Results for 'Machine Learning Algorithms'

985 found
Order:
  1. Clinical applications of machine learning algorithms: beyond the black box.David S. Watson, Jenny Krutzinna, Ian N. Bruce, Christopher E. M. Griffiths, Iain B. McInnes, Michael R. Barnes & Luciano Floridi - 2019 - British Medical Journal 364:I886.
    Machine learning algorithms may radically improve our ability to diagnose and treat disease. For moral, legal, and scientific reasons, it is essential that doctors and patients be able to understand and explain the predictions of these models. Scalable, customisable, and ethical solutions can be achieved by working together with relevant stakeholders, including patients, data scientists, and policy makers.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  2.  98
    Leveraging Machine Learning Algorithms for Medical Image Classification Introduction.Ugochukwu Llodinso - manuscript
    The use of machine learning to medical image classification has seen significant development and implementation in the last several years. Computers can learn to identify patterns, make predictions, and use data to inform their judgements; this capability is known as machine learning, a branch of Artificial intelligence (AI). Classifying images according to their contents allows us to do things like identify the type of sickness, organ, or tissue depicted. Medical picture classification and interpretation using machine (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3. Efficient Machine Learning Algorithm for Future Gold Price Prediction.A. Ravikumar - 2025 - Journal of Science Technology and Research (JSTAR) 6 (1):1-18.
    The project titled "Efficient Machine Learning Algorithm for Future Gold Price Prediction" focuses on the development of a machine learning model that can accurately predict future gold prices using historical data and various economic indicators. Gold has long been regarded as a safe-haven asset, and its price is influenced by multiple factors, including global economic conditions, inflation rates, interest rates, and geopolitical events. This research aims to design and implement a robust machine learning model (...)
    Download  
     
    Export citation  
     
    Bookmark  
  4.  13
    MACHINE LEARNING ALGORITHMS FOR REALTIME MALWARE DETECTION.Sharma Sidharth - 2017 - Journal of Artificial Intelligence and Cyber Security (Jaics) 1 (1):12-16.
    With the rapid evolution of information technology, malware has become an advanced cybersecurity threat, targeting computer systems, smart devices, and large-scale networks in real time. Traditional detection methods often fail to recognize emerging malware variants due to limitations in accuracy, adaptability, and response time. This paper presents a comprehensive review of machine learning algorithms for real-time malware detection, categorizing existing approaches based on their methodologies and effectiveness. The study examines recent advancements and evaluates the performance of various (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5. Human Stress Detection Based on Sleeping Habits Using Machine Learning Algorithms.S. Venkatesh - 2025 - Journal of Science Technology and Research (JSTAR) 6 (1):1-15.
    Stress has become a significant concern in today’s fast-paced world, affecting individuals’ physical and mental well-being. This project, titled Human Stress Detection Based on Sleeping Habits Using Machine Learning Algorithms, aims to address this issue by leveraging data-driven insights to identify stress levels. The proposed system analyzes sleeping patterns, including sleep duration, interruptions, and quality, to classify stress levels effectively. By utilizing advanced machine learning algorithms such as Decision Tree, Random Forest, Logistic Regression, and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  6.  77
    OPTIMIZING CONSUMER BEHAVIOUR ANALYTICS THROUGH ADVANCED MACHINE LEARNING ALGORITHMS.Yoheswari S. - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):362-370.
    Consumer behavior analytics has become a pivotal aspect for businesses to understand and predict customer preferences and actions. The advent of machine learning (ML) algorithms has revolutionized this field by providing sophisticated tools for data analysis, enabling businesses to make data-driven decisions. However, the effectiveness of these ML algorithms significantly hinges on the optimization techniques employed, which can enhance model accuracy and efficiency. This paper explores the application of various optimization techniques in consumer behaviour analytics using (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7. Machine learning in scientific grant review: algorithmically predicting project efficiency in high energy physics.Vlasta Sikimić & Sandro Radovanović - 2022 - European Journal for Philosophy of Science 12 (3):1-21.
    As more objections have been raised against grant peer-review for being costly and time-consuming, the legitimate question arises whether machine learning algorithms could help assess the epistemic efficiency of the proposed projects. As a case study, we investigated whether project efficiency in high energy physics can be algorithmically predicted based on the data from the proposal. To analyze the potential of algorithmic prediction in HEP, we conducted a study on data about the structure and outcomes of HEP (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  8. OPTIMIZING CONSUMER BEHAVIOUR ANALYTICS THROUGH ADVANCED MACHINE LEARNING ALGORITHMS.S. Yoheswari - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):360-368.
    Consumer behavior analytics has become a pivotal aspect for businesses to understand and predict customer preferences and actions. The advent of machine learning (ML) algorithms has revolutionized this field by providing sophisticated tools for data analysis, enabling businesses to make data-driven decisions. However, the effectiveness of these ML algorithms significantly hinges on the optimization techniques employed, which can enhance model accuracy and efficiency. This paper explores the application of various optimization techniques in consumer behaviour analytics using (...)
    Download  
     
