I have been working for a long time about basic laws which direct existence, and some mathematical problems which are waited for a solution. I can count myself lucky, that I could make some important inferences during this time, and I published them in a few papers partially as some propositions. This work aimed to explain and discuss these inferences all together by relating them one another by some extra additions, corrections and explanations being physical phenomena are prior. There are (...) many motivation instruments for exact physical inferences. (shrink)
In many languages, the same particles that form quantifier words also serve as connectives, additive and scalar particles, question markers, roots of existential verbs, and so on. Do these have a unified semantics, or do they merely bear a family resemblance? Are they aided by silent operators in their varied roles―if yes, what operators? I dub the particles “quantifier particles” and refer to them generically with capitalized versions of the Japanese morphemes. I argue that both MO (...) and KA can be assigned a stable semantics across their various roles. The specific analysis I offer is motivated by the fact that MO and KA often combine with just one argument; I propose that this is their characteristic behavior. Their role is to impose semantic requirements that are satisfied when the immediately larger context is interpreted as the meet/join of their host’s semantic contribution with something else. They do not perform meet/join themselves. The obligatory vs. optional appearance of the particles depends on whether the meet/join interpretations arise by default in the given constellation. I explicate the proposal using the toolkit of basic Inquisitive Semantics. (shrink)
The physics literature contains many claims that elementary particles have been observed: such observational claims are, of course, important for the development of existential knowledge. Regarding claimed observations of short-lived unstable particles in particular, the use of the word 'observation' is based on the convention in physics that the observation of a short-lived unstable particle can be claimed when its predicted decay products have been observed with a significance of 5 sigma. This paper, however, shows that this 5 (...) sigma convention is inconsistent with existing concepts of observation by showing that unstable particles with a lifetime of less than 0.01 attosecond are fundamentally unobservable both from the perspective of Fox's recent concepts of direct and indirect observation, and from the perspective of Van Fraassen's notion of observability. This cognitive inaccessibility of parts of the subatomic world has far-reaching implications for physics, not the least of which is that the aforementioned convention is untenable: claims that such short-lived unstable particles have been observed will thus have to be retracted. The main implications are two incompleteness theorems for physics, respectively stating (i) that experiments cannot prove completeness of a physical theory predicting short-lived unstable particles, and (ii) that experiments cannot prove correctness of such a theory|one can at most test its empirical adequacy. On a general note, the conclusion is that the importance of philosophical arguments for particle physics is herewith demonstrated: it is, thus, a widespread misconception that philosophical arguments can be completely avoided. (shrink)
An analysis of the physical implications of abstractness reveals the reality of three interconnected modes of existence: abstract, virtual and concrete, corresponding in physics to information, energy and matter. This triple-aspect monism clarifies the ontological status of subatomic quantum particles. It also provides a non-spooky solution to the weirdness of quantum physics and a new outlook for the mind-body problem. The ontological implications are profound for both physics and philosophy.
This paper puts forward the hypothesis that the distinctive features of quantum statistics are exclusively determined by the nature of the properties it describes. In particular, all statistically relevant properties of identical quantum particles in many-particle systems are conjectured to be irreducible, ‘inherent’ properties only belonging to the whole system. This allows one to explain quantum statistics without endorsing the ‘Received View’ that particles are non-individuals, or postulating that quantum systems obey peculiar probability distributions, or assuming that there (...) are primitive restrictions on the range of states accessible to such systems. With this, the need for an unambiguously metaphysical explanation of certain physical facts is acknowledged and satisfied. (shrink)
A fully micro realistic, propensity version of quantum theory is proposed, according to which fundamental physical entities - neither particles nor fields - have physical characteristics which determine probabilistically how they interact with one another . The version of quantum "smearon" theory proposed here does not modify the equations of orthodox quantum theory: rather, it gives a radically new interpretation to these equations. It is argued that there are strong general reasons for preferring quantum "smearon" theory to orthodox quantum (...) theory; the proposed change in physical interpretation leads quantum "smearon" theory to make experimental predictions subtly different from those of orthodox quantum theory. Some possible crucial experiments are considered. (shrink)
In many languages, the same particles build quantiﬁer words and serve as connectives, additive and scalar particles, question markers, existential verbs, and so on. Do the roles of each particle form a natural class with a stable semantics? Are the particles aided by additional elements, overt or covert, in fulﬁlling their varied roles? I propose a uniﬁed analysis, according to which the particles impose partial ordering requirements (glb and lub) on the interpretations of their hosts and (...) the immediate larger contexts, but do not embody algebraic operations themselves. (shrink)
This paper discusses the issue of the identity and individuality (or lack thereof) of quantum mechanical particles. It first reconstructs, on the basis of the extant literature, a general argument in favour of the conclusion that such particles are not individual objects. Then, it critically assesses each one of the argument’s premises. The upshot is that, in fact, there is no compelling reason for believing that quantum particles are not individual objects.
