Since the early days of physics, space has called for means to represent, experiment, and reason about it. Apart from physicists, the concept of space has intrigued also philosophers, mathematicians and, more recently, computer scientists. This longstanding interest has left us with a plethora of mathematical tools developed to represent and work with space. Here we take a special look at this evolution by considering the perspective of Logic. From the initial axiomatic efforts of Euclid, we revisit the major (...) milestones in the logical representation of space and investigate current trends. In doing so, we do not only consider classical logic, but we indulge ourselves with modal logics. These present themselves naturally by providing simple axiomatizations of different geometries, topologies, space-time causality, and vector spaces. (shrink)
This chapter tries to answer the following question: How should we conceive of the method of mathematics, if we take a naturalist stance? The problem arises since mathematical knowledge is regarded as the paradigm of certain knowledge, because mathematics is based on the axiomatic method. Moreover, natural science is deeply mathematized, and science is crucial for any naturalist perspective. But mathematics seems to provide a counterexample both to methodological and ontological naturalism. To face this problem, some authors tried to (...) naturalize mathematics by relying on evolutionism. But several difficulties arise when we try to do this. This chapter suggests that, in order to naturalize mathematics, it is better to take the method of mathematics to be the analytic method, rather than the axiomatic method, and thus conceive of mathematical knowledge as plausible knowledge. (shrink)
A basic thesis of Neokantian epistemology and philosophy of science contends that the knowing subject and the object to be known are only abstractions. What really exists, is the relation between both. For the elucidation of this “knowledge relation ("Erkenntnisrelation") the Neokantians of the Marburg school used a variety of mathematical metaphors. In this con-tribution I reconsider some of these metaphors proposed by Paul Natorp, who was one of the leading members of the Marburg school. It is shown that (...) Natorp's metaphors are not unrelated to those used in some currents of contemporary epistemology and philosophy of science. (shrink)
The existence of fundamental moral disagreements is a central problem for moral realism and has often been contrasted with an alleged absence of disagreement in mathematics. However, mathematicians do in fact disagree on fundamental questions, for example on which set-theoretic axioms are true, and some philosophers have argued that this increases the plausibility of moral vis-à-vis mathematical realism. I argue that the analogy between mathemat- ical and moral disagreement is not as straightforward as those arguments present it. In particular, (...) I argue that pluralist accounts of mathematics render fundamental mathematical disagreements compatible with mathematical realism in a way in which moral disagreements and moral realism are not. (shrink)
K. Marx’s 200th jubilee coincides with the celebration of the 85 years from the first publication of his “Mathematical Manuscripts” in 1933. Its editor, Sofia Alexandrovna Yanovskaya (1896–1966), was a renowned Soviet mathematician, whose significant studies on the foundations of mathematics and mathematical logic, as well as on the history and philosophy of mathematics are unduly neglected nowadays. Yanovskaya, as a militant Marxist, was actively engaged in the ideological confrontation with idealism and its influence on modern mathematics and (...) their interpretation. Concomitantly, she was one of the pioneers of mathematical logic in the Soviet Union, in an era of fierce disputes on its compatibility with Marxist philosophy. Yanovskaya managed to embrace in an originally Marxist spirit the contemporary level of logico-philosophical research of her time. Due to her highly esteemed status within Soviet academia, she became one of the most significant pillars for the culmination of modern mathematics in the Soviet Union. In this paper, I attempt to trace the influence of the complex socio-cultural context of the first decades of the Soviet Union on Yanovskaya’s work. Among the several issues I discuss, her encounter with L. Wittgenstein is striking. (shrink)
In “What Makes a Scientific Explanation Distinctively Mathematical?” (2013b), Lange uses several compelling examples to argue that certain explanations for natural phenomena appeal primarily to mathematical, rather than natural, facts. In such explanations, the core explanatory facts are modally stronger than facts about causation, regularity, and other natural relations. We show that Lange's account of distinctively mathematical explanation is flawed in that it fails to account for the implicit directionality in each of his examples. This inadequacy is (...) remediable in each case by appeal to ontic facts that account for why the explanation is acceptable in one direction and unacceptable in the other direction. The mathematics involved in these examples cannot play this crucial normative role. While Lange's examples fail to demonstrate the existence of distinctively mathematical explanations, they help to emphasize that many superficially natural scientific explanations rely for their explanatory force on relations of stronger-than-natural necessity. These are not opposing kinds of scientific explanations; they are different aspects of scientific explanation. (shrink)