    Export citation  
     
    Bookmark  
  9. Crime Type and Occurrence Prediction Using Machine Learning Algorithm.R. Senthilkumar - 2025 - Journal of Science Technology and Research (JSTAR) 6 (1):1-18.
    This project aims to develop a predictive system capable of identifying crime types and predicting their occurrences based on historical crime data. The system uses advanced machine learning techniques to analyze factors such as geographic location, time, and other socio-economic variables, enabling authorities to better understand crime patterns and trends. By training models on vast datasets of past criminal activities, the system predicts not only the likely occurrence of specific crime types but also identifies high-risk locations and times, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  10. At Noon: (Post)Nihilistic Temporalities in The Age of Machine-Learning Algorithms That Speak.Talha Issevenler - 2023 - The Agonist : A Nietzsche Circle Journal 17 (2):63–72.
    This article recapitulates and develops the attempts in the Nietzschean traditions to address and overcome the proliferation of nihilism that Nietzsche predicted to unfold in the next 200 years (WP 2). Nietzsche approached nihilism not merely as a psychology but as a labyrinthic and pervasive historical process whereby the highest values of culture and founding assumptions of philosophical thought prevented the further flourishing of life. Therefore, he thought nihilism had to be encountered and experienced on many, often opposing, fronts to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  11.  95
    Advanced Driver Drowsiness Detection Model Using Optimized Machine Learning Algorithms.S. Arul Selvan - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):396-402.
    Driver drowsiness is a significant factor contributing to road accidents, resulting in severe injuries and fatalities. This study presents an optimized approach for detecting driver drowsiness using machine learning techniques. The proposed system utilizes real-time data to analyze driver behavior and physiological signals to identify signs of fatigue. Various machine learning algorithms, including Support Vector Machines (SVM), Convolutional Neural Networks (CNN), and Random Forest, are explored for their efficacy in detecting drowsiness. The system incorporates an (...)
    Download  
     