Rutherford’s α-particles scattering experiment was one of the milestone for the physics community as it provided an insight to an atom thus discarding the previously prevailed Thomson’s model. Through this article we shall examine the theoretical formulation of Rutherford’s experiment and how it helped to shape the modern physics.
The properties of angular momentum and its connection to magnetic momentum are explored, based on a reconsideration of the Stern-Gerlach experiment and gauge invariance. A possible way to solve the so called spin crisis is proposed. The separation of angular momentum of a quantum system of particles into orbital angular momentum plus intrinsic angular momentum is reconsidered, within the limits of the Schr\"odinger theory. A proof is given that, for systems of more than two particles, unless all of (...) them have the same mass, the possibility of having eigenvalues of the form $(n+1/2)\hbar$ is not excluded. (shrink)
The properties of angular momentum and its connection to magnetic momentum are explored, based on a reconsideration of the Stern-Gerlach experiment and gauge invariance. A possible way to solve the so called spin crisis is proposed. The separation of angular momentum of a quan- tum system of particles into orbital angular momentum plus intrinsic angular momentum is reconsidered, within the limits of the Schrodinger theory. A proof is given that, for systems of more than two particles, un- less (...) all of them have the same mass, the possibility of having eigenvalues of the form (n + 1/2)h is not excluded. (shrink)
Abstract: Standing half wave photon energy at light speed twice on expansion-contraction comprise a static universe where two transverse fields 90° out of phase are the square of distance from each other. The universe has a static concept of time since the infinite universe is a static universe without a beginning or end. The square of distance is a point of reversal in expansion-contraction between the fields as a means to conserve energy. Expansion of photon energy in the electro field (...) creates matter while contraction in the magnetic field creates light energy and gravitational pull toward the higher frequency energy. Also, the universe with matter has a moving physical concept of time from gravitational pull on expansion-contraction. (shrink)
We investigate the meaning of the wave function by analyzing the mass and charge density distributions of a quantum system. According to protective measurement, a charged quantum system has effective mass and charge density distributing in space, proportional to the square of the absolute value of its wave function. In a realistic interpretation, the wave function of a quantum system can be taken as a description of either a physical field or the ergodic motion of a particle. The essential difference (...) between a field and the ergodic motion of a particle lies in the property of simultaneity; a field exists throughout space simultaneously, whereas the ergodic motion of a particle exists throughout space in a time-divided way. If the wave function is a physical field, then the mass and charge density will be distributed in space simultaneously for a charged quantum system, and thus there will exist gravitational and electrostatic self-interactions of its wave function. This not only violates the superposition principle of quantum mechanics but also contradicts experimental observations. Thus the wave function cannot be a description of a physical field but a description of the ergodic motion of a particle. For the later there is only a localized particle with mass and charge at every instant, and thus there will not exist any self-interaction for the wave function. Which kind of ergodic motion of particles then? It is argued that the classical ergodic models, which assume continuous motion of particles, cannot be consistent with quantum mechanics. Based on the negative result, we suggest that the wave function is a description of the quantum motion of particles, which is random and discontinuous in nature. On this interpretation, the square of the absolute value of the wave function not only gives the probability of the particle being found in certain locations, but also gives the probability of the particle being there. We show that this new interpretation of the wave function provides a natural realistic alternative to the orthodox interpretation, and its implications for other realistic interpretations of quantum mechanics are also briefly discussed. (shrink)
We show that the physical meaning of the wave function can be derived based on the established parts of quantum mechanics. It turns out that the wave function represents the state of random discontinuous motion of particles, and its modulus square determines the probability density of the particles appearing in certain positions in space.
