Results for 'Turing'

312 found
Order:
  1.  92
    Efficacy of Colistin Therapy in Patients with Hematological Malignancies: What if There is Colistin Resistance?Zeynep Ture, Gamze Kalın Unüvar, Hüseyin Nadir Kahveci, Muzaffer Keklik & Ayşegül Ulu Kilic - 2023 - European Journal of Therapeutics 29 (1):17-22.
    Objective: The objective of this study was to evaluate the clinical efficacy and appropriateness of colistin therapy in patients with hematological malignancies. -/- Methods: Age, gender, type of hematologic malignancy, and potential carbapenem-resistant microorganism risk factors were all noted in this retrospective study. In empirical and agent-specific treatment groups, differences in demographic features, risk factors, treatment responses, and side effects were compared. -/- Results: Sixty-three patients were included, 54% were male, and the median age was 49. In the last three (...)
    Download  
     
    Export citation  
     
    Bookmark  
  2. Gödel Incompleteness and Turing Completeness.Ramón Casares - manuscript
    Following Post program, we will propose a linguistic and empirical interpretation of Gödel’s incompleteness theorem and related ones on unsolvability by Church and Turing. All these theorems use the diagonal argument by Cantor in order to find limitations in finitary systems, as human language, which can make “infinite use of finite means”. The linguistic version of the incompleteness theorem says that every Turing complete language is Gödel incomplete. We conclude that the incompleteness and unsolvability theorems find limitations in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3. Rethinking Turing’s Test and the Philosophical Implications.Diane Proudfoot - 2020 - Minds and Machines 30 (4):487-512.
    In the 70 years since Alan Turing’s ‘Computing Machinery and Intelligence’ appeared in Mind, there have been two widely-accepted interpretations of the Turing test: the canonical behaviourist interpretation and the rival inductive or epistemic interpretation. These readings are based on Turing’s Mind paper; few seem aware that Turing described two other versions of the imitation game. I have argued that both readings are inconsistent with Turing’s 1948 and 1952 statements about intelligence, and fail to explain (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  4. Post-Turing Methodology: Breaking the Wall on the Way to Artificial General Intelligence.Albert Efimov - 2020 - Lecture Notes in Computer Science 12177.
    This article offers comprehensive criticism of the Turing test and develops quality criteria for new artificial general intelligence (AGI) assessment tests. It is shown that the prerequisites A. Turing drew upon when reducing personality and human consciousness to “suitable branches of thought” re-flected the engineering level of his time. In fact, the Turing “imitation game” employed only symbolic communication and ignored the physical world. This paper suggests that by restricting thinking ability to symbolic systems alone Turing (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  5. Turing test: 50 years later.Ayse Pinar Saygin, Ilyas Cicekli & Varol Akman - 2000 - Minds and Machines 10 (4):463-518.
    The Turing Test is one of the most disputed topics in artificial intelligence, philosophy of mind, and cognitive science. This paper is a review of the past 50 years of the Turing Test. Philosophical debates, practical developments and repercussions in related disciplines are all covered. We discuss Turing's ideas in detail and present the important comments that have been made on them. Within this context, behaviorism, consciousness, the 'other minds' problem, and similar topics in philosophy of mind (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  6. On Turing Completeness, or Why We Are So Many (7th edition).Ramón Casares - manuscript
    Why are we so many? Or, in other words, Why is our species so successful? The ultimate cause of our success as species is that we, Homo sapiens, are the first and the only Turing complete species. Turing completeness is the capacity of some hardware to compute by software whatever hardware can compute. To reach the answer, I propose to see evolution and computing from the problem solving point of view. Then, solving more problems is evolutionarily better, computing (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7. Turing and Computationalism.Napoleon M. Mabaquiao - 2014 - Philosophia: International Journal of Philosophy (Philippine e-journal) 15 (1):50-62.
    Due to his significant role in the development of computer technology and the discipline of artificial intelligence, Alan Turing has supposedly subscribed to the theory of mind that has been greatly inspired by the power of the said technology which has eventually become the dominant framework for current researches in artificial intelligence and cognitive science, namely, computationalism or the computational theory of mind. In this essay, I challenge this supposition. In particular, I will try to show that there is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  8. Turing’s Three Senses of “Emotional”.Diane Proudfoot - 2014 - International Journal of Synthetic Emotions 5 (2):7-20.
    Turing used the expression “emotional” in three distinct ways: to state his philosophical theory of the concept of intelligence, to classify arguments for and against the possibility of machine intelligence, and to describe the education of a “child machine”. The remarks on emotion include several of the most important philosophical claims. This paper analyses these remarks and their significance for current research in Artificial Intelligence.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  9. Turing Test, Chinese Room Argument, Symbol Grounding Problem. Meanings in Artificial Agents (APA 2013).Christophe Menant - 2013 - American Philosophical Association Newsletter on Philosophy and Computers 13 (1):30-34.
    The Turing Test (TT), the Chinese Room Argument (CRA), and the Symbol Grounding Problem (SGP) are about the question “can machines think?” We propose to look at these approaches to Artificial Intelligence (AI) by showing that they all address the possibility for Artificial Agents (AAs) to generate meaningful information (meanings) as we humans do. The initial question about thinking machines is then reformulated into “can AAs generate meanings like humans do?” We correspondingly present the TT, the CRA and the (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  10. The Turing Guide.Jack Copeland, Jonathan Bowen, Robin Wilson & Mark Sprevak (eds.) - 2017 - Oxford: Oxford University Press.
    This volume celebrates the various facets of Alan Turing (1912–1954), the British mathematician and computing pioneer, widely considered as the father of computer science. It is aimed at the general reader, with additional notes and references for those who wish to explore the life and work of Turing more deeply. -/- The book is divided into eight parts, covering different aspects of Turing’s life and work. -/- Part I presents various biographical aspects of Turing, some from (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  11. Revisiting Turing and His Test: Comprehensiveness, Qualia, and the Real World.Vincent C. Müller & Aladdin Ayesh (eds.) - 2012 - AISB.
    Proceedings of the papers presented at the Symposium on "Revisiting Turing and his Test: Comprehensiveness, Qualia, and the Real World" at the 2012 AISB and IACAP Symposium that was held in the Turing year 2012, 2–6 July at the University of Birmingham, UK. Ten papers. - http://www.pt-ai.org/turing-test --- Daniel Devatman Hromada: From Taxonomy of Turing Test-Consistent Scenarios Towards Attribution of Legal Status to Meta-modular Artificial Autonomous Agents - Michael Zillich: My Robot is Smarter than Your Robot: (...)
    Download  
     