    Export citation  
     
    Bookmark  
  12. Sarcasm Detection in Headline News using Machine and Deep Learning Algorithms.Alaa Barhoom, Bassem S. Abu-Nasser & Samy S. Abu-Naser - 2022 - International Journal of Engineering and Information Systems (IJEAIS) 6 (4):66-73.
    Abstract: Sarcasm is commonly used in news and detecting sarcasm in headline news is challenging for humans and thus for computers. The media regularly seem to engage sarcasm in their news headline to get the attention of people. However, people find it tough to detect the sarcasm in the headline news, hence receiving a mistaken idea about that specific news and additionally spreading it to their friends, colleagues, etc. Consequently, an intelligent system that is able to distinguish between can sarcasm (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  13. Implementation of Data Mining on a Secure Cloud Computing over a Web API using Supervised Machine Learning Algorithm.Tosin Ige - 2022 - International Journal of Advanced Computer Science and Applications 13 (5):1 - 4.
    Ever since the era of internet had ushered in cloud computing, there had been increase in the demand for the unlimited data available through cloud computing for data analysis, pattern recognition and technology advancement. With this also bring the problem of scalability, efficiency and security threat. This research paper focuses on how data can be dynamically mine in real time for pattern detection in a secure cloud computing environment using combination of decision tree algorithm and Random Forest over a restful (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  14. OPTIMIZED CARDIOVASCULAR DISEASE PREDICTION USING MACHINE LEARNING ALGORITHMS.S. Yoheswari - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):350-359.
    Cardiovascular diseases (CVD) represent a significant cause of morbidity and mortality worldwide, necessitating early detection for effective intervention. This research explores the application of machine learning (ML) algorithms in predicting cardiovascular diseases with enhanced accuracy by integrating optimization techniques. By leveraging data-driven approaches, ML models can analyze vast datasets, identifying patterns and risk factors that traditional methods might overlook. This study focuses on implementing various ML algorithms, such as Decision Trees, Random Forest, Support Vector Machines, and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15.  50
    Improving Chronic Kidney Disease Diagnosis Using Machine Learning Algorithms.R. Karthick - 2025 - Journal of Science Technology and Research (JSTAR) 6 (1):1-16.
    The application of this system can lead to higher crop yields, sustainable farming practices, and reduced risks associated with poor crop choices. Through rigorous evaluation using standard classification metrics, the model's performance demonstrates its potential to revolutionize farming practices by aiding farmers in making informed decisions. The system has the potential to be an invaluable tool for agricultural consultants, farmers, and policymakers, ensuring long-term sustainability and improved productivity.
    Download  
     
    Export citation  
     
    Bookmark  
  16. Egalitarian Machine Learning.Clinton Castro, David O’Brien & Ben Schwan - 2023 - Res Publica 29 (2):237–264.
    Prediction-based decisions, which are often made by utilizing the tools of machine learning, influence nearly all facets of modern life. Ethical concerns about this widespread practice have given rise to the field of fair machine learning and a number of fairness measures, mathematically precise definitions of fairness that purport to determine whether a given prediction-based decision system is fair. Following Reuben Binns (2017), we take ‘fairness’ in this context to be a placeholder for a variety of (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  17. Prediction of Heart Disease Using a Collection of Machine and Deep Learning Algorithms.Ali M. A. Barhoom, Abdelbaset Almasri, Bassem S. Abu-Nasser & Samy S. Abu-Naser - 2022 - International Journal of Engineering and Information Systems (IJEAIS) 6 (4):1-13.
    Abstract: Heart diseases are increasing daily at a rapid rate and it is alarming and vital to predict heart diseases early. The diagnosis of heart diseases is a challenging task i.e. it must be done accurately and proficiently. The aim of this study is to determine which patient is more likely to have heart disease based on a number of medical features. We organized a heart disease prediction model to identify whether the person is likely to be diagnosed with a (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  18.  57
    Harnessing Machine Learning to Predict Chronic Kidney Disease Risk.M. Arulselvan - 2025 - Journal of Science Technology and Research (JSTAR) 6 (1):1-16.
    Early detection of CKD is essential for timely intervention and improved patient outcomes. This project aims to develop a machine learning-based predictive model for diagnosing CKD at an early stage. By utilizing a range of clinical features such as age, blood pressure, blood sugar, and other relevant biomarkers, we employ machine learning algorithms, including Decision Trees, Random Forests, and Support Vector Machines (SVM), to predict the likelihood of a patient developing CKD.
    Download  
     