We investigate the validity of the field explanation of the wave function by analyzing the mass and charge density distributions of a quantum system. It is argued that a charged quantum system has effective mass and charge density distributing in space, proportional to the square of the absolute value of its wave function. This is also a consequence of protective measurement. If the wave function is a physical field, then the mass and charge density will be distributed in space simultaneously (...) for a charged quantum system, and thus there will exist a remarkable electrostatic self-interaction of its wave function, though the gravitational self-interaction is too weak to be detected presently. This not only violates the superposition principle of quantum mechanics but also contradicts experimental observations. Thus we conclude that the wave function cannot be a description of a physical field. In the second part of this paper, we further analyze the implications of these results for the main realistic interpretations of quantum mechanics, especially for de Broglie-Bohm theory. It has been argued that de Broglie-Bohm theory gives the same predictions as quantum mechanics by means of quantum equilibrium hypothesis. However, this equivalence is based on the premise that the wave function, regarded as a Ψ-field, has no mass and charge density distributions, which turns out to be wrong according to the above results. For a charged quantum system, both Ψ-field and Bohmian particle have charge density distribution. This then results in the existence of an electrostatic self-interaction of the field and an electromagnetic interaction between the field and Bohmian particle, which contradicts both the predictions of quantum mechanics and experimental observations. Therefore, de Broglie-Bohm theory as a realistic interpretation of quantum mechanics is probably wrong. Lastly, we suggest that the wave function is a description of some sort of ergodic motion (e.g. random discontinuous motion) of particles, and we also briefly analyze the implications of this suggestion for other realistic interpretations of quantum mechanics including many-worlds interpretation and dynamical collapse theories. (shrink)
We propose a semantic analysis of the particles afinal (European Portuguese) and alla fine (Italian) in terms of the notion of truth unpersistence, which combines both epistemic modality and constraints on discourse structure. We argue that the felicitous use of these modal particles requires that the truth of a proposition p* fail to persist through a temporal succession of epistemic states, where p* is incompatible with the proposition modified by afinal/alla fine, and that the interlocutors share knowledge of (...) a previous epistemic attitude toward p*. We analyze two main cases, that of plan-related propositions and that of propositions without plans. We also discuss the connections between truth unpersistence and evidentiality. (shrink)
The meaning of the wave function and its evolution are investigated. First, we argue that the wave function in quantum mechanics is a description of random discontinuous motion of particles, and the modulus square of the wave function gives the probability density of the particles being in certain locations in space. Next, we show that the linear non-relativistic evolution of the wave function of an isolated system obeys the free Schrödinger equation due to the requirements of spacetime translation (...) invariance and relativistic invariance. Thirdly, we argue that the random discontinuous motion of particles may lead to a stochastic, nonlinear collapse evolution of the wave function. A discrete model of energy-conserved wavefunction collapse is proposed and shown consistent with existing experiments and our macroscopic experience. Besides, we also give a critical analysis of the de Broglie-Bohm theory, the many-worlds interpretation and other dynamical collapse theories, and briefly discuss the issues of unifying quantum mechanics and relativity. (shrink)
Quantum mechanics makes some very significant observations about nature. Unfortunately, these observations remain a mystery because they do not fit into and/or cannot be explained through classical mechanics. However, we can still explore the philosophical and practical implications of these observations. This article aims to explain philosophical and practical implications of one of the most important observations of quantum mechanics – uncertainty or the arbitrariness in the behavior of particles.
Mereological nihilism is the philosophical position that there are no items that have parts. If there are no items with parts then the only items that exist are partless fundamental particles, such as the true atoms (also called philosophical atoms) theorized to exist by some ancient philosophers, some contemporary physicists, and some contemporary philosophers. With several novel arguments I show that mereological nihilism is the correct theory of reality. I will also discuss strong similarities that mereological nihilism has with (...) empirical results in quantum physics. And I will discuss how mereological nihilism vindicates a few other theories, such as a very specific theory of philosophical atomism, which I will call quantum abstract atomism. I will show that mereological nihilism also is an interpretation of quantum mechanics that avoids the problems of other interpretations, such as the widely known, metaphysically generated, quantum paradoxes of quantum physics, which ironically are typically accepted as facts about reality. I will also show why it is very surprising that mereological nihilism is not a widely held theory, and not the premier theory in philosophy. (shrink)
