M), espermatócitos em paquíteno (PA) e espermatócitos secundários (ES). -/- Figura 9: estádio posterior a liberação dos espermatozoides na luz do túbulo. Hematoxilina-eosina (400 x). Mediante as seis divisões mitóticas que ocorrem durante a espermatocitogênese se forma potencialmente um clone de 64 espermatócitos primários a partir de cada espermatogonia A que ingressa sobre o processo. Não obstante, algumas células sofrem apoptose em cada uma das etapas do processo, ao qual o número real formado é menor. Em outras espécies produzem-se um transcurso similar de divisões mitóticas sucessivas durante a espermatocitogênese, embora a nomenclatura utilizada possa ser distinta, por exemplo nos bovinos as duas últimas divisões mitóticas dão origem as espermatogonias de tipo B1 e B2. -/- Meiose -/- Uma vez que as espermatogonias B se diferenciam em espermatócitos primários, esses iniciam a etapa de meiose, com uma nova divisão; desta vez a divisão é do tipo meiótica. Ao completar-se a primeira divisão meiótica (meiose I) se obtém os espermató-citos secundários, que ao sofrer a segunda divisão meiótica (meiose II) dão origem as espermátides. Vale salientar que a meiose é o processo mediante o qual reduz-se a metade do número de cromossomos, pelo que as espermátides que se obtém são células haploides (1n). Os espermatócitos secundários que se formam depois da primeira divisão meiótica contém a metade do número normal de cromossomos, porém a mesma quantidade de DNA já que cada cromossomo é duplo. As espermátides formadas na conclusão da segunda divisão meiótica (figura 7), por sua vez, contém a metade dos cromossomos, e esse já não são duplos, já que se trata de células 1n. Também deve-se enfatizar que durante a meiose é relevante o entrecruzamento dos cromossomos homólogos, pelo que cada espermátide possui uma combinação única e diferente de genes paternos e maternos. Outro ponto que deve ser levado em consideração é que cada espermátide somente possui um cromossomo sexual; a metade das espermátides contém o cromossomo X herdado da mãe do macho que está levando a cabo a espermatogênese e a outra metade contém o cromossomo Y herdado de seu pai. Para cada espermatócito primário que entra no processo de meiose obtém-se cerca de quatro espermátides, pelo qual ao ser completada a meiose potencialmente se poderiam formar até 256 espermátides por cada espermatogonia que abandona a reserva e ingressa na espermatocitogênese. -/- Espermiogênese -/- Durante a espermiogênese, também chamada de fase de diferenciação, as esper-mátides sofrem, sem se dividir, uma metamorfose que as transforma em espermatozoides, os quais finalmente são liberados das células de Sertoli em direção ao lúmen do túbulo seminífero. A espermiogênese é um processo complicado e longo já que a espermátide deve sofrer complexas trocas nucleares, citoplasmáticas e morfológicas que resultam na forma-ção dos espermatozoides. Algumas dessas mudanças incluem a condensação do material nuclear para formação de um núcleo plano e denso, a eliminação do citoplasma para a constituição de uma célula pequena, a formação de uma estrutura especializada denomi-nada acrossomo ou tampa cefálica, e a formação do pescoço e da cauda (flagelo) do esper-matozoide, do que depende a sua motilidade. Durante a maior parte da espermiogênese, as espermátides se mantém com uma estreita associação com as células de Sertoli; logo, chega-se a observar, então, flagelos que se projetam em direção a luz do túbulo que pare-cem sair das células de Sertoli, sendo na realidade os flagelos dos espermatozoides que ainda não tinham sido liberados pelo lúmen. Ao liberar os espermatozoides em direção a luz do túbulo, as células de Sertoli realizam a fagocitose de parte do citoplasma dos espermatozoides (corpos residuais). Também fagocitam os restos de todas as células germinais que sofrem apoptose ou degeneram-se durante a espermatogênese. Credita-se que ao realizar essas funções as células de Sertoli podem fazer uma monitoração eficiente da espermatogênese, o que lhes permitiria emitir sinais para colaborar na regulação desse processo em nível gonodal e a nível sistêmico através da secreção de hormônios como a inibina e o estradiol. Além da inibina e activina, as células de Sertoli sintetizam outras proteínas, como a ABP (proteína ligadora de andrógenos) que serve como uma molécula de transporte de andrógenos dentro dos túbulos seminíferos, ductos deferentes e epidídimo, ou a transfer-rina, que transporta o ferro necessário para a respiração celular. -/- Resultados da espermatogênese -/- O resultado da espermatogênese não significa apenas uma simples multiplicação das células germinais (até 256 espermatozoides a partir de cada espermatogonia A1), senão que através dela são produzidos gametas haploides pequenos, móveis e com grande diversidade genética entre eles, ao mesmo tempo que se mantêm uma reversa de células mãe (espermatogonias A0) a partir das quais se poderiam originar novos ciclos de esper-matogênese durante o resto da vida do animal. -/- Controle hormonal da espermatogênese -/- Como mencionado, o FSH reproduz um importante papel para o estabelecimento das células de Sertoli durante a vida fetal e início da vida pós-natal. O começo da esper-matogênese também é estimulado pelo FSH, que atua sobre as células de Sertoli para estimular sua função e a ativação de sinais dessas células em direção as células germinais, incluindo-as a abandonar a reserva e ingressar