Recent experimental evidence from developmental psychology and cognitive neuroscience indicates that humans are equipped with unlearned elementary mathematical skills. However, formal mathematics has properties that cannot be reduced to these elementary cognitive capacities. The question then arises how human beings cognitively deal with more advanced mathematical ideas. This paper draws on the extended mind thesis to suggest that mathematical symbols enable us to delegate some mathematical operations to the external environment. In this view, mathematical symbols (...) are not only used to express mathematical concepts—they are constitutive of the mathematical concepts themselves. Mathematical symbols are epistemic actions, because they enable us to represent concepts that are literally unthinkable with our bare brains. Using case-studies from the history of mathematics and from educational psychology, we argue for an intimate relationship between mathematical symbols and mathematical cognition. (shrink)
Humans and other animals have an evolved ability to detect discrete magnitudes in their environment. Does this observation support evolutionary debunking arguments against mathematical realism, as has been recently argued by Clarke-Doane, or does it bolster mathematical realism, as authors such as Joyce and Sinnott-Armstrong have assumed? To find out, we need to pay closer attention to the features of evolved numerical cognition. I provide a detailed examination of the functional properties of evolved numerical cognition, and propose that (...) they prima facie favor a realist account of numbers. (shrink)
What can we infer from numerical cognition about mathematical realism? In this paper, I will consider one aspect of numerical cognition that has received little attention in the literature: the remarkable similarities of numerical cognitive capacities across many animal species. This Invariantism in Numerical Cognition (INC) indicates that mathematics and morality are disanalogous in an important respect: proto-moral beliefs differ substantially between animal species, whereas proto-mathematical beliefs (at least in the animals studied) seem to show more similarities. This (...) makes moral beliefs more susceptible to a contingency challenge from evolution compared to mathematical beliefs, and indicates that mathematical beliefs might be less vulnerable to evolutionary debunking arguments. I will then examine to what extent INC can be used to flesh out a positive case for mathematical realism. Finally, I will review two forms of mathematical realism that are promising in the light of the evolutionary evidence about numerical cognition, ante rem structuralism and Millean empiricism. (shrink)
A finer-grained delineation of a given explanandum reveals a nexus of closely related causal and non- causal explanations, complementing one another in ways that yield further explanatory traction on the phenomenon in question. By taking a narrower construal of what counts as a causal explanation, a new class of distinctively mathematical explanations pops into focus; Lange’s characterization of distinctively mathematical explanations can be extended to cover these. This new class of distinctively mathematical explanations is illustrated with the (...) Lotka-Volterra equations. There are at least two distinct ways those equations might hold of a system, one of which yields straightforwardly causal explanations, but the other of which yields explanations that are distinctively mathematical in terms of nomological strength. In the first, one first picks out a system or class of systems, finds that the equations hold in a causal -explanatory way; in the second, one starts with the equations and explanations that must apply to any system of which the equations hold, and only then turns to the world to see of what, if any, systems it does in fact hold. Using this new way in which a model might hold of a system, I highlight four specific avenues by which causal and non- causal explanations can complement one another. (shrink)
An account of distinctively mathematical explanation (DME) should satisfy three desiderata: it should account for the modal import of some DMEs; it should distinguish uses of mathematics in explanation that are distinctively mathematical from those that are not (Baron [2016]); and it should also account for the directionality of DMEs (Craver and Povich [2017]). Baron’s (forthcoming) deductive-mathematical account, because it is modelled on the deductive-nomological account, is unlikely to satisfy these desiderata. I provide a counterfactual account of (...) DME, the Narrow Ontic Counterfactual Account (NOCA), that can satisfy all three desiderata. NOCA appeals to ontic considerations to account for explanatory asymmetry and ground the relevant counterfactuals. NOCA provides a unification of the causal and the non-causal, the ontic and the modal, by identifying a common core that all explanations share and in virtue of which they are explanatory. (shrink)
Engineers fine-tune the design of robot bodies for control purposes, however, a methodology or set of tools is largely absent, and optimization of morphology (shape, material properties of robot bodies, etc.) is lagging behind the development of controllers. This has become even more prominent with the advent of compliant, deformable or ”soft” bodies. These carry substantial potential regarding their exploitation for control—sometimes referred to as ”morphological computation”. In this article, we briefly review different notions of computation by physical systems (...) and propose the dynamical systems framework as the most useful in the context of describing and eventually designing the interactions of controllers and bodies. Then, we look at the pros and cons of simple vs. complex bodies, critically reviewing the attractive notion of ”soft” bodies automatically taking over control tasks. We address another key dimension of the design space—whether model-based control should be used and to what extent it is feasible to develop faithful models for different morphologies. (shrink)