This paper is essentially a quantum philosophical challenge: starting from simple assumptions, we argue about an ontological approach to quantum mechanics. In this paper, we will focus only on the assumptions. While these assumptions seems to solve the ontological aspect of theory many others epistemological problems arise. For these reasons, in order to prove these assumptions, we need to find a consistent mathematical context (i.e. time reverse problem, quantum entanglement, implications on quantum fields, Schr¨odinger cat states, the role of observer, (...) the role of mind ). (shrink)
The article sets out a primitive ontology of the natural world in terms of primitive stuff—that is, stuff that has as such no physical properties at all—but that is not a bare substratum either, being individuated by metrical relations. We focus on quantum physics and employ identity-based Bohmian mechanics to illustrate this view, but point out that it applies all over physics. Properties then enter into the picture exclusively through the role that they play for the dynamics of the primitive (...) stuff. We show that such properties can be local, as well as holistic, and discuss two metaphysical options to conceive them, namely, Humeanism and modal realism in the guise of dispositionalism. 1 Introduction2 Primitive Ontology: Primitive Stuff3 The Physics of Matter as Primitive Stuff4 The Humean Best System Analysis of the Dynamical Variables5 Modal Realism about the Dynamical Variables6 Conclusion. (shrink)
The mathematical structure of realist quantum theories has given rise to a debate about how our ordinary 3-dimensional space is related to the 3N-dimensional configuration space on which the wave function is defined. Which of the two spaces is our (more) fundamental physical space? I review the debate between 3N-Fundamentalists and 3D-Fundamentalists and evaluate it based on three criteria. I argue that when we consider which view leads to a deeper understanding of the physical world, especially given the deeper topological (...) explanation from the unordered configurations to the Symmetrization Postulate, we have strong reasons in favor of 3D-Fundamentalism. I conclude that our evidence favors the view that our fundamental physical space in a quantum world is 3-dimensional rather than 3N-dimensional. I outline lines of future research where the evidential balance can be restored or reversed. Finally, I draw lessons from this case study to the debate about theoretical equivalence. (shrink)
Four initial postulates are presented (with two more added later), which state that construction of the physical universe proceeds from a sequence of discrete steps or "projections" --- a process that yields a sequence of discrete levels (labeled 0, 1, 2, 3, 4). At or above level 2 the model yields a (3+1)-dimensional structure, which is interpreted as ordinary space and time. As a result, time does not exist below level 2 of the system, and thus the quantum of action, (...) h, which depends on time (since its unit is time•energy), also does not exist below level 2. This implies that the quantum of action is not fundamental, and thus e.g. that the physical universe cannot have originated from a quantum fluctuation. When the gravitational interaction for the model is developed, it is seen that the basic ingredient for gravity is already operating at level 1 of the system, which implies that gravity, too, is not fundamentally quantum mechanical (since, as stated, h only kicks in at level 2) --- perhaps obviating the need for a quantum theory of gravity. Further arguments along this line lead to the conclusion that quantum fluctuations cannot be a source of gravity, and thus cannot contribute to the cosmological constant --- thereby averting the cosmological constant problem. Along the way, the model also provides explanations for dark energy, the beginning and ending of inflation, quark confinement, and more. Although the model dethrones the quantum, it nevertheless elevates an idea in physics that was engendered by quantum mechanics: the necessary role of "observers" in constructing the world. (shrink)
Tim Maudlin has influentially argued that Humeanism about laws of nature stands in conflict with quantum mechanics. Specifically Humeanism implies the principle Separability: the complete physical state of a world is determined by the intrinsic physical state of each space-time point. Maudlin argues Separability is violated by the entangled states posited by QM. We argue that Maudlin only establishes that a stronger principle, which we call Strong Separability, is in tension with QM. Separability is not in tension with QM. Moreover, (...) while the Humean requires Separability to capture the core tenets of her view, there's no Humean-specific motivation for accepting Strong Separability. We go on to give a Humean account of entangled states which satisfies Separability. The core idea is that certain quantum states depend upon the Humean mosaic in much the same way as the laws do. In fact, we offer a variant of the Best System account on which the systemization procedure that generates the laws also serves to ground these states. We show how this account works by applying it to the example of Bohmian Mechanics. The 3N-dimensional configuration space, the world particle in it and the wave function on it are part of the best system of the Humean mosaic, which consists of N particles moving in 3-dimensional space. We argue that this account is superior to the Humean account of Bohmian Mechanics defended by Loewer and Albert, which takes the 3N-dimensional space, and its inhabitants, as fundamental. (shrink)