na espermatogênese. O FSH, assim mesmo, estimula a mitose durante o resto da espermatogênese e aumenta a eficiência do processo, já que reduz a apoptose e a degeneração de espermatogonias intermediárias e do tipo B. O FSH também estimula as células de Sertoli para produzirem inibina e ABP. Uma vez iniciada a espermatogênese somente requerem níveis baixos de FSH para se mantê-la. As células de Sertoli também devem ser estimuladas pela testosterona para funcio-nar de maneira adequada; se requer também do LH hipofisário: hormônio que estimula as células de Leydig para produzir testosterona. Por sua vez, a secreção de LH e FSH é regulada pelo GnRH hipotalâmico: esse neurohormônio também faz parte do mecanismo de regulação da espermatogênese. A espermatogênese também é modulada em nível local mediante a produção de determinados fatores e interações entre as células. Dentro dos fatores locais podemos mencionar o fator de crescimento parecido com a insulina 1 (IGF-1), o fator de crescimen-to transformante beta (TGF- β), activina, ocitocina e diversas citocinas. Entre as intera-ções celulares existem tanto uniões de comunicação entre as células de Sertoli e as células germinais, como pontes citoplasmáticas entre todas as células germinais que formam o clone de células descendentes de uma espermatogonia A1. Uma vez que as células de Sertoli iniciam sua função na puberdade é possível manter experimentalmente a espermatogênese somente com testosterona, sem ser requeri-dos nenhum outro hormônio. A quantidade de espermatozoides produzidos, no entanto, é maior quando há presença do FSH. Abaixo do estímulo do FSH as células de Sertoli produzem estradiol e inibina, hormônios que geram uma retroalimentação sobre o eixo hipotálamo-hipofisário para a regulação da secreção de gonadotropinas. Em particular, a inibina reduz a secreção de FSH, pelo qual é factível que sirva como um sinal que evite uma excessiva estimulação as células de Sertoli. -/- Ciclo do epitélio seminífero -/- Em cada espécie as espermatogonias de reserva iniciam um novo processo de divi-sões celulares em intervalos fixos: a casa 14 dias no touro; 12 dias no garanhão e a cada 9 dias no cachaço (reprodutor suíno). A nova geração de células que começam a proliferar sobre a base do tubo deslocam-se em direção ao centro do túbulo a geração anterior, que por sua vez deslocam-se as gerações anteriores. Devido as mudanças que vão sofrendo cada geração celular se ajustam a tempos característicos de cada etapa, já que rodas as células em uma determinada seção do túbulo estão sincronizadas entre si pelas células de Sertoli; em cada espécie somente é possível encontrar um certo número de combinações celulares: 14 diferentes combinações no caso da rata, 8 no touro e 6 no ser humano. A sucessão de possíveis combinações até regressar a primeira combinação se conhece como o ciclo do epitélio seminífero. Na maioria das espécies os espermatozoides que são libera-dos em direção a luz do túbulo provém das células que entraram no processo de esperma-togênese quatro gerações antes que a geração que está ingressando nesse momento, pelo que a espermatogênese no touro dura ao redor de 60 dias e um pouco menos em outras espécies domésticas. Significa que os efeitos negativos das alterações na espermatogêne-se podem estar presentes até dois meses depois de que se produziram essas alterações. Como supracitado, geralmente se observa a mesma combinação celular em toda a área de uma determinada secção transversal do túbulo seminífero. No entanto, se fizermos uma série de secções, observa-se que ao longo do túbulo há uma sucessão ordenada de combinações (a primeira em uma determinada secção; a segunda combinação na seguinte secção, e assim sucessivamente em secções subsequentes até regressar a primeira combi-nação. Teremos, então, que ao início da divisão das espermatogonias A1 se produz de forma sincronizada em uma secção do túbulo, e vai-se transmitindo como uma onda peristáltica as secções adjacentes. Esse processo é denominado como onda do epitélio seminífero e graças à esse túbulo seminífero sempre tem secções em todas as etapas da espermatogênese, com o que se alcança uma produção constante de espermatozoides. -/- Alterações da espermatogênese -/- Nas espécies estacionais a espermatogênese, como já mencionado, pode reduzir-se ou inclusive suspender sua atividade fisiológica durante a época não reprodutiva dessas espécimes, porém esse processo fisiológico não pode ser considerado como uma altera-ção. No entanto, a espermatogênese só pode ser alterada pelas enfermidades ou por fatores externos. A principal causa de alterações na espermatogênese é o aumento da temperatura testicular. Por isso, os testículos são localizados na saco escrotal e são “caídos” para fora do corpo como pode-se observar nos bovinos, caprinos, ovinos, caninos e no próprio homem. A temperatura testicular deve estar cerca de 2 a 6 °C abaixo da temperatura corporal normal. As células germinais masculinas são sensíveis ao calor, pelo qual na maioria dos mamíferos os testículos se encontram fora da cavidade abdominal e existe um sofisticado sistema de termorregulação para mantê-los a uma temperatura menor que a corporal. Se a temperatura corporal for elevada ou se os testículos permanecerem na cavidade abdominal, ou ainda se os sistemas termorreguladores do testículo sejam afetados por fatores inflamatórios como edema ou falta de mobilidade testicular dentro do escroto, a temperatura