Mathematical realism asserts that mathematical objects exist in the abstract world, and that a mathematical sentence is true or false, depending on whether the abstract world is as the mathematical sentence says it is. I raise two objections against mathematical realism. First, the abstract world is queer in that it allows for contradictory states of affairs. Second, mathematical realism does not have a theoretical resource to explain why a sentence about a tricle is true (...) or false. A tricle is an object that changes its shape from a triangle to a circle, and then back to a triangle with every second. (shrink)
I defend a new position in philosophy of mathematics that I call mathematical inferentialism. It holds that a mathematical sentence can perform the function of facilitating deductive inferences from some concrete sentences to other concrete sentences, that a mathematical sentence is true if and only if all of its concrete consequences are true, that the abstract world does not exist, and that we acquire mathematical knowledge by confirming concrete sentences. Mathematical inferentialism has several advantages over (...)mathematical realism and fictionalism. (shrink)
Callard (2007) argues that it is metaphysically possible that a mathematical object, although abstract, causally affects the brain. I raise the following objections. First, a successful defence of mathematical realism requires not merely the metaphysical possibility but rather the actuality that a mathematical object affects the brain. Second, mathematical realists need to confront a set of three pertinent issues: why a mathematical object does not affect other concrete objects and other mathematical objects, what counts (...) as a mathematical object, and how we can have knowledge about an unchanging object. (shrink)
Indispensablists argue that when our belief system conflicts with our experiences, we can negate a mathematical belief but we do not because if we do, we would have to make an excessive revision of our belief system. Thus, we retain a mathematical belief not because we have good evidence for it but because it is convenient to do so. I call this view ‘ mathematical convenientism.’ I argue that mathematical convenientism commits the consequential fallacy and that (...) it demolishes the Quine-Putnam indispensability argument and Baker’s enhanced indispensability argument. (shrink)
An analysis of the counter-intuitive properties of infinity as understood differently in mathematics, classical physics and quantum physics allows the consideration of various paradoxes under a new light (e.g. Zeno’s dichotomy, Torricelli’s trumpet, and the weirdness of quantum physics). It provides strong support for the reality of abstractness and mathematical Platonism, and a plausible reason why there is something rather than nothing in the concrete universe. The conclusions are far reaching for science and philosophy.
A new trend in the philosophical literature on scientific explanation is that of starting from a case that has been somehow identified as an explanation and then proceed to bringing to light its characteristic features and to constructing an account for the type of explanation it exemplifies. A type of this approach to thinking about explanation – the piecemeal approach, as I will call it – is used, among others, by Lange (2013) and Pincock (2015) in the context of their (...) treatment of the problem of mathematical explanations of physical phenomena. This problem is of central importance in two different recent philosophical disputes: the dispute about the existence on non-causal scientific explanations and the dispute between realists and antirealists in the philosophy of mathematics. My aim in this paper is twofold. I will first argue that Lange (2013) and Pincock (2015) fail to make a significant contribution to these disputes. They fail to contribute to the dispute in the philosophy of mathematics because, in this context, their approach can be seen as question begging. They also fail to contribute to the dispute in the general philosophy of science because, as I will argue, there are important problems with the cases discussed by Lange and Pincock. I will then argue that the source of the problems with these two papers has to do with the fact that the piecemeal approach used to account for mathematical explanation is problematic. (shrink)
Indispensablists contend that accepting scientific realism while rejecting mathematical realism involves a double standard. I refute this contention by developing an enhanced version of scientific realism, which I call interactive realism. It holds that interactively successful theories are typically approximately true, and that the interactive unobservable entities posited by them are likely to exist. It is immune to the pessimistic induction while mathematical realism is susceptible to it.
Kant argues in the Critique of Judgment (CJ) that there are two distinct modes of the sublime. This essay will concentrate on the mathematical mode. It is helpful to begin an examination of the mathematical sublime by elucidating the difference between logical estimation and aesthetic estimation; it is aesthetic estimation under strain, so Kant argues, that instigates the moment of the sublime. Logical estimation forms the cognitive basis of scientific calculations. He argues that scientific enquiry only requires an (...) understanding of the logical relationship of numbers and so does not require an aesthetic experience of those numbers. (shrink)
This paper is a contribution to graded model theory, in the context of mathematical fuzzy logic. We study characterizations of classes of graded structures in terms of the syntactic form of their first-order axiomatization. We focus on classes given by universal and universal-existential sentences. In particular, we prove two amalgamation results using the technique of diagrams in the setting of structures valued on a finite MTL-algebra, from which analogues of the Łoś–Tarski and the Chang–Łoś–Suszko preservation theorems follow.