The paper points out that the modern formulation of Bohm’s quantum theory known as Bohmian mechanics is committed only to particles’ positions and a law of motion. We explain how this view can avoid the open questions that the traditional view faces according to which Bohm’s theory is committed to a wave-function that is a physical entity over and above the particles, although it is defined on configuration space instead of three-dimensional space. We then enquire into the status (...) of the law of motion, elaborating on how the main philosophical options to ground a law of motion, namely Humeanism and dispositionalism, can be applied to Bohmian mechanics. In conclusion, we sketch out how these options apply to primitive ontology approaches to quantum mechanics in general. (shrink)
Region R Question: How many objects — entities, things — are contained in R? Ignore the empty space. Our question might better be put, 'How many material objects does R contain?' Let's stipulate that A, B and C are metaphysical atoms: absolutely simple entities with no parts whatsoever besides themselves. So you don't have to worry about counting a particle's top half and bottom half as different objects. Perhaps they are 'point-particles', with no length, width or breadth. Perhaps they (...) are extended in space without possessing spatial parts (if that is possible). Never mind. We stipulate that A, B and C are perfectly simple. We also stipulate that they are connected as follows. A and B are stuck together in such a way that when a force is applied to one of them, they move together 'as a unit'. Moreover, the two of them together exhibit behavior that neither would exhibit on its own — Perhaps they emit a certain sound, or glow in the dark — whereas C is.. (shrink)
A Boltzmann Brain, haphazardly formed through the unlikely but still possible random assembly of physical particles, is a conscious brain having experiences just like an ordinary person. The skeptical possibility of being a Boltzmann Brain is an especially gripping one: scientific evidence suggests our actual universe’s full history may ultimately contain countless short-lived Boltzmann Brains with experiences just like yours or mine. I propose a solution to the skeptical challenge posed by these countless actual Boltzmann Brains. My key idea (...) is roughly this: the skeptical argument that you’re one of the Boltzmann Brains requires you to make a statistical inference, but the Principle of Total Evidence blocks us from making the inference. I discuss how my solution contrasts with a recent suggestion, made by Sean Carroll and David Chalmers, for how to address the skeptical challenge posed by Boltzmann Brains. And I discuss how my solution handles certain relevant concerns about what to do when we have higher-order evidence indicating that our first-order evidence is misleading. (shrink)
Let’s begin with a simple example. Consider two quarks: one near the tip of your nose, the other near the center of Alpha Centauri. Here is a question about these two subatomic particles: Is there an object that has these two quarks as its parts and that has no other parts? According to one view of the matter (a view that is surprisingly endorsed by a great many contemporary philosophers), the answer to this question is Yes. But I think (...) it is fair to say that according to common sense, the answer to this question is really No, there is no object that has as its only two parts a quark near the tip of your nose and another quark near the center of Alpha Centauri. (shrink)
I will introduce and motivate eliminativist super-relationism. This is the conjunction of relationism about spacetime and eliminativism about material objects. According to the view, the universe is a big collection of spatio-temporal relations and natural properties, and no substance (material or spatio-temporal) exists in it. The view is original since eliminativism about material objects, when understood as including not only ordinary objects like tables or chairs but also physical particles, is generally taken to imply substantivalism about spacetime: if properties (...) are directly instantiated by spacetime without the mediation of material objects, then, surely, spacetime has to be a substance. After introducing briefly the two debates about spacetime (§1) and material objects (§2), I will present Schaffer's super-substantivalism (§3), the conjunction of substantivalism about spacetime and eliminativism about material objects at the fundamental level. I shall then expose and discuss the assumption from which the implication from eliminativism to substantivalism is drawn, and discuss the compatibility of eliminativism with relationism: if spacetime is not a substance, and if material objects are not real, how are we to understand the instantiation of properties (§4)? And what are the relata of spatio-temporal relations (§5)? I then show that each argument in favor of super-substantivalism offered by Schaffer also holds for super-relationism (§6) and examine several metaphysical consequences of the view (§7). I conclude that both super-substantivalism and super-relationism are compatible with Schaffer's priority monism (§8). (shrink)