do tecido testicular aumentará e a espermatogênese sofrerá alterações proporcionais ao excesso de temperatura e a duração da elevação. A espermatogênese também pode ser afetada pela exposição a hormônios ou a outras substâncias. É possível que a causa mais comum (sobretudo no homem) seja o uso de esteroides anabólicos, que elevam a concentração de andrógenos na circulação, provo-cando um feedback negativo sobre a secreção de gonadotropinas. Ao deixar de estimular-se o testículo pelas gonadotropinas, este deixará de produzir testosterona, e as concentra-ções de andrógeno exógeno nunca alcançará as altíssimas concentrações de testosterona que normalmente estão presentes a nível do tecido testicular por ser o local onde se produz o hormônio. Também se supõe que diversas substâncias com propriedades estrogênicas derivadas de processos industriais (indústria dos plásticos, hidrocarbonetos etc.) e presentes no ambiente (fatores xenobióticos) podem ser responsáveis pelas alterações na espermatogênese em diversas espécies, entre as quais se inclui o ser humano. -/- • OVOGÊNESE E FOLICULOGÊNESE -/- A ovogênese é o processo seguido pelas células germinais da fêmea para a forma-ção dos óvulos, que são células haploides. Durante a vida fetal as células germinais proliferam-se no ovário por mitose, formando um grande número de ovogonias, algumas das quais se diferenciam em ovócitos primários que iniciam sua primeira divisão meiótica para deter-se na prófase da divisão. Somente alguns desses ovócitos primários retornarão e concluirão a primeira divisão meiótica em algum momento da vida adulta do animal, dando origem a um ovócito secundário e a um corpo polar. O ovócito secundário inicia a sua segunda divisão meiótica, a qual volta a ficar suspensa até receber um estímulo apropriado, já que somente os ovócitos secundários que são ovulados e penetrados por um espermatozoide retornam e concluem a segunda divisão meiótica, dando origem a um óvulo (figura 10). O processo de ovogênese é realizado dentro dos folículos ovarianos, que também tem que sofrer um longo transcurso de desenvolvimento e diferenciação denominado foliculogênese pelo que a ovogênese como tal realiza-se dentro do marco desse último processo. Por essa razão, na seguinte seção descreverei tanto a ovogênese como a folicu-logênese, e a relação que existe entre ambos. Figura 10: representação da ovogênese. Na etapa de proliferação, as células germinais se diferen-ciam por mitose. A meiose I se caracteriza por uma prófase prolongada, ocorrendo a duplicação do DNA. Nas duas divisões, que ocorrem antes da ovulação e depois da fertilização, a quantidade de DNA é reduzida a 1n, com o fim de que a fusão dos pronúcles (singamia) pós-fertilização, seja gerado um zigoto com um número de cromossomos de 2n (diploide). -/- Geração de ovócitos primários e folículos primordiais Tanto a ovogênese como a foliculogênese iniciam-se durante a vida fetal, quando as células germinais primordiais provenientes do saco vitelino colonizam a gônada primitiva e, junto com as células somáticas z organizam-se para a formação dos cordões sexuais secundários, que se desenvolvem principalmente no córtex do ovário. Nesse período, as células germinais que colonizaram o ovário sofrem até 30 divisões mitóticas, proliferando-se até formar milhares ou milhões de ovogonias, que inicialmente formam “ninhos” constituídos cada um deles por um clone de várias ovogonias que descendem da mesma célula precursora e que se mantêm unidas por pontes citoplasmáticas, sincronizan-do suas divisões mitóticas. Nessa etapa alcança-se a máxima população de células germinais no ovário, que antes de nascer se reduzirá drasticamente por apoptose. No ovário do feto humano chegam a haver até sete milhões de células germinais que ao nascimento se reduzem a dois milhões. Os ovários fetais do bovino, de maneira análoga, chegam a ter até 2.100.000 células germinais, que ao nascimento reduzem para 130.000 aproximadamente. A redução no número de ovogonias produz-se ao mesmo tempo que essas células, que vêm dividindo-se por mitose e estão agrupadas em ninhos, iniciam sua primeira divisão meiótica para se transformarem em ovócitos primários: células germinais que se encontram em uma etapa de suspensão (diplóteno) da prófase da primeira divisão meiótica. Nesse período produz-se uma grande proporção de células germinais; as células somáticas dos cordões sexuais, por sua vez, emitem projeções citoplasmáticas que separam a isolam os ovócitos primários sobreviventes, ficando cada um deles rodeados por uma capa de células aplanadas da (pré) granulosa. Ao mesmo tempo em que se forma uma membrana basal entre as células da granulosa e o tecido intersticial do ovário. Ao ovócito primário rodeado de uma capa de células da (pré) granulosa aplanadas e delimita-das por uma membrana basal denomina-se de folículo primordial (figura 11). Nas vacas os folículos primordiais bem formados já estão presentes nos ovários a partir do dia 90 da gestação. A maioria dos folículos primordiais com os que nasce uma fêmea se manterão inativos durante um longo tempo; muitos deles durante toda a vida do animal. Nos folículos primordiais inativos tanto os ovócitos primários como as células da granulosa conservam sua forma original e mantém um metabolismo reduzido estritamente ao mínimo necessário para manter-se viáveis. Por essa razão, ao realizar um corte histológico de qualquer ovário as estruturas mais numerosas que se