    Export citation  
     
    Bookmark  
  19. Credit Score Classification Using Machine Learning.Mosa M. M. Megdad & Samy S. Abu-Naser - 2024 - International Journal of Academic Information Systems Research (IJAISR) 8 (5):1-10.
    Abstract: Ensuring the proactive detection of transaction risks is paramount for financial institutions, particularly in the context of managing credit scores. In this study, we compare different machine learning algorithms to effectively and efficiently. The algorithms used in this study were: MLogisticRegressionCV, ExtraTreeClassifier,LGBMClassifier,AdaBoostClassifier, GradientBoostingClassifier,Perceptron,RandomForestClassifier,KNeighborsClassifier,BaggingClassifier, DecisionTreeClassifier, CalibratedClassifierCV, LabelPropagation, Deep Learning. The dataset was collected from Kaggle depository. It consists of 164 rows and 8 columns. The best classifier with unbalanced dataset was the LogisticRegressionCV. The Accuracy 100.0%, (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  20.  57
    Machine Learning Models for Accurate Prediction of Chronic Kidney Disease.V. Sethupathi - 2025 - Journal of Science Technology and Research (JSTAR) 6 (1):1-15.
    By utilizing a range of clinical features such as age, blood pressure, blood sugar, and other relevant biomarkers, we employ machine learning algorithms, including Decision Trees, Random Forests, and Support Vector Machines (SVM), to predict the likelihood of a patient developing CKD. The dataset used in this study includes medical records of patients with various kidney conditions, and preprocessing techniques such as normalization and missing data handling are applied to ensure the model’s robustness. T.
    Download  
     
    Export citation  
     
    Bookmark  
  21. Fair machine learning under partial compliance.Jessica Dai, Sina Fazelpour & Zachary Lipton - 2021 - In Jessica Dai, Sina Fazelpour & Zachary Lipton, Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society. pp. 55–65.
    Typically, fair machine learning research focuses on a single decision maker and assumes that the underlying population is stationary. However, many of the critical domains motivating this work are characterized by competitive marketplaces with many decision makers. Realistically, we might expect only a subset of them to adopt any non-compulsory fairness-conscious policy, a situation that political philosophers call partial compliance. This possibility raises important questions: how does partial compliance and the consequent strategic behavior of decision subjects affect the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  22. Movie Recommendation System using Machine Learning Techniques.G. H. Ram Ganesh - 2025 - Journal of Science Technology and Research (JSTAR) 6 (1):1-20.
    The Movie Recommendation System using Machine Learning Techniques is a data-driven approach designed to provide personalized movie suggestions based on user preferences and historical data. This system leverages advanced machine learning algorithms, including collaborative filtering, content-based filtering, and hybrid methods, to predict the most relevant movies for individual users. The system's primary goal is to enhance user experience by recommending movies that align with their tastes, thereby promoting user engagement and satisfaction. The recommendation process starts (...)
    Download  
     
    Export citation  
     
    Bookmark  
  23.  44
    Machine Learning for Characterization and Analysis of Microstructure and Spectral Data of Materials.Venkataramaiah Gude - 2023 - International Journal of Intelligent Systems and Applications in Engineering 12 (21):820 - 826.
    In the contemporary world, there is lot of research going on in creating novel nano materials that are essential for many industries including electronic chips and storage devices in cloud to mention few. At the same time, there is emergence of usage of machine learning (ML) for solving problems in different industries such as manufacturing, physics and chemical engineering. ML has potential to solve many real world problems with its ability to learn in either supervised or unsupervised means. (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  24.  37
    Wine Quality Prediction using Machine Learning.Abhishek Rathor Prajwal Wadghule - 2025 - International Journal of Multidisciplinary Research in Science, Engineering and Technology 8 (2):986-989.
    Wine quality prediction is a significant task in the wine industry, as it helps producers and consumers determine the quality of a wine based on its chemical properties. Traditional methods of evaluating wine quality are subjective and time-consuming, relying on human tasters. However, with the advancement of machine learning (ML), it is now possible to predict wine quality in a more objective, scalable, and efficient manner. This paper explores various machine learning algorithms for predicting wine (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25. Machine learning in bail decisions and judges’ trustworthiness.Alexis Morin-Martel - 2023 - AI and Society:1-12.
    The use of AI algorithms in criminal trials has been the subject of very lively ethical and legal debates recently. While there are concerns over the lack of accuracy and the harmful biases that certain algorithms display, new algorithms seem more promising and might lead to more accurate legal decisions. Algorithms seem especially relevant for bail decisions, because such decisions involve statistical data to which human reasoners struggle to give adequate weight. While getting the right legal (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  26. MACHINE LEARNING IMPROVED ADVANCED DIAGNOSIS OF SOFT TISSUES TUMORS.M. Bavadharani - 2022 - Journal of Science Technology and Research (JSTAR) 3 (1):112-123.
    Delicate Tissue Tumors (STT) are a type of sarcoma found in tissues that interface, backing, and encompass body structures. Due to their shallow recurrence in the body and their extraordinary variety, they seem, by all accounts, to be heterogeneous when seen through Magnetic Resonance Imaging (MRI). They are effortlessly mistaken for different infections, for example, fibro adenoma mammae, lymphadenopathy, and struma nodosa, and these indicative blunders have an extensive unfavorable impact on the clinical treatment cycle of patients. Analysts have proposed (...)
    Download  
     