Dirac’s relativistic theory of electron generally results in two possible solutions, one with positive energy and other with negative energy. Although positive energy solutions accurately represented particles such as electrons, interpretation of negative energy solution became very much controversial in the last century. By assuming the vacuum to be completely filled with a sea of negative energy electrons, Dirac tried to avoid natural transition of electron from positive to negative energy state using Pauli’s exclusion principle. However, many scientists like (...) Bohr objected to the idea of sea of electrons as it indicates infinite density of charge and electric field and consequently infinite energy. In addition, till date, there is no experimental evidence of a particle whose total energy (kinetic plus rest) is negative. In an alternative approach, Feynman, in quantum field theory, proposed that particles with negative energy are actually positive energy particles running backwards in time. This was mathematically consistent since quantum mechanical energy operator contains time in denominator and the negative sign of energy can be absorbed in it. However, concept of negative time is logically inconsistent since in this case, effect happens before the cause. To avoid above contradictions, in this paper, we try to reformulate the Dirac’s theory of electron so that neither energy needs to be negative nor the time is required to be negative. Still, in this new formulation, two different possible solutions exist for particles and antiparticles (electrons and positrons). (shrink)
In the author’s previous contribution to this journal (Rosen 2015), a phenomenological string theory was proposed based on qualitative topology and hypercomplex numbers. The current paper takes this further by delving into the ancient Chinese origin of phenomenological string theory. First, we discover a connection between the Klein bottle, which is crucial to the theory, and the Ho-t’u, a Chinese number archetype central to Taoist cosmology. The two structures are seen to mirror each other in expressing the psychophysical (phenomenological) action (...) pattern at the heart of microphysics. But tackling the question of quantum gravity requires that a whole family of topological dimensions be brought into play. What we find in engaging with these structures is a closely related family of Taoist forebears that, in concert with their successors, provide a blueprint for cosmic evolution. Whereas conventional string theory accounts for the generation of nature’s fundamental forces via a notion of symmetry breaking that is essentially static and thus unable to explain cosmogony successfully, phenomenological/Taoist string theory entails the dialectical interplay of symmetry and asymmetry inherent in the principle of synsymmetry. This dynamic concept of cosmic change is elaborated on in the three concluding sections of the paper. Here, a detailed analysis of cosmogony is offered, first in terms of the theory of dimensional development and its Taoist (yin-yang) counterpart, then in terms of the evolution of the elemental force particles through cycles of expansion and contraction in a spiraling universe. The paper closes by considering the role of the analyst per se in the further evolution of the cosmos. (shrink)
We put forward a new, ‘coherentist’ account of quantum entanglement, according to which entangled systems are characterized by symmetric relations of ontological dependence among the component particles. We compare this coherentist viewpoint with the two most popular alternatives currently on offer—structuralism and holism—and argue that it is essentially different from, and preferable to, both. In the course of this article, we point out how coherentism might be extended beyond the case of entanglement and further articulated.
I maintain that quantum mechanics is fundamentally about a system of N particles evolving in three-dimensional space, not the wave function evolving in 3N-dimensional space.
The correspondence principle made of unitarity, locality and renormalizability has been very successful in quantum field theory. Among the other things, it helped us build the standard model. However, it also showed important limitations. For example, it failed to restrict the gauge group and the matter sector in a powerful way. After discussing its effectiveness, we upgrade it to make room for quantum gravity. The unitarity assumption is better understood, since it allows for the presence of physical particles as (...) well as fake particles (fakeons). The locality assumption is applied to an interim classical action, since the true classical action is nonlocal and emerges from the quantization and a later process of classicization. The renormalizability assumption is refined to single out the special role of the gauge couplings. We show that the upgraded principle leads to an essentially unique theory of quantum gravity. In particular, in four dimensions, a fakeon of spin 2, together with a scalar field, is able to make the theory renormalizable while preserving unitarity. We offer an overview of quantum field theories of particles and fakeons in various dimensions, with and without gravity. (shrink)
I argue that the wave function ontology for quantum mechanics is an undesirable ontology. This ontology holds that the fundamental space in which entities evolve is not three-dimensional, but instead 3N-dimensional, where N is the number of particles standardly thought to exist in three-dimensional space. I show that the state of three-dimensional objects does not supervene on the state of objects in 3N-dimensional space. I also show that the only way to guarantee the existence of the appropriate mental states (...) in the wave function ontology has undesirable metaphysical baggage: either mind/body dualism is true, or circumstances which we take to be logically possible turn out to be logically impossible. (shrink)
I argue that the contemporary interplay of cosmology and particle physics in their joint effort to understand the processes at work during the first moments of the big bang has important implications for understanding the nature of lawhood. I focus on the phenomenon of spontaneous symmetry breaking responsible for generating the masses of certain particles. This phenomenon presents problems for the currently fashionable Dretske-Tooley-Armstrong theory and strongly favors a rival nomic ontology of causal powers.