observam serão os folículos primordiais. No entanto, cada dia da vida de um animal, inclusive desde a vida fetal, um certo número de folículos primordiais reiniciam seu desenvolvimento, e a partir desse momento um folículo exclusivamente pode ter dois destinos: o primeiro, prosseguir seu desenvolvi-mento até chegar a ovular, e o segundo (que é muito mais frequente) encontrar em algum momento condições inadequadas que fazem fronteira com ele para parar seu desenvolvi-mento, levando-o a sofrer atresia e degenerar até desaparecer do ovário. Figura 11: sequência da foliculogênese apresentando as diferentes estruturas que podemos encontrar em cada fase. Fonte: ZARCO, 2018. Culminação da ovogênese A ovogênese somente se completará quando um ovócito primário reinicia a meio-se; completa sua primeira divisão meiótica para formar um ovócito secundário e um primeiro corpo polar e, quando, finalmente sofrer uma segunda divisão meiótica para formar um óvulo e um segundo corpo polar. Os óvulos são as células 1n que constituem os gametas femininos, pouco numerosos, grandes e imóveis. A grande maioria dos ovóci-tos primários, como veremos mais adiante, nunca retomam a meiose e, em consequência, não chegam a formar ovócitos secundários, e muitos dos ovócitos secundários tampouco sofrem uma segunda divisão meiótica, pelo que não chegam a formar os óvulos. Ao longo da vida de uma fêmea, na maioria das espécies, menos de 0,1% dos ovócitos primários (um a cada mil) chega a terminar a ovogênese, dando origem a um óvulo. O supracitado deve-se a que a ovogênese somente pode retomar-se e ser completa-da em ovócitos primários que se encontram dentro dos folículos primordiais que (uma vez ativados) vão alcançando diversas etapas de seu desenvolvimento em momentos precisos aos que encontram as condições ideais de oxigenação, nutrição, vascularização e exposição a fatores parácrinos e a exposição a concentrações de hormônios que se requerem para que o folículo continue em cada etapa de seu desenvolvimento com o processo de foliculogênese até chegar a ovular. Qualquer folículo que não esteja nessas condições ao longo do desenvolvimento sofrerá degeneração e atresia, pelo que o ovócito primário em seu interior nunca chegará ao ponto em que pode retomar a primeira divisão meiótica. No que resta da presente seção revisaremos o processo de foliculogênese em cujo marco se desenvolve a ovogênese; havemos que tomar de conta que essa última se limita ao que ocorre nas células germinais (ovogonia, ovócito primário, secundário e óvulo), pelo qual depende intimamente do desenvolvimento do folículo de que essas células formam parte. Em um princípio a ativação do folículo primordial e o desenvolvimento folicular são independentes das gonadotropinas: não se conhecem os mecanismos precisos median-te os quais um folículo primordial se ativa e reinicia seu desenvolvimento, nem como se decide quais folículos, dentre as dezenas de milhares de ou centenas de milhares presentes em um ovário se reativarão em um dia em particular. A reativação trata-se de uma liberação de influência de fatores inibidores, já que os folículos primordiais se reativam espontaneamente quando cultivados in vitro, isolados do resto do tecido ovariano. Uma vez que um folículo primordial se ativa, inicia-se um longo processo de desenvolvimento que somente depois de vários meses (ao redor de cinco meses no caso dos bovinos) o levará a um estádio em que seu desenvolvimento posterior requer a presença das gonado-tropinas; daí que se diz que as primeiras etapas do desenvolvimento são independentes das gonadotropinas. Durante a fase independente de gonadotropinas, um folículo primordial que tenha sido ativado e tenha começado a crescer; passará primeiro para a etapa de folículo primá-rio, caracterizada por conter um ovócito primário que está rodeado, por sua vez, por uma capa de células da granulosa, que não são planas, e sim cúbicas. Depois, se o folículo continuar crescendo se transformará em um folículo secundário, ao qual as células da granulosa começam a proliferar (aumentando em número) e se organizam em duas ou mais capas que rodeiam o ovócito primário. Entre o ovócito e as células da granulosa que o rodeiam se forma nesta uma zona pelúcida; ainda assim o ovócito mantém contato direto com essas células, mediante o estabelecimento de pontes citoplasmáticas que atravessam a zona pelúcida. Através dessas pontes citoplasmáticas as células da granulosa podem passar nutrientes e informação ao ovócito primário. O volume e o diâmetro do ovócito primário aumentam ao mesmo tempo que as células da granulosa proliferam-se, para incrementar as capas ao redor do ovócito. De maneira gradual o citoplasma do ovócito primário aumenta até 50 vezes seu volume e a proliferação das células continua. Esses folículos que possuem cada vez mais células e portanto mais capas de células da granulosa se denominam folículos secundários. Para evitar confusões, há a necessidade de nomen-clatura ao qual o folículo vá mudando de nome de primordial a primário e logo, de secun-dário, a terciário, por sua vez, o ovócito que encontra-se em seu interior, a todo momento, segue sendo um ovócito primário. Durante a etapa dependente de gonadotropinas, os folículos secundários começam a formar um espaço cheio de líquido, o antro folicular, desse modo se convertem em folí-culos terciários. Com a utilização de outra nomenclatura, a formação do antro marca a transição entre folículos pré-antrais (sem antro) e folículos antrais (com antro). Em algum momento dessa transição entre folículo secundário e terciário, também aparece a depen-dência de folículos em direção as gonadotropinas, pelo qual somente podem seguir crescendo na presença do hormônio luteinizante (LH) e do hormônio folículo estimulante (FSH). Nos bovinos e em outras espécies (para seu estudo), os folículos antrais são dividi-dos em pequenos, médios e grandes. Embora todos eles possuam um antro folicular, dependendo do seu grau de desenvolvimento requerem diferentes concentrações de gona-dotropinas para continuar o crescimento. Os folículos antrais mais pequenos somente re-querem concentrações baixas de LH e FSH, pelo qual podem continuar crescendo em qualquer momento do ciclo estral inclusive em animais que não estão ciclando (fêmeas em anestro pré-puberal, gestacional, lactacional, estacional). Nas etapas posteriores os folículos antrais requerem primeiro concentrações elevadas de FSH, e nas etapas finais somente podem continuar crescendo na presença de pulsos frequentes de LH, pelo qual somente os folículos que encontram-se sob concentrações apropriadas desses hormônios podem seguir crescendo. Por essa razão, nos animais que se encontram em anestro de qualquer tipo somente é possível encontrar folículos antrais pequenos ou médios, segundo a espécie, e nos animais que se encontram ciclando (estro) o maior tamanho folicular encontrado em um determinado dia do ciclo dependerá das concentrações de FSH e LH presentes nesse momento e nos dias anteriores. Um folículo que chega ao estado máximo de desenvolvimento, conhecido como folículo pré-ovulatório, ao final, somente chegará a ovular se for exposto a um pico pré-ovulatório de LH. Como supracitado, cada dia na vida de uma fêmea inicia seu desenvolvimento um certo número de folículos; a grande maioria sofrem atresia, mas depois da puberdade em cada dia do ciclo estral um ou vários folículos vão encontrando ao longo do seu desenvol-vimento concentrações hormonais que lhes permite chegar na etapa de folículo pré-ovula-tório. Somente nestes folículos, e como consequência de um pico pré-ovulatório de LH, se reinicia e completa-se a primeira divisão meiótica do ovócito primário, produzindo duas células distintas. Uma delas é o ovócito secundário, que retém praticamente todo o citoplasma. Contém, assim mesmo, em seu núcleo um par de cromossomos duplos, a outra é o primeiro corpo polar, que é exclusivamente um núcleo com uma quantidade mínima de citoplasma. Na maioria das espécies ovula-se um ovócito secundário que se encontra, então, suspendido na segunda divisão meiótica. Esta segunda divisão meiótica somente reinicia-rá e completarar-se uma vez que o espermatozoide começa a penetrar sob o ovócito secundário. Ao concluir-se a divisão se forma o segundo corpo polar e completa-se a ovogênese com o qual se obtém o óvulo, célula 1n que constitui o gameta feminino. No entanto, o óvulo existe pouco tempo como tal, já que em poucos minutos/horas (depen-dendo da espécie) se produzirá a fusão do núcleo do mesmo (pró-núcleo feminino) com o do espermatozoide (pró-núcleo masculino), com o qual se completa a fertilização e se forma um novo indivíduo (o ovo ou zigoto). -/- Ondas foliculares -/- Como mencionado supra, todos os dias um determinado número de folículos pri-mordiais se ativam e começam a crescer, os quais crescem em um ritmo característico em cada espécie. Isso provoca que em qualquer momento existam nos ovários folículos pri-mordiais (que começam a crescer em alguns dias ou semanas), assim como folículos secundários em diversas etapas do desenvolvimento, os quais iniciaram seu desenvolvi-mento em semanas ou inclusive meses (segundo o grau de desenvolvimento atual). Também em qualquer momento poderá haver folículos antrais nas etapas iniciais de seu desenvolvimento (com antros que já se podem detectar em cortes histológicos mas não são visíveis macroscopicamente). Todos esses folículos chegaram até seu estado de de-senvolvimento atual (primário, secundário ou antral pequeno), independente da etapa do ciclo estral em que sejam observados ou encontrados. Nos bovinos, os folículos que chegam ao início da etapa antral iniciaram seu desenvolvimento cinco meses antes, e todavia requerem ao redor de 42 dias para chegar ao estado pré-ovulatório. Para continuar seu desenvolvimento, os folículos antrais pequenos devem encon-trar concentrações altas de FSH, que os estimulam para prosseguir o crescimento. Cada vez que se produz uma elevação nas concentrações de FSH, esse hormônio estimula o desenvolvimento de um grupo de folículos antrais pequenos, que começaram a crescer muito tempo antes e que o dia da elevação de FSH tenha alcançado o grau de desenvolvi-mento preciso para responder com eficiência a este hormônio, o qual atuará através de seus receptores nas células da granulosa para estimular a produção de estradiol, a secreção de inibina, a produção de líquido folicular e a proliferação das células da granulosa. Um grupo de folículos antrais pequenos é assim recrutado pelo FSH para acelerar seu cresci-mento e aumentar sua produção de estradiol e inibina (figura 12). Mediante um seguimento ultrassonográfico dos ovários é possível identificar pou-cos dias depois um certo número de folículos, que por haver sido recrutados começam um período de crescimento acelerado. Durante alguns dias vários folículos crescem juntos, porém depois um deles é selecionado para continuar