    Export citation  
     
    Bookmark  
  27. Machine Learning-Based Intrusion Detection Framework for Detecting Security Attacks in Internet of Things.Jones Serena - manuscript
    The proliferation of the Internet of Things (IoT) has transformed various industries by enabling smart environments and improving operational efficiencies. However, this expansion has introduced numerous security vulnerabilities, making IoT systems prime targets for cyberattacks. This paper proposes a machine learning-based intrusion detection framework tailored to the unique characteristics of IoT environments. The framework leverages feature engineering, advanced machine learning algorithms, and real-time anomaly detection to identify and mitigate security threats effectively. Experimental results demonstrate the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  28. SMS Spam Detection using Machine Learning.R. T. Subhalakshmi - 2025 - Journal of Science Technology and Research (JSTAR) 6 (1):1-19.
    SMS spam has become a widespread issue, leading to significant inconvenience and security risks for users. Detecting and filtering out such spam messages is crucial for enhancing the user experience and ensuring privacy. TThe dataset used for training and testing the model consists of labeled SMS messages, which are processed using feature extraction techniques such as TF-IDF and word tokenization. Several machine learning algorithms, including Naive Bayes, Support Vector Machine (SVM), and Random Forest, are evaluated to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  29. Heart Disease Prediction Using Machine Learning Techniques.D. Devendran - 2025 - Journal of Science Technology and Research (JSTAR) 6 (1):1-17.
    Heart disease remains one of the leading causes of mortality worldwide. Early prediction and diagnosis are critical in preventing severe outcomes and improving the quality of life for patients. This project focuses on developing a robust heart disease prediction system using machine learning techniques. By analyzing a comprehensive dataset consisting of various patient attributes such as age, sex, blood pressure, cholesterol levels, and other medical parameters, the system aims to predict the likelihood of a patient having heart disease. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  30. Diachronic and synchronic variation in the performance of adaptive machine learning systems: the ethical challenges.Joshua Hatherley & Robert Sparrow - 2023 - Journal of the American Medical Informatics Association 30 (2):361-366.
    Objectives: Machine learning (ML) has the potential to facilitate “continual learning” in medicine, in which an ML system continues to evolve in response to exposure to new data over time, even after being deployed in a clinical setting. In this article, we provide a tutorial on the range of ethical issues raised by the use of such “adaptive” ML systems in medicine that have, thus far, been neglected in the literature. -/- Target audience: The target audiences for (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  31. Fraudulent Financial Transactions Detection Using Machine Learning.Mosa M. M. Megdad, Samy S. Abu-Naser & Bassem S. Abu-Nasser - 2022 - International Journal of Academic Information Systems Research (IJAISR) 6 (3):30-39.
    It is crucial to actively detect the risks of transactions in a financial company to improve customer experience and minimize financial loss. In this study, we compare different machine learning algorithms to effectively and efficiently predict the legitimacy of financial transactions. The algorithms used in this study were: MLP Repressor, Random Forest Classifier, Complement NB, MLP Classifier, Gaussian NB, Bernoulli NB, LGBM Classifier, Ada Boost Classifier, K Neighbors Classifier, Logistic Regression, Bagging Classifier, Decision Tree Classifier and (...)
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  32.  52
    Leveraging Machine Learning for Early Detection of Chronic Kidney Disease.A. Manoj Prabaharan - 2025 - Journal of Science Technology and Research (JSTAR) 6 (1):1-18.
    This project aims to develop a machine learning-based predictive model for diagnosing CKD at an early stage. By utilizing a range of clinical features such as age, blood pressure, blood sugar, and other relevant biomarkers, we employ machine learning algorithms, including Decision Trees, Random Forests, and Support Vector Machines (SVM), to predict the likelihood of a patient developing CKD. The dataset used in this study includes medical records of patients with various kidney conditions, and preprocessing (...)
    Download  
     