Do multi-level selection explanations of the evolution of social traits deepen the understanding provided by single-level explanations? Central to the former is a mathematical theorem, the multi-level Price decomposition. I build a framework through which to understand the explanatory role of such non-empirical decompositions in scientific practice. Applying this general framework to the present case places two tasks on the agenda. The first task is to distinguish the various ways of suppressing within-collective variation in fitness, and moreover to evaluate (...) their biological interest. I distinguish four such ways: increasing retaliatory capacity, homogenising assortment, and collapsing either fitness structure or character distribution to a mean value. The second task is to discover whether the third term of the Price decomposition measures the effect of any of these hypothetical interventions. On this basis I argue that the multi-level Price decomposition has explanatory value primarily when the sharing-out of collective resources is `subtractable'. Thus its value is more circumscribed than its champions Sober and Wilson (1998) suppose. (shrink)
The aim of this paper is to describe and analyze the epistemological justification of a proposal initially made by the biomathematician Robert Rosen in 1958. In this theoretical proposal, Rosen suggests using the mathematical concept of “category” and the correlative concept of “natural equivalence” in mathematical modeling applied to living beings. Our questions are the following: According to Rosen, to what extent does the mathematical notion of category give access to more “natural” formalisms in the modeling of (...) living beings? Is the so -called “naturalness” of some kinds of equivalences (which the mathematical notion of category makes it possible to generalize and to put at the forefront) analogous to the naturalness of living systems? Rosen appears to answer “yes” and to ground this transfer of the concept of “natural equivalence” in biology on such an analogy. But this hypothesis, although fertile, remains debatable. Finally, this paper makes a brief account of the later evolution of Rosen’s arguments about this topic. In particular, it sheds light on the new role played by the notion of “category” in his more recent objections to the computational models that have pervaded almost every domain of biology since the 1990s. (shrink)
The primary justification for mathematical structuralism is its capacity to explain two observations about mathematical objects, typically natural numbers. Non-eliminative structuralism attributes these features to the particular ontology of mathematics. I argue that attributing the features to an ontology of structural objects conflicts with claims often made by structuralists to the effect that their structuralist theses are versions of Quine’s ontological relativity or Putnam’s internal realism. I describe and argue for an alternative explanation for these features which instead (...) explains the attributes them to the mathematical practice of representing numbers using more concrete tokens, such as sets, strokes and so on. (shrink)
Most philosophical accounts on scientific theories are affected by three dogmas or ingrained attitudes. These dogmas have led philosophers to choose between analyzing the internal structure of theories or their historical evolution. In this paper, I turn these three dogmas upside down. I argue (i) that mathematical practices are not epistemically neutral, (ii) that the morphology of theories can be very complex, and (iii) that one should view theoretical knowledge as the combination of internal factors and their intrinsic (...) historicity. (shrink)
Mathematical models provide explanations of limited power of specific aspects of phenomena. One way of articulating their limits here, without denying their essential powers, is in terms of contrastive explanation.
Kant's special metaphysics is intended to provide the a priori foundation for Newtonian science, which is to be achieved by exhibiting the a priori content of Newtonian concepts and laws. Kant envisions a two-step mathematical construction of the dynamical concept of matter involving a geometrical construction of matter’s bulk and a symbolic construction of matter’s density. Since Newton himself defines quantity of matter in terms of bulk and density, there is no reason why we shouldn’t interpret Kant’s Dynamics as (...) a defence of a Newtonian concept of matter. When Kant’s reasoning is understood in relation to his criteria for mathematical construction, it is possible to maintain that matter theory is central to the Metaphysical Foundations, but that this does not undermine Kant’s stated aim of giving an a priori foundation for Newtonian science. (shrink)
In the first part of this article we survey general similarities and differences between biological and social macroevolution. In the second (and main) part, we consider a concrete mathematical model capable of describing important features of both biological and social macroevolution. In mathematical models of historical macrodynamics, a hyperbolic pattern of world population growth arises from non-linear, second-order positive feedback between demographic growth and technological development. Based on diverse paleontological data and an analogy with macrosociological models, we suggest (...) that the hyperbolic character of biodiversity growth can be similarly accounted for by non-linear, second-order positive feedback between diversity growth and the complexity of community structure. We discuss how such positive feedback mechanisms can be modelled mathematically. (shrink)
This paper offers a new interpretation for Wittgenstein`s treatment of mathematical identities. As it is widely known, Wittgenstein`s mature philosophy of mathematics includes a general rejection of abstract objects. On the other hand, the traditional interpretation of mathematical identities involves precisely the idea of a single abstract object – usually a number –named by both sides of an equation.