In the first part of the paper I argue that an ontology of events is precise, flexible and general enough so as to cover the three main alternative formulations of quantum mechanics as well as theories advocating an antirealistic view of the wave function. Since these formulations advocate a primitive ontology of entities living in four-dimensional spacetime, they are good candidates to connect that quantum image with the manifest image of the world. However, to the extent that some form of (...) realism about the wave function is also necessary, one needs to endorse also the idea that the wave function refers to some kind of power. In the second part, I discuss some difficulties raised by the recent proposal that in Bohmian mechanics this power is holistically possessed by all the particles in the universe. (shrink)
Several particles are not observed directly, but only through their decay products. We consider the possibility that they might be fakeons, i.e. fake particles, which mediate interactions but are not asymptotic states. A crucial role to determine the true nature of a particle is played by the imaginary parts of the one-loop radiative corrections, which are affected in nontrivial ways by the presence of fakeons in the loop. The knowledge we have today is sufficient to prove that most (...) non directly observed particles are true physical particles. However, in the case of the Higgs boson the possibility that it might be a fakeon remains open. The issue can be resolved by means of precision measurements in existing and future accelerators. (shrink)
The concept of hierarchical organization is commonplace in science. Subatomic particles compose atoms, which compose molecules; cells compose tissues, which compose organs, which compose organisms; etc. Hierarchical organization is particularly prominent in ecology, a field of research explicitly arranged around levels of ecological organization. The concept of levels of organization is also central to a variety of debates in philosophy of science. Yet many difficulties plague the concept of discrete hierarchical levels. In this paper, we show how these difficulties (...) undermine various implications ascribed to hierarchical organization, and we suggest the concept of scale as a promising alternative to levels. Investigating causal processes at different scales offers a way to retain a notion of quasi-levels that avoids the difficulties inherent in the classic concept of hierarchical levels of organization. Throughout, our focus is on ecology, but the results generalize to other invocations of hierarchy in science and philosophy of science. (shrink)
Ladyman and Ross argue that quantum objects are not individuals and use this idea to ground their metaphysical view, ontic structural realism, according to which relational structures are primary to things. LR acknowledge that there is a version of quantum theory, namely the Bohm theory, according to which particles do have denite trajectories at all times. However, LR interpret the research by Brown et al. as implying that "raw stuff" or haecceities are needed for the individuality of particles (...) of BT, and LR dismiss this as idle metaphysics. In this paper we note that Brown et al.'s research does not imply that haecceities are needed. Thus BT remains as a genuine option for those who seek to understand quantum particles as individuals. However, we go on to discuss some problems with BT which led Bohm and Hiley to modify it. This modified version underlines that, due to features such as context-dependence and non-locality, Bohmian particles have a very limited autonomy in situations where quantum effects are non-negligible. So while BT restores the possibility of quantum individuals, it also underlines the primacy of the whole over the autonomy of the parts. The later sections of the paper also examine the Bohm theory in the general mathematical context of symplectic geometry. This provides yet another way of understanding the subtle, holistic and dynamic nature of Bohmian individuals. We finally briefly consider Bohm's other main line of research, the "implicate order", which is in some ways similar to LR's structural realism. (shrink)
The answer to some of the longstanding issues in the 20th century theoretical physics, such as those of the incompatibility between general relativity and quantum mechanics, the broken symmetries of the electroweak force acting at the subatomic scale and the missing mass of Higgs particle, and also those of the cosmic singularity and the black matter and energy, appear to be closely related to the problem of the quantum texture of space-time and the fluctuations of its underlying geometry. Each region (...) of space landscape seem to be filled with spacetime weaved and knotted networks, for example, spacetime has immaterial curvature and structures, such as topological singularities, and obeys the laws of quantum physics. Thus, it is filled with potentialparticles, pairs of virtual matter and anti-matter units, and potential properties at the quantum scale. For example, quantum entities (like fields and particles) have both wave (i.e., continuous) and particle (i.e., discrete) properties and behaviors. At the quantum level (precisely, the Planck scale) of space-time such properties and behaviors could emerge from some underlying (dynamic) phase space related to some field theory. Accordingly, these properties and behaviors leave their signature on objects and phenomena in the real Universe. In this paper we consider some conceptual issues of this question. (shrink)
An ontology of Leibnizian relationalism, consisting in distance relations among sparse matter points and their change only, is well recognized as a serious option in the context of classical mechanics. In this paper, we investigate how this ontology fares when it comes to general relativistic physics. Using a Humean strategy, we regard the gravitational field as a means to represent the overall change in the distance relations among point particles in a way that achieves the best combination of being (...) simple and being informative. (shrink)