    Export citation  
     
    Bookmark  
  33. Crime Prediction Using Machine Learning and Deep Learning.S. Venkatesh - 2024 - Journal of Science Technology and Research (JSTAR) 6 (1):1-13.
    Crime prediction has emerged as a critical application of machine learning (ML) and deep learning (DL) techniques, aimed at assisting law enforcement agencies in reducing criminal activities and improving public safety. This project focuses on developing a robust crime prediction system that leverages the power of both ML and DL algorithms to analyze historical crime data and predict potential future incidents. By integrating a combination of classification and clustering techniques, our system identifies crime-prone areas, trends, and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  34. Machine Learning-Based Customer Churn Prediction Analysis.D. M. Manasa - 2024 - International Journal of Innovative Research in Computer and Communication Engineering 12 (5):8178-8183.
    Customer churn prediction is a critical challenge for businesses in retaining their customer base and optimizing their marketing strategies. Machine learning (ML) techniques offer a powerful approach to predict customer churn by analyzing historical customer behavior, demographic information, and usage patterns. This paper provides an overview of machine learning-based models used for predicting customer churn, including classification algorithms such as logistic regression, decision trees, random forests, support vector machines (SVM), and neural networks. We explore how (...)
    Download  
     
    Export citation  
     
    Bookmark  
  35.  43
    Breast Cancer Detection Using Machine Learning.Shifa A. M. Amrutha D. - 2024 - International Journal of Innovative Research in Science, Engineering and Technology 13 (11):19401-19406.
    Breast cancer is one of the leading causes of death among women worldwide. Early detection plays a crucial role in improving survival rates, and machine learning (ML) provides powerful tools for identifying cancerous tumors in medical imaging and diagnostic data. This paper explores various machine learning techniques used for breast cancer detection, with a particular focus on the Wisconsin Breast Cancer Dataset (WBCD). We evaluate several classification models, including Logistic Regression (LR), Support Vector Machine (SVM), (...)
    Download  
     
    Export citation  
     
    Bookmark  
  36. Medical Image Classification with Machine Learning Classifier.Destiny Agboro - forthcoming - Journal of Computer Science.
    In contemporary healthcare, medical image categorization is essential for illness prediction, diagnosis, and therapy planning. The emergence of digital imaging technology has led to a significant increase in research into the use of machine learning (ML) techniques for the categorization of images in medical data. We provide a thorough summary of recent developments in this area in this review, using knowledge from the most recent research and cutting-edge methods.We begin by discussing the unique challenges and opportunities associated with (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  37. Consequences of unexplainable machine learning for the notions of a trusted doctor and patient autonomy.Michal Klincewicz & Lily Frank - 2020 - Proceedings of the 2nd EXplainable AI in Law Workshop (XAILA 2019) Co-Located with 32nd International Conference on Legal Knowledge and Information Systems (JURIX 2019).
    This paper provides an analysis of the way in which two foundational principles of medical ethics–the trusted doctor and patient autonomy–can be undermined by the use of machine learning (ML) algorithms and addresses its legal significance. This paper can be a guide to both health care providers and other stakeholders about how to anticipate and in some cases mitigate ethical conflicts caused by the use of ML in healthcare. It can also be read as a road map (...)
    Download  
     
    Export citation  
     
    Bookmark  
  38.  30
    Store Sales Prediction using Machine Learning.Yash Chaudhari Om Patil, Viraj Dalvi - 2024 - International Journal of Innovative Research in Science, Engineering and Technology 13 (12):20838-20841.
    Accurately predicting store sales is essential for businesses to optimize inventory management, marketing strategies, and staffing. Traditional sales prediction models often rely on historical data and simple linear trends, but these methods can be limited in capturing the complexity of factors that affect sales. This paper explores the application of machine learning (ML) algorithms to predict store sales, considering factors like promotions, holidays, weather conditions, and seasonal trends. We analyze various machine learning models, evaluate their (...)
    Download  
     