Descartes' philosophy contains an intriguing notion of the infinite, a concept labeled by the philosopher as indefinite. Even though Descartes clearly defined this term on several occasions in the correspondence with his contemporaries, as well as in his Principles of Philosophy, numerous problems about its meaning have arisen over the years. Most commentators reject the view that the indefinite could mean a real thing and, instead, identify it with an Aristotelian potential infinite. In the first part of this article, I (...) show why there is no numerical infinity in Cartesian mathematics, as such a concept would be inconsistent with the main fundamental attribute of numbers: to be comparable with each other. In the second part, I analyze the indefinite in the context of Descartes' mathematical physics. It is my contention that, even with no trace of infinite in his mathematics, Descartes does refer to an actual indefinite because of its application to the material world within the system of his physics. This fact underlines a discrepancy between his mathematics and physics of the infinite, but does not lead a difficulty in his mathematical physics. Thus, in Descartes' physics, the indefinite refers to an actual dimension of the world rather than to an Aristotelian mathematical potential infinity. In fact, Descartes establishes the reality and limitlessness of the extension of the cosmos and, by extension, the actual nature of his indefinite world. This indefinite has a physical dimension, even if it is not measurable. La filosofía de Descartes contiene una noción intrigante de lo infinito, un concepto nombrado por el filósofo como indefinido. Aunque en varias ocasiones Descartes definió claramente este término en su correspondencia con sus contemporáneos y en sus Principios de filosofía, han surgido muchos problemas acerca de su significado a lo largo de los años. La mayoría de comentaristas rechaza la idea de que indefinido podría significar una cosa real y, en cambio, la identifica con un infinito potencial aristotélico. En la primera parte de este artículo muestro por qué no hay infinito numérico en las matemáticas cartesianas, en la medida en que tal concepto sería inconsistente con el principal atributo fundamental de los números: ser comparables entre sí. En la segunda parte analizo lo indefinido en el contexto de la física matemática de Descartes. Mi argumento es que, aunque no hay rastro de infinito en sus matemáticas, Descartes se refiere a un indefinido real a causa de sus aplicaciones al mundo material dentro del sistema de su física. Este hecho subraya una discrepancia entre sus matemáticas y su física de lo infinito, pero no implica ninguna dificultad en su física matemática. Así pues, en la física de Descartes, lo indefinido se refiere a una dimensión real del mundo más que a una infinitud potencial matemática aristotélica. De hecho, Descartes establece la realidad e infinitud de la extensión del cosmos y, por extensión, la naturaleza real de su mundo indefinido. Esta indefinición tiene una dimensión física aunque no sea medible. (shrink)
Claude P. Bruter (editor), Mathematics in Art: Mathematical Visualization in Art and Education, Springer-Verlag, New York, 2002, pp. X + 337, ISBN 3-540-43422-4.
The demonstration of a loophole-free violation of Bell's inequality by Hensen et al. (2015) leads to the inescapable conclusion that timelessness and abstractness exist alongside space-time. This finding is in full agreement with the triple-aspect monism of reality, with mathematical Platonism, free will and the eventual emergence of a scientific morality.
Mathematical thinking skills are very important in mathematics, both to learn math or as learning goals. Thinking skills can be seen from the description given answers in solving mathematical problems faced. Mathematical thinking skills can be seen from the types, levels, and process. Proportionally questions given to students at universities in Indonesia (semester I, III, V, and VII). These questions are a matter of description that belong to the higher-level thinking. Students choose 5 of 8 given problem. (...) Qualitatively, the answers were analyzed by descriptive to see the tendency to think mathematically used in completing the test. The results show that students tend to choose the issues relating to the calculation. They are more use cases, examples and not an example, to evaluate the conjecture and prove to belong to the numeric argumentation. Used mathematical thinking students are very personal (intelligence, interest, and experience), and the situation (problems encountered). Thus, the level of half of the students are not guaranteed and shows the level of mathematical thinking. (shrink)
This work is a conceptual analysis of certain recent developments in the mathematical foundations of Classical and Quantum Mechanics which have allowed to formulate both theories in a common language. From the algebraic point of view, the set of observables of a physical system, be it classical or quantum, is described by a Jordan-Lie algebra. From the geometric point of view, the space of states of any system is described by a uniform Poisson space with transition probability. Both these (...) structures are here perceived as formal translations of the fundamental twofold role of properties in Mechanics: they are at the same time quantities and transformations. The question becomes then to understand the precise articulation between these two roles. The analysis will show that Quantum Mechanics can be thought as distinguishing itself from Classical Mechanics by a compatibility condition between properties-as-quantities and properties-as-transformations. -/- Moreover, this dissertation shows the existence of a tension between a certain "abstract way" of conceiving mathematical structures, used in the practice of mathematical physics, and the necessary capacity to specify particular states or observables. It then becomes important to understand how, within the formalism, one can construct a labelling scheme. The “Chase for Individuation” is the analysis of different mathematical techniques which attempt to overcome this tension. In particular, we discuss how group theory furnishes a partial solution. (shrink)
Reuben Hersh confided to us that, about forty years ago, the late Paul Cohen predicted to him that at some unspecified point in the future, mathematicians would be replaced by computers. Rather than focus on computers replacing mathematicians, however, our aim is to consider the (im)possibility of human mathematicians being joined by “artificial mathematicians” in the proving practice—not just as a method of inquiry but as a fellow inquirer.
I present an argument that for any computer-simulated civilization we design, the mathematical knowledge recorded by that civilization has one of two limitations. It is untrustworthy, or it is weaker than our own mathematical knowledge. This is paradoxical because it seems that nothing prevents us from building in all sorts of advantages for the inhabitants of said simulation.