This collection of essays explores the metaphysical thesis that the living world is not made up of substantial particles or things, as has often been assumed, but is rather constituted by processes. The biological domain is organised as an interdependent hierarchy of processes, which are stabilised and actively maintained at different timescales. Even entities that intuitively appear to be paradigms of things, such as organisms, are actually better understood as processes. Unlike previous attempts to articulate processual views of biology, (...) which have tended to use Alfred North Whitehead’s panpsychist metaphysics as a foundation, this book takes a naturalistic approach to metaphysics. It submits that the main motivations for replacing an ontology of substances with one of processes are to be found in the empirical findings of science. Biology provides compelling reasons for thinking that the living realm is fundamentally dynamic, and that the existence of things is always conditional on the existence of processes. The phenomenon of life cries out for theories that prioritise processes over things, and it suggests that the central explanandum of biology is not change but rather stability, or more precisely, stability attained through constant change. This edited volume brings together philosophers of science and metaphysicians interested in exploring the consequences of a processual philosophy of biology. The contributors draw on an extremely wide range of biological case studies, and employ a process perspective to cast new light on a number of traditional philosophical problems, such as identity, persistence, and individuality. (shrink)
In metaphysics, fundamentality is a central theme involving debates on the nature of existents, as wholes. These debates are largely object-oriented in their standpoint and engage with composites or wholes through the mereological notion of compositionality. The ontological significance of the parts overrides that of wholes since the existence and identity of the latter are dependent on that of the former. Broadly, the candidates for fundamental entities are considered to be elementary particles of modern physics (since they appear to (...) play the role of ultimate parts to all phenomena). The paper intends to show the inadequacy of the object-oriented notion of conditionality by pointing out that the parts and wholes possess varying conditions of existence. By alleging that only the parts are ontologically significant is to conflate such conditions and neglect the spectrum of conditions which exist in our world. A proposal for a revised notion of compositionality in terms of structural relatedness is also put forward. (shrink)
This chapter considers philosophical problems concerning non-human (and sometimes human) animals, including their metaphysical, physical, and moral status, their origin, what makes them alive, their functional organization, and the basis of their sensitive and cognitive capacities. I proceed by assuming what most of Descartes’s followers and interpreters have held: that Descartes proposed that animals lack sentience, feeling, and genuinely cognitive representations of things. (Some scholars interpret Descartes differently, denying that he excluded sentience, feeling, and representation from animals, and I consider (...) the evidence for these interpretations as well.) Given that Descartes denied any sort of soul to animals, his other philosophical commitments entailed that he must explain the vital and sensitive powers of non-human animals through purely material causes. Indeed, he welcomed this task, for he was engaged in the larger project of providing purely mechanistic explanations for all natural phenomena of the material world. Animal bodies form functional unities that are adapted to environmental circumstances. In his new physics, Descartes sought to discover or hypothesize material mechanisms that would explain the physiological and behavioral capacities of animals, including how they maintain themselves by seeking food and drink, reproduce themselves, and modify their behavior to fit current circumstances. Metaphysically, his new perspective raised the problem of accounting for the functional unity of the animal body considered as a purely material construction, devoid of an active, organizing power such as the sensitive soul. Descartes’s project becomes even more challenging if we ask whence come such mechanisms that are capable of performing the functions of living things. Officially, Descartes endorsed the accepted theological orthodoxy, that God designed and created the bodily mechanisms of humans and animals. However, in his natural philosophy he set himself the task of explaining the origin of animals as part of the natural development of the universe out of an original chaotic soup of material particles. Within this naturalistic perspective, he must explain how, through purely material processes, the functionally organized bodies of living things (plants and animals) could be produced from non-living matter. Without a designing creator, how do animal bodies arise that are capable of digesting food, growing, reproducing, and performing the behaviors needed to preserve life and health? (shrink)
We present an alternative to the Copenhagen interpretation of the formalism of nonrelativistic quantum mechanics. The basic difference is that the new inter- pretation is formulated in the language of epistemological realism. It involves a change in some basic physical concepts. Elementary particles are considered as extended objects and nonlocal effects are included. The role of the new concepts in the problems of measurement and of the Einstein-Podolsky-Rosen correlations is described. Experiments to distinguish the proposed interpretation from the Copenhagen (...) one are pointed out. (shrink)
We expound an alternative to the Copenhagen interpretation of the formalism of nonrelativistic quantum mechanics. The basic difference is that the new interpretation is formulated in the language of epistemological realism. It involves a change in some basic physical concepts. The ψ function is no longer interpreted as a probability amplitude of the observed behaviour of elementary particles but as an objective physical field representing the particles themselves. The particles are thus extended objects whose extension varies in (...) time according to the variation of ψ. They are considered as fundamental regions of space with some kind of nonlocality. Special consideration is given to the Heisenberg relations, the Einstein-Podolsky- Rosen correlations, the reduction process, the problem of measurement, and the quantum-statistical distributions. (shrink)
Create an account to enable off-campus access through your institution's proxy server.
Monitor this page
Be alerted of all new items appearing on this page. Choose how you want to monitor it:
Email
RSS feed
About us
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.