crescendo, enquanto que o restante do grupo deixam de fazê-lo e terminam sofrendo atresia. Através da ultrassom é possível identificar o folículo selecionado, agora chamado folículo domi-nante, já que sua trajetória de crescimento sofre um desvio com respeito a seguida pelo restante do grupo. Os folículos que não foram selecionados deixam de crescer e sofrem atresia já que deixam de possuir o suporte gonadotrópico de FSH, uma vez que as concentrações desse hormônio são suprimidos pela inibina e o estradiol produzidos pelo conjunto de folículos que conformam a onda folicular (figura 12), porém o folículo mais desenvolvido do grupo se converterá em dominante. A inibina atua diretamente a nível hipofisário para reduzir a secreção de FSH. Figura 12: onda folicular e relação dos níveis de FSH, estradiol e LH. Fonte: ZARCO, 2018. -/- Figura 13: Recrutamento, seleção e dominação folicular na espécie ovina e influência do FSH e LH nas fases. Fonte: SILVA, E. I. C. da, 2019. -/- A razão pela qual o folículo dominante é capaz de continuar seu desenvolvimento apesar da baixa nas concentrações de FSH é que o folículo é o único que alcançou o grau de progresso necessário para que apareçam os receptores para LH em suas células da granulosa. Esse processo permite ao folículo dominante ser estimulado pela LH, e que requeira baixas concentrações de FSH para manter seu desenvolvimento. A secreção de LH em forma de pulsos de baixa frequência (um pulso a cada quatro a seis horas), característica da fase lútea do ciclo estral; é suficiente para permitir que um folículo dominante continue crescendo por mais dias depois da sua seleção e que mais tarde mantenha-se viável durante alguns dias embora não aumentem de tamanho. Contu-do, se durante o período viável desse folículo não seja finalizada a fase lútea e não diminuam as concentrações de progesterona, o folículo terminará sofrendo atresia devido a exigência de um padrão de secreção acelerada de LH (aproximadamente um pulso por hora) durante o desenvolvimento pré-ovulatório, que somente pode ser produzido com a ausência da progesterona. Uma vez que um folículo dominante sofre atresia deixa de produzir inibina, pelo qual as concentrações de FSH podem elevar-se novamente para iniciar o recrutamento de outro grupo de folículos a partir da qual se origina uma nova onda folicular. Durante o ciclo estral de uma vaca podem gerar-se dois ou três ondas foliculares; somente em raros casos quatro. A etapa de dominância folicular da primeira onda na grande maioria dos casos não coincide com a regressão do corpo lúteo, pelo qual o primei-ro folículo dominante quase invariavelmente termina em atresia. Em algumas vacas o fo-lículo dominante da segunda onda ainda está viável quando se produz a regressão do corpo lúteo e acelera-se a secreção de LH, pelo qual esse segundo folículo dominante se converte em folículo pré-ovulatório e, ao final ovula. Em outros animais o segundo folícu-lo dominante também perde a sua viabilidade antes da regressão do corpo lúteo, por onde nesses animais se inicia uma terceira onda folicular, da qual surge o folículo que finalmen-te ovulará depois de produzir-se a regressão do corpo lúteo. Sem importar a onda em que se origine, uma vez que um folículo dominante é ex-posto a alta frequência de secreção de LH que se produz depois da regressão do corpo lúteo, aumenta ainda mais sua secreção de estradiol até que as altas concentrações desse hormônio comecem a exercer um feedback positivo para a secreção do LH. Isso provoca-rá a aceleração da frequência de secreção do LH até que os pulsos são tão frequentes que começam a ficar por cima e produzir-se o pico pré-ovulatório de LH, que é responsável pela realização da ovulação e a maturação final do ovócito. -/- •___DIFERENÇAS ENTRE ESPERMATOGÊNESE E OVOGÊNESE -/- Enquanto que na fêmea a ovogênese inicia-se durante a vida fetal, no macho a es-permatogênese começa na puberdade. Na fêmea, a partir de um ovócito primário se origi-na um óvulo; no macho, de um espermatócito primário se produzem, teoricamente, quatro espermatozoides. Outra característica interessante é que enquanto a fêmea já conta desde o nasci-mento com todos os ovócitos que necessitará na vida adulta, o macho necessitará chegar a puberdade para iniciar o desenvolvimento das células sexuais, já que ao nascer somente possui gonócitos precursores das células germinais, células de Sertoli e intersticiais. Na vida adulta de uma fêmea, o número de células germinais desaparece paulati-namente. Uma vez iniciada a espermatogênese no macho, a cada ciclo do epitélio seminí-fero as células germinais são renovadas mantendo a provisão para toda a vida reprodutiva. Na fêmea, a meiose sofre duas interrupções em seu transcurso, e no macho é ininterrupta. Figura 14: representação em diagramação comparativa do desenvolvimento da gametogênese. -/- Principais pontos abordados sobre as diferenças entre a gametogênese masculina e feminina: ❙ Na ovogênese a meiose contêm-se em duas ocasiões esperando acontecimentos externos para prosseguir. Já na espermatogênese não existe a suspensão da meiose. ❙ A espermatogênese é um processo contínuo, enquanto que a ovogênese pode completar exclusivamente um óvulo em cada ciclo estral; já que só pode ser completada por mais de um nas espécies que ovulam vários ovócitos no caso das porcas, cadelas, gatas etc. ❙ Na espermatogênese existem células de reserva que permitem a continuação du-rante toda a vida, enquanto que