In the first part of this article we survey general similarities and differences between biological and social macroevolution. In the second (and main) part, we consider a concrete mathematical model capable of describing important features of both biological and social macroevolution. In mathematical models of historical macrodynamics, a hyperbolic pattern of world population growth arises from non-linear, second-order positive feedback between demographic growth and technological development. This is more or less identical with the working of the collective learning (...) mechanism. Based on diverse paleontological data and an analogy with macrosociological models, we suggest that the hyperbolic character of biodiversity growth can be similarly accounted for by non-linear, second-order positive feedback between diversity growth and the complexity of community structure, suggesting the presence within the biosphere of a certain analogue of the collective learning mechanism. We discuss how such positive feedback mechanisms can be modelled mathematically. (shrink)
A Mathematical Review by John Corcoran, SUNY/Buffalo -/- Macbeth, Danielle Diagrammatic reasoning in Frege's Begriffsschrift. Synthese 186 (2012), no. 1, 289–314. ABSTRACT This review begins with two quotations from the paper: its abstract and the first paragraph of the conclusion. The point of the quotations is to make clear by the “give-them-enough-rope” strategy how murky, incompetent, and badly written the paper is. I know I am asking a lot, but I have to ask you to read the quoted passages—aloud (...) if possible. Don’t miss the silly attempt to recycle Kant’s quip “Concepts without intuitions are empty; intuitions without concepts are blind”. What the paper was aiming at includes the absurdity: “Proofs without definitions are empty; definitions without proofs are, if not blind, then dumb.” But the author even bollixed this. The editor didn’t even notice. The copy-editor missed it. And the author’s proof-reading did not catch it. In order not to torment you I will quote the sentence as it appears: “In a slogan: proofs without definitions are empty, merely the aimless manipulation of signs according to rules; and definitions without proofs are, if no blind, then dumb.”[sic] The rest of my review discusses the paper’s astounding misattribution to contemporary logicians of the information-theoretic approach. This approach was cruelly trashed by Quine in his 1970 Philosophy of Logic, and thereafter ignored by every text I know of. The paper under review attributes generally to modern philosophers and logicians views that were never espoused by any of the prominent logicians—such as Hilbert, Gödel, Tarski, Church, and Quine—apparently in an attempt to distance them from Frege: the focus of the article. On page 310 we find the following paragraph. “In our logics it is assumed that inference potential is given by truth-conditions. Hence, we think, deduction can be nothing more than a matter of making explicit information that is already contained in one’s premises. If the deduction is valid then the information contained in the conclusion must be contained already in the premises; if that information is not contained already in the premises […], then the argument cannot be valid.” Although the paper is meticulous in citing supporting literature for less questionable points, no references are given for this. In fact, the view that deduction is the making explicit of information that is only implicit in premises has not been espoused by any standard symbolic logic books. It has only recently been articulated by a small number of philosophical logicians from a younger generation, for example, in the prize-winning essay by J. Sagüillo, Methodological practice and complementary concepts of logical consequence: Tarski’s model-theoretic consequence and Corcoran’s information-theoretic consequence, History and Philosophy of Logic, 30 (2009), pp. 21–48. The paper omits definitions of key terms including ‘ampliative’, ‘explicatory’, ‘inference potential’, ‘truth-condition’, and ‘information’. The definition of prime number on page 292 is as follows: “To say that a number is prime is to say that it is not divisible without remainder by another number”. This would make one be the only prime number. The paper being reviewed had the benefit of two anonymous referees who contributed “very helpful comments on an earlier draft”. Could these anonymous referees have read the paper? -/- J. Corcoran, U of Buffalo, SUNY -/- PS By the way, if anyone has a paper that has been turned down by other journals, any journal that would publish something like this might be worth trying. (shrink)
CORCORAN RECOMMENDS COCCHIARELLA ON TYPE THEORY. The 1983 review in Mathematical Reviews 83e:03005 of: Cocchiarella, Nino “The development of the theory of logical types and the notion of a logical subject in Russell's early philosophy: Bertrand Russell's early philosophy, Part I”. Synthese 45 (1980), no. 1, 71-115 .