    Export citation  
     
    Bookmark  
  39. (2 other versions)The explanation game: a formal framework for interpretable machine learning.David S. Watson & Luciano Floridi - 2020 - Synthese 198 (10):1–⁠32.
    We propose a formal framework for interpretable machine learning. Combining elements from statistical learning, causal interventionism, and decision theory, we design an idealised explanation game in which players collaborate to find the best explanation for a given algorithmic prediction. Through an iterative procedure of questions and answers, the players establish a three-dimensional Pareto frontier that describes the optimal trade-offs between explanatory accuracy, simplicity, and relevance. Multiple rounds are played at different levels of abstraction, allowing the players to (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  40.  43
    Data-Driven Insights into Chronic Kidney Disease Prediction with Machine Learning.P. Deepa - 2025 - Journal of Science Technology and Research (JSTAR) 6 (1):1-15.
    Chronic Kidney Disease (CKD) is a significant global health issue, often leading to kidney failure and requiring costly medical treatments such as dialysis or transplants. Early detection of CKD is essential for timely intervention and improved patient outcomes. This project aims to develop a machine learning-based predictive model for diagnosing CKD at an early stage. By utilizing a range of clinical features such as age, blood pressure, blood sugar, and other relevant biomarkers, we employ machine learning (...)
    Download  
     
    Export citation  
     
    Bookmark  
  41.  40
    Multiple Disease Prediction _System using Machine Learning (14th edition).Kumar Ram - 2025 - International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering 14 (1):119-121. Translated by Kumar Ram.
    The advancement of machine learning (ML) has revolutionized healthcare by enabling the early detection and diagnosis of multiple diseases. This paper presents a Multiple Disease Prediction System using machine learning algorithms to analyze patient data and predict the likelihood of diseases such as diabetes, heart disease, and kidney disease. The proposed model utilizes various ML classifiers, including Decision Trees, Random Forest, Support Vector Machines (SVM), and Neural Networks, to enhance prediction accuracy. The system aims to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  42.  20
    Crop Price Prediction Using Machine Learning.Ashok Koparkar Gauri - 2021 - International Journal of Innovative Research in Science, Engineering and Technology 10 (8):11126-1129.
    Agriculture is the backbone of our country. Agriculture Plays an important role in economy of the country. The demand of agricultural products continuously increases with increase in population. Farmers need to think of increase in crop yield with the limited amount of land. The suicide rate is increasing with every passing year because the farmers aren’t able to get the desired price for their crops and farmer need to predict the crop before cultivating into agricultural land. Farmers are not getting (...)
    Download  
     
    Export citation  
     
    Bookmark  
  43.  24
    Subscriber Classification Using Telecom Data by Applying Machine Learning.K. Akhileswara - 2025 - International Journal of Engineering Innovations and Management Strategies 1 (9):1-10.
    This paper explores the implementation of a batch processing pipeline for SIM log data in the telecommunication industry using Azure cloud services. The project leverages Azure Data Lake for data storage, Azure Data Factory for automated data ingestion, and Azure Databricks for processing large volumes of data. By applying machine learning algorithms, the system identifies patterns in network usage, detects anomalies, and provides insights into customer behaviour. The results, visualized using Power BI, enable telecom operators to optimize (...)
    Download  
     
    Export citation  
     
    Bookmark  
  44. Machine Learning-Based Cyberbullying Detection System with Enhanced Accuracy and Speed.M. Arulselvan - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):421-429.
    The rise of social media has created a new platform for communication and interaction, but it has also facilitated the spread of harmful behaviors such as cyberbullying. Detecting and mitigating cyberbullying on social media platforms is a critical challenge that requires advanced technological solutions. This paper presents a novel approach to cyberbullying detection using a combination of supervised machine learning (ML) and natural language processing (NLP) techniques, enhanced by optimization algorithms. The proposed system is designed to identify (...)
    Download  
     