na ovogênese o número de ovócitos primários é limitado. A fêmea somente conta com os que nasceu, e eles não se dividem. ❙ Na espermatogênese obtém-se até 256 espermatozoides para cada espermatogo-nia que inicia o processo, enquanto que na ovogênese somente se obtém um óvulo a partir de cada ovócito primário. ❙ Durante a espermatogênese se produz uma metamorfose que transforma as es-permátides em espermatozoides. Na ovogênese não ocorre um processo análogo. ❙ Na espermatogênese, durante a meiose produzem-se quatro espermátides a partir de cada espermatócito primário. Na ovogênese se produz somente um óvulo a partir de cada ovócito primário; produz, ademais, dois corpos polares. ❙ Todos os óvulos que se produzem durante a ovogênese contém um cromossomo X, enquanto que a metade dos espermatozoides possuem um cromossomo Y e a outra metade um cromossomo X. ❙ Na espermatogênese produzem-se centenas ou dezenas de milhões de esperma-tozoides por dia, enquanto que na ovogênese se produz um ou alguns óvulos a cada ciclo estral. ❙ A espermatogênese produz gametas macroscópicos e com motilidade própria, enquanto que a ovogênese produz gametas grandes e imóveis. -/- REFERÊNCIAS BIBLIOGRÁFICAS -/- ABDEL-RAOUF, Mohammed et al. The postnatal development of the reproductive organs in bullswith special reference to puberty.(Including growth of the hypophysis and the adrenals). Acta endocrinologica, n. Suppl No. 49, 1960. ADONA, Paulo Roberto et al. Ovogênese e foliculogênese em mamíferos. Journal of Health Sciences, v. 15, n. 3, 2013. AERTS, J. M. J.; BOLS, P. E. J. Ovarian follicular dynamics: a review with emphasis on the bovine species. Part I: Folliculogenesis and pre‐antral follicle development. Reproduction in domestic animals, v. 45, n. 1, p. 171-179, 2010. AERTS, J. M. J.; BOLS, P. E. J. Ovarian follicular dynamics. A review with emphasis on the bovine species. Part II: Antral development, exogenous influence and future prospects. Reproduction in domestic animals, v. 45, n. 1, p. 180-187, 2010. ALBERTINI, David F.; CARABATSOS, Mary Jo. Comparative aspects of meiotic cell cycle control in mammals. Journal of molecular medicine, v. 76, n. 12, p. 795-799, 1998. AUSTIN, Colin Russell; SHORT, R. Reproduction in mammals. Cambridge, 1972. BAKER, T. G. Oogenesis and ovulation. In. Reproduction in Mammals I Germ Cells and Fertilization, p. 29-30, 1972. BEARDEN, Henry Joe et al. Reproducción animal aplicada. México: Manual Moderno, 1982. BIGGERS, John D.; SCHUETZ, Allen W. Oogenesis. University Park Press, 1972. BINELLI, Mario; MURPHY, Bruce D. Coordinated regulation of follicle development by germ and somatic cells. Reproduction, Fertility and Development, v. 22, n. 1, p. 1-12, 2009. CHIARINI-GARCIA, Helio; RUSSELL, Lonnie D. High-resolution light microscopic characterization of mouse spermatogonia. Biology of reproduction, v. 65, n. 4, p. 1170-1178, 2001. CHOUDARY, J. B.; GIER, H. T.; MARION, G. B. Cyclic changes in bovine vesicular follicles. Journal of animal science, v. 27, n. 2, p. 468-471, 1968. CLERMONT, Yves; PEREY, Bernard. Quantitative study of the cell population of the seminiferous tubules in immature rats. American Journal of Anatomy, v. 100, n. 2, p. 241-267, 1957. COSTA, DEILER SAMPAIO; PAULA, T. A. R. Espermatogênese em mamíferos. Scientia, v. 4, 2003. CUNNINGHAM, James. Tratado de fisiologia veterinária. Elsevier Health Sciences, 2011. CUPPS, Perry T. (Ed.). Reproduction in domestic animals. Elsevier, 1991. DA SILVA, Emanuel Isaque Cordeiro. Fisiologia Clínica do Ciclo Estral de Vacas Leiteiras: Desenvolvimento Folicular, Corpo Lúteo e Etapas do Estro. 2020. Acervo pessoal. DA SILVA, Emanuel Isaque Cordeiro. Fisiologia da Reprodução Animal: Ovulação, Controle e Sincronização do Cio. 2020. Acervo pessoal. DUKES, Henry Hugh; SWENSON, Melvin J.; REECE, William O. Dukes fisiologia dos animais domésticos. Editora Guanabara Koogan, 1996. EPIFANO, Olga; DEAN, Jurrien. Genetic control of early folliculogenesis in mice. Trends in Endocrinology & Metabolism, v. 13, n. 4, p. 169-173, 2002. ERICKSON, B. H. Development and senescence of the postnatal bovine ovary. Journal of animal science, v. 25, n. 3, p. 800-805, 1966. REFERÊNCIAS BIBLIOGRÁFICAS -/- FELDMAN, Edward C. et al. Canine and feline endocrinology-e-book. Elsevier health sciences, 2014. FUSCO, Giuseppe; MINELLI, Alessandro. The Biology of Reproduction. Cambridge University Press, 2019. GALINA-HIDALGO, Carlos Salvador. A study of the development of testicular function and an evaluation of testicular biopsy in farm animals. 1971. Tese de Doutorado. Royal Veterinary College (University of London). GALLICANO, G. Ian. Composition, regulation, and function of the cytoskeleton in mammalian eggs and embryos. Front Biosci, v. 6, p. D1089-1108, 2001. GILBERT, Scott F. Biología del desarrollo. Ed. Médica Panamericana, 2005. GNESSI, Lucio; FABBRI, Andrea; SPERA, Giovanni. Gonadal peptides as mediators of development and functional control of the testis: an integrated system with hormones and local environment. Endocrine reviews, v. 18, n. 4, p. 541-609, 1997. HAFEZ, Elsayed Saad Eldin; HAFEZ, Bahaa. Reprodução animal. São Paulo: Manole, 2004. HEDGER, Mark P. Testicular leukocytes: what are they doing?. Reviews of reproduction, v. 2, n. 1, p. 38-47, 1997. HUTSON, James C. Testicular macrophages. In: International review of cytology. Academic Press, 1994. p. 99-143. HYTTEL, P. Gametogênese. In. HYTTEL, Poul; SINOWATZ, Fred; VEJLSTED, Morten. Embriologia