This 4-page review-essay—which is entirely reportorial and philosophically neutral as are my other contributions to MATHEMATICAL REVIEWS—starts with a short introduction to the philosophy known as mathematical structuralism. The history of structuralism traces back to George Boole (1815–1864). By reference to a recent article various feature of structuralism are discussed with special attention to ambiguity and other terminological issues. The review-essay includes a description of the recent article. The article’s 4-sentence summary is quoted in full and then analyzed. (...) The point of the quotation is to make clear how murky, incompetent, and badly written the paper is. There is no way to determine from the article whether the editor or referees suggests improvements. (shrink)
DEFINING OUR TERMS A “paradox" is an argumentation that appears to deduce a conclusion believed to be false from premises believed to be true. An “inconsistency proof for a theory" is an argumentation that actually deduces a negation of a theorem of the theory from premises that are all theorems of the theory. An “indirect proof of the negation of a hypothesis" is an argumentation that actually deduces a conclusion known to be false from the hypothesis alone or, more commonly, (...) from the hypothesis augmented by a set of premises known to be true. A “direct proof of a hypothesis" is an argumentation that actually deduces the hypothesis itself from premises known to be true. Since `appears', `believes' and `knows' all make elliptical reference to a participant, it is clear that `paradox', `indirect proof' and `direct proof' are all participant-relative. PARTICIPANT RELATIVITY In normal mathematical writing the participant is presumed to be “the community of mathematicians" or some more or less well-defined subcommunity and, therefore, omission of explicit reference to the participant is often warranted. However, in historical, critical, or philosophical writing focused on emerging branches of mathematics such omission often invites confusion. One and the same argumentation has been a paradox for one mathematician, an inconsistency proof for another, and an indirect proof to a third. One and the same argumentation-text can appear to one mathematician to express an indirect proof while appearing to another mathematician to express a direct proof. WHAT IS A PARADOX’S SOLUTION? Of the above four sorts of argumentation only the paradox invites “solution" or “resolution", and ordinarily this is to be accomplished either by discovering a logical fallacy in the “reasoning" of the argumentation or by discovering that the conclusion is not really false or by discovering that one of the premises is not really true. Resolution of a paradox by a participant amounts to reclassifying a formerly paradoxical argumentation either as a “fallacy", as a direct proof of its conclusion, as an indirect proof of the negation of one of its premises, as an inconsistency proof, or as something else depending on the participant's state of knowledge or belief. This illustrates why an argumentation which is a paradox to a given mathematician at a given time may well not be a paradox to the same mathematician at a later time. -/- The present article considers several set-theoretic argumentations that appeared in the period 1903-1908. The year 1903 saw the publication of B. Russell's Principles of mathematics, [Cambridge Univ. Press, Cambridge, 1903; Jbuch 34, 62]. The year 1908 saw the publication of Russell's article on type theory as well as Ernst Zermelo's two watershed articles on the axiom of choice and the foundations of set theory. The argumentations discussed concern “the largest cardinal", “the largest ordinal", the well-ordering principle, “the well-ordering of the continuum", denumerability of ordinals and denumerability of reals. The article shows that these argumentations were variously classified by various mathematicians and that the surrounding atmosphere was one of confusion and misunderstanding, partly as a result of failure to make or to heed distinctions similar to those made above. The article implies that historians have made the situation worse by not observing or not analysing the nature of the confusion. -/- RECOMMENDATION This well-written and well-documented article exemplifies the fact that clarification of history can be achieved through articulation of distinctions that had not been articulated (or were not being heeded) at the time. The article presupposes extensive knowledge of the history of mathematics, of mathematics itself (especially set theory) and of philosophy. It is therefore not to be recommended for casual reading. AFTERWORD: This review was written at the same time Corcoran was writing his signature “Argumentations and logic”[249] that covers much of the same ground in much more detail. https://www.academia.edu/14089432/Argumentations_and_Logic . (shrink)
Taking into account some basic epistemological considerations on psychoanalysis by Ignacio Matte Blanco, it is possible to deduce some first simple remarks on certain logical aspects of schizophrenic reasoning. Further remarks on mathematical thought are also made in the light of what established, taking into account the comparison with the schizophrenia pattern.
This article had its beginning with Einstein's 1919 paper "Do gravitational fields play an essential role in the structure of elementary particles?" Together with General Relativity's statement that gravity is not a pull but is a push caused by the curvature of space-time, a hypothesis for Earth's ocean tides was developed that does not solely depend on the Sun and Moon as Kepler and Newton believed. It also borrows from Galileo. The breakup of planets and asteroids by white dwarfs, neutron (...) stars or black holes is popularly ascribed by today's science to tidal forces (gravitation emanating from the stellar body and having a greater effect on the near side of a planet/asteroid than the farthest side). Remembering Einstein's 1919 paper, it was apparent that my revised idea of tidal forces improves on current accounts because it views matter and mass as unified with space-time whose curvature is gravitation. Unification is a necessity for modern science's developing view of one united and entangled universe – expressed in the Unified Field Theory, the Theory of Everything, String theory and Loop Quantum Gravity. The writing of this article was also assisted by visualizing the gravitational fields forming space-time being themselves formed by a multitude of weak and presently undetectable gravitational waves. The final part of this article concludes that the section BITS AND TOPOLOGY will lead to the conclusions in ETERNAL LIFE, WORLD PEACE AND PHYSICS' UNIFICATION. The final part also compares cosmology to biological enzymes and biology's substrate of reacting "chemicals" - using virtual particles, hidden variables, gravitation, electromagnetism, electronics’ binary digits, plus topology’s Mobius strip and figure-8 Klein bottle. The product is mass - enzyme, substrate and product are all considered mathematical in nature. Also, gravitation and electromagnetism are united using logic and topology – showing there’s no need in this article for things like mathematical formalism, field equations or tensor calculus. (shrink)