    Export citation  
     
    Bookmark  
  45.  91
    Intelligent Driver Drowsiness Detection System Using Optimized Machine Learning Models.M. Arulselvan - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):397-405.
    : Driver drowsiness is a significant factor contributing to road accidents, resulting in severe injuries and fatalities. This study presents an optimized approach for detecting driver drowsiness using machine learning techniques. The proposed system utilizes real-time data to analyze driver behavior and physiological signals to identify signs of fatigue. Various machine learning algorithms, including Support Vector Machines (SVM), Convolutional Neural Networks (CNN), and Random Forest, are explored for their efficacy in detecting drowsiness. The system incorporates (...)
    Download  
     
    Export citation  
     
    Bookmark  
  46. Network Intrusion Detection using Machine Learning.B. Ravinder Reddy - 2024 - International Journal of Engineering Innovations and Management Strategies 1 (4):1-15.
    With the growing sophistication and frequency of cyberattacks, there is a critical need for effective systems that can detect and prevent breaches in real time. The AI/ML-based Network Intrusion Detection System (NIDS) addresses this need by analyzing traffic patterns to identify security breaches in firewalls, routers, and network infrastructures. By integrating machine learning algorithms—K-Nearest Neighbors (KNN), Support Vector Machine (SVM), and Random Forest—the system is able to detect both known cyber threats and previously unseen attack vectors. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  47. An Investigation into the Performances of the State-of-the-art Machine Learning Approaches for Various Cyber-attack Detection: A Survey. [REVIEW]Tosin Ige, Christopher Kiekintveld & Aritran Piplai - forthcoming - Proceedings of the IEEE:11.
    To secure computers and information systems from attackers taking advantage of vulnerabilities in the system to commit cybercrime, several methods have been proposed for real-time detection of vulnerabilities to improve security around information systems. Of all the proposed methods, machine learning had been the most effective method in securing a system with capabilities ranging from early detection of software vulnerabilities to real-time detection of ongoing compromise in a system. As there are different types of cyberattacks, each of the (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  48. Exploring Machine Learning Techniques for Coronary Heart Disease Prediction.Hisham Khdair - 2021 - International Journal of Advanced Computer Science and Applications 12 (5):28-36.
    Coronary Heart Disease (CHD) is one of the leading causes of death nowadays. Prediction of the disease at an early stage is crucial for many health care providers to protect their patients and save lives and costly hospitalization resources. The use of machine learning in the prediction of serious disease events using routine medical records has been successful in recent years. In this paper, a comparative analysis of different machine learning techniques that can accurately predict the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  49. Fake Profile Detection on Social Networking Websites using Machine Learning.R. T. Subhalakshmi - 2025 - Journal of Science Technology and Research (JSTAR) 6 (1):1-18.
    With the increasing popularity of social networking websites, the problem of fake profiles has become a significant concern. Fake profiles, often created by malicious actors for fraudulent purposes, pose threats to user privacy, security, and trustworthiness of online platforms. This project proposes a machine learning-based approach to detect fake profiles on social networking websites. By analyzing various features such as user activity patterns, profile attributes, and network connections, the model identifies potential fake profiles with high accuracy. The system (...)
    Download  
     
    Export citation  
     
    Bookmark  
  50.  30
    Predicting Energy Consumption_ Using Machine Learning (12th edition).Atharva Kadu Bhakti Awate, , Ketaki Rao - 2024 - International Journal of Multidisciplinary and Scientific Emerging Research 12 (4):1506-1510.
    Energy consumption prediction plays a critical role in optimizing energy usage, reducing waste, and ensuring the sustainability of power grids. With the growing use of smart meters, sensors, and IoT devices, there is a wealth of real-time data that can be leveraged to predict energy usage patterns. This paper explores the application of machine learning (ML) algorithms in predicting energy consumption, focusing on both residential and industrial settings. By utilizing supervised and unsupervised learning techniques, we demonstrate (...)
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 985