veterinária. São Paulo: Elsevier Brasil, 2012. JOHNSON, Martin H. Essential reproduction. Nova Jersey: John Wiley & Sons, 2018. JONES, Richard E.; LOPEZ, Kristin H. Human reproductive biology. Academic Press, 2013. KIERSZENBAUM, Abraham L.; TRES, Laura L. Primordial germ cell‐somatic cell partnership: A balancing cell signaling act. Molecular Reproduction and Development: Incorporating Gamete Research, v. 60, n. 3, p. 277-280, 2001. MATZUK, Martin M. et al. Intercellular communication in the mammalian ovary: oocytes carry the conversation. Science, v. 296, n. 5576, p. 2178-2180, 2002. MCLAREN, Anne. Germ and somatic cell lineages in the developing gonad. Molecular and cellular endocrinology, v. 163, n. 1-2, p. 3-9, 2000. MCKINNON, Angus O. et al. (Ed.). Equine reproduction. John Wiley & Sons, 2011. MERCHANT-LARIOS, Horacio; MORENO-MENDOZA, Norma. Onset of sex differentiation: dialog between genes and cells. Archives of medical research, v. 32, n. 6, p. 553-558, 2001. MINTZ, Beatrice et al. Embryological phases of mammalian gametogenesis. Embryological phases of mammalian gametogenesis., v. 56, n. Suppl. 1, p. 31-43, 1960. MORALES, M. E. et al. Gametogénesis. I. Revisión de la literatura, con enfoque en la ovogénesis. Medicina Universitaria, v. 8, n. 32, p. 183-9, 2006. NAKATSUJI, NORIO; CHUMA, SHINICHIRO. Differentiation of mouse primordial germ cells into female or male germ cells. International Journal of Developmental Biology, v. 45, n. 3, p. 541-548, 2002. NILSSON, Eric; PARROTT, Jeff A.; SKINNER, Michael K. Basic fibroblast growth factor induces primordial follicle development and initiates folliculogenesis. Molecular and cellular endocrinology, v. 175, n. 1-2, p. 123-130, 2001. REFERÊNCIAS BIBLIOGRÁFICAS -/- NORRIS, David O.; LOPEZ, Kristin H. The endocrinology of the mammalian ovary. In: Hormones and reproduction of vertebrates. Academic Press, 2011. p. 59-72. PEDERSEN, Torben. Follicle growth in the immature mouse ovary. European Journal of Endocrinology, v. 62, n. 1, p. 117-132, 1969. PINEDA, Mauricio H. et al. McDonald's veterinary endocrinology and reproduction. Iowa state press, 2003. ROSER, J. F. Endocrine and paracrine control of sperm production in stallions. Animal Reproduction Science, v. 68, n. 3-4, p. 139-151, 2001. RUSSELL, Lonnie D. et al. Histological and histopathological evaluation of the testis. International journal of andrology, v. 16, n. 1, p. 83-83, 1993. RÜSSE, I.; SINOWATZ, F. Gametogenese. Lehrbuch der Embryologie der Haustiere, p. 42-92, 1991. SAITOU, Mitinori; BARTON, Sheila C.; SURANI, M. Azim. A molecular programme for the specification of germ cell fate in mice. Nature, v. 418, n. 6895, p. 293-300, 2002. SALISBURY, Glenn Wade et al. Physiology of reproduction and artificial insemination of cattle. WH Freeman and Company., 1978. SAWYER, Heywood R. et al. Formation of ovarian follicles during fetal development in sheep. Biology of reproduction, v. 66, n. 4, p. 1134-1150, 2002. SCARAMUZZI, R. J.; MARTENSZ, N. D.; VAN LOOK, P. F. A. Ovarian morphology and the concentration of steroids, and of gonadotrophins during the breeding season in ewes actively immunized against oestradiol-17β or oestrone. Reproduction, v. 59, n. 2, p. 303-310, 1980. SEIDEL JR, G. E. et al. Control of folliculogenesis and ovulation in domestic animals: puberal and adult function. In: 9th International Congress on Animal Reproduction and Artificial Insemination, 16th-20th June 1980. II. Round tables. Editorial Garsi., 1980. p. 11-16. SKINNER, Michael K. Cell-cell interactions in the testis. Endocrine Reviews, v. 12, n. 1, p. 45-77, 1991. SMITZ, J. E.; CORTVRINDT, Rita G. The earliest stages of folliculogenesis in vitro. Reproduction, v. 123, n. 2, p. 185-202, 2002. SORENSEN, Anton Marinus. Reproducción animal: principios y prácticas. México, 1982. SUTOVSKY, Peter; MANANDHAR, Gaurishankar. Mammalian spermatogenesis and sperm structure: anatomical and compartmental analysis. In. The sperm cell: Production, maturation, fertilization, regeneration, p. 1-30, 2006. TAZUKE, Salli I. et al. A germline-specific gap junction protein required for survival of differentiating early germ cells. Development, v. 129, n. 10, p. 2529-2539, 2002. VAN STRAATEN, H. W. M.; WENSING, C. J. G. Leydig cell development in the testis of the pig. Biology of Reproduction, v. 18, n. 1, p. 86-93, 1978. TURNBULL, K. E.; BRADEN, A. W. H.; MATTNER, P. E. The pattern of follicular growth and atresia in the ovine ovary. Australian Journal of Biological Sciences, v. 30, n. 3, p. 229-242, 1977. WASSARMAN, Paul M. Gametogenesis. Londres: Academic Press, 2012. WROBEL, K.-H.; SÜß, Franz. Identification and temporospatial distribution of bovine primordial germ cells prior to gonadal sexual differentiation. Anatomy and embryology, v. 197, n. 6, p. 451-467, 1998. REFERÊNCIAS BIBLIOGRÁFICAS -/- ZARCO, L. Gametogénese. In. PORTA, L. R.; MEDRANO, J. H. H. Fisiología reproductiva de los animales domésticos. Cidade do México: FMVZ-UNAM, 2018. ZIRKIN, Barry R. et al. Endocrine and Paracrine Regulation of Mammalian Spermatogenesis. In: Hormones and Reproduction of Vertebrates. Academic Press, 2011. p. 45-57. -/- REALIZAÇÃO -/- . (shrink)
Create an account to enable off-campus access through your institution's proxy server.
Monitor this page
Be alerted of all new items appearing on this page. Choose how you want to monitor it:
Email
RSS feed
About us
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.