Following the 26th General Conference on Weights and Measures are fixed the numerical values of the 4 physical constants ($h, c, e, k_B$). This is premised on the independence of these constants. This article discusses a model of a mathematical electron from which can be defined the Planck units as geometrical objects (mass M=1, time T=2$\pi$ ...). In this model these objects are interrelated via this electron geometry such that once we have assigned values to 2 Planck units then (...) we have fixed the values for all Planck units. As all constants can then be defined using geometrical forms (in terms of 2 fixed mathematical constants, 2 unit-specific scalars and a defined relationship between the units $kg, m, s, A$), the least precise CODATA 2014 constants ($G, h, e, m_e, k_B$...) can then be solved via the most precise ($c, \mu_0, \alpha, R_\infty$), with numerical precision limited by the precision of the fine structure constant $\alpha$. In terms of this model we now for example have 2 separate values for elementary charge, calculated from ($c, \alpha, R_\infty$) and the 2017 revision. (shrink)
In attempt to provide an answer to the question of origin of deductive proofs, I argue that Aristotle’s philosophy of math is more accurate opposed to a Platonic philosophy of math, given the evidence of how mathematics began. Aristotle says that mathematical knowledge is a posteriori, known through induction; but once knowledge has become unqualified it can grow into deduction. Two pieces of recent scholarship on Greek mathematics propose new ways of thinking about how mathematics began in the Greek (...) culture. Both claimed there was a close relationship between the culture and mathematicians; mathematics was understood through imaginative processes, experiencing the proofs in tangible ways, and establishing a consistent unified form of argumentation. These pieces of evidence provide the context in which Aristotle worked and their contributions lend support to the argument that mathematical premises as inductively available is a better way of understanding the origins of deductive practices, opposed to the Platonic tradition. (shrink)
What is so special and mysterious about the Continuum, this ancient, always topical, and alongside the concept of integers, most intuitively transparent and omnipresent conceptual and formal medium for mathematical constructions and the battle field of mathematical inquiries ? And why it resists the century long siege by best mathematical minds of all times committed to penetrate once and for all its set-theoretical enigma ? -/- The double-edged purpose of the present study is to save from the (...) transfinite deadlock of higher set theory the jewel of mathematical Continuum -- this genuine, even if mostly forgotten today raison d'etre of all set-theoretical enterprises to Infinity and beyond, from Georg Cantor to W. Hugh Woodin to Buzz Lightyear, by simultaneously exhibiting the limits and pitfalls of all old and new reductionist foundational approaches to mathematical truth: be it Cantor's or post-Cantorian Idealism, Brouwer's or post-Brouwerian Constructivism, Hilbert's or post-Hilbertian Formalism, Goedel's or post-Goedelian Platonism. -/- In the spirit of Zeno's paradoxes, but with the enormous historical advantage of hindsight, we claim that Cantor's set-theoretical methodology, powerful and reach in proof-theoretic and similar applications as it might be, is inherently limited by its epistemological framework of transfinite local causality, and neither can be held accountable for the properties of the Continuum already acquired through geometrical, analytical, and arithmetical studies, nor can it be used for an adequate, conceptually sensible, operationally workable, and axiomatically sustainable re-creation of the Continuum. -/- From a strictly mathematical point of view, this intrinsic limitation of the constative and explicative power of higher set theory finds its explanation in the identified in this study ultimate phenomenological obstacle to Cantor's transfinite construction, similar to topological obstacles in homotopy theory and theoretical physics: the entanglement capacity of the mathematical Continuum. (shrink)
Can mathematics contribute to our understanding of physical phenomena? One way to try to answer this question is by getting involved in the recent philosophical dispute about the existence of mathematical explanations of physical phenomena. If there is such a thing, given the relation between explanation and understanding, we can say that there is an affirmative answer to our question. But what if we do not agree that mathematics can play an explanatory role in science? Can we still consider (...) that the above question can have an affirmative answer? My main aim here is to give an account that takes mathematics, in some of the cases discussed in the literature, as contributing to our understanding of physical phenomena despite not being explanatory. (shrink)
We start from previous studies of G.N. Ord and A.S. Deakin showing that both the classical diffusion equation and Schrödinger equation of quantum mechanics have a common stump. Such result is obtained in rigorous terms since it is demonstrated that both diffusion and Schrödinger equations are manifestation of the same mathematical axiomatic set of the Clifford algebra. By using both such ( ) i A S and the i,±1 N algebra, it is evidenced, however, that possibly the two basic (...) equations of the physics cannot be reconciled. 1. (shrink)
Two families of mathematical methods lie at the heart of investigating the hierarchical structure of genetic variation in Homo sapiens: /diversity partitioning/, which assesses genetic variation within and among pre-determined groups, and /clustering analysis/, which simultaneously produces clusters and assigns individuals to these “unsupervised” cluster classifications. While mathematically consistent, these two methodologies are understood by many to ground diametrically opposed claims about the reality of human races. Moreover, modeling results are sensitive to assumptions such as preexisting theoretical commitments to (...) certain linguistic, anthropological, and geographic human groups. Thus, models can be perniciously reified. That is, they can be conflated and confused with the world. This fact belies standard realist and antirealist interpretations of “race,” and supports a pluralist conventionalist interpretation. (shrink)
Create an account to enable off-campus access through your institution's proxy server.
Monitor this page
Be alerted of all new items appearing on this page. Choose how you want to monitor it:
Email
RSS feed
About us
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.