    Export citation  
     
    Bookmark  
  12. Turing's two tests for intelligence.Susan G. Sterrett - 1999 - Minds and Machines 10 (4):541-559.
    On a literal reading of `Computing Machinery and Intelligence'', Alan Turing presented not one, but two, practical tests to replace the question `Can machines think?'' He presented them as equivalent. I show here that the first test described in that much-discussed paper is in fact not equivalent to the second one, which has since become known as `the Turing Test''. The two tests can yield different results; it is the first, neglected test that provides the more appropriate indication (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  13. The Turing Machine on the Dissecting Table.Jana Horáková - 2013 - Teorie Vědy / Theory of Science 35 (2):269-288.
    Since the beginning of the twenty-first century there has been an increasing awareness that software rep- resents a blind spot in new media theory. The growing interest in software also influences the argument in this paper, which sets out from the assumption that Alan M. Turing's concept of the universal machine, the first theoretical description of a computer program, is a kind of bachelor machine. Previous writings based on a similar hypothesis have focused either on a comparison of the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  14. Turing on the integration of human and machine intelligence.S. G. Sterrett - 2014
    Abstract Philosophical discussion of Alan Turing’s writings on intelligence has mostly revolved around a single point made in a paper published in the journal Mind in 1950. This is unfortunate, for Turing’s reflections on machine (artificial) intelligence, human intelligence, and the relation between them were more extensive and sophisticated. They are seen to be extremely well-considered and sound in retrospect. Recently, IBM developed a question-answering computer (Watson) that could compete against humans on the game show Jeopardy! There are (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  15. Turing’s imitation game: still an impossible challenge for all machines and some judges.Luciano Floridi, Mariarosaria Taddeo & Matteo Turilli - 2009 - Minds and Machines 19 (1):145–150.
    An Evaluation of the 2008 Loebner Contest.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  16. Turing's three philosophical lessons and the philosophy of information.Luciano Floridi - 2012 - Philosophical Transactions of the Royal Society A 370 (1971):3536-3542.
    In this article, I outline the three main philosophical lessons that we may learn from Turing’s work, and how they lead to a new philosophy of information. After a brief introduction, I discuss his work on the method of levels of abstraction (LoA), and his insistence that questions could be meaningfully asked only by specifying the correct LoA. I then look at his second lesson, about the sort of philosophical questions that seem to be most pressing today. Finally, I (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  17. A Turing Machine for Exponential Function.P. M. F. Lemos - manuscript
    This is a Turing Machine which computes the exponential function f(x,y) = xˆy. Instructions format and operation of this machine are intended to best reflect the basic conditions outlined by Alan Turing in his On Computable Numbers, with an Application to the Entscheidungsproblem (1936), using the simplest single-tape and single-symbol version, in essence due to Kleene (1952) and Carnielli & Epstein (2008). This machine is composed by four basic task machines: one which checks if exponent y is zero, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  18. Turing Machines and Semantic Symbol Processing: Why Real Computers Don’t Mind Chinese Emperors.Richard Yee - 1993 - Lyceum 5 (1):37-59.
    Philosophical questions about minds and computation need to focus squarely on the mathematical theory of Turing machines (TM's). Surrogate TM's such as computers or formal systems lack abilities that make Turing machines promising candidates for possessors of minds. Computers are only universal Turing machines (UTM's)—a conspicuous but unrepresentative subclass of TM. Formal systems are only static TM's, which do not receive inputs from external sources. The theory of TM computation clearly exposes the failings of two prominent critiques, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  19. Turing and the evaluation of intelligence.Francesco Bianchini - 2014 - Isonomia: Online Philosophical Journal of the University of Urbino:1-18.
    The article deals with some ideas by Turing concerning the background and the birth of the well-known Turing Test, showing the evolution of the main question proposed by Turing on thinking machine. The notions he used, especially that one of imitation, are not so much exactly defined and shaped, but for this very reason they have had a deep impact in artificial intelligence and cognitive science research from an epistemological point of view. Then, it is suggested that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  20. Turing: A formal clash of codes. Witzany & Baluska - 2012 - Nature 483:541.
    Download  
     
    Export citation  
     
    Bookmark  
  21. A Minimal Turing Test: Reciprocal Sensorimotor Contingencies for Interaction Detection.Pamela Barone, Manuel G. Bedia & Antoni Gomila - 2020 - Frontiers in Human Neuroscience 14:481235.
    In the classical Turing test, participants are challenged to tell whether they are interacting with another human being or with a machine. The way the interaction takes place is not direct, but a distant conversation through computer screen messages. Basic forms of interaction are face-to-face and embodied, context-dependent and based on the detection of reciprocal sensorimotor contingencies. Our idea is that interaction detection requires the integration of proprioceptive and interoceptive patterns with sensorimotor patterns, within quite short time lapses, so (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  22. Turing on the Integration of Human and Machine Intelligence.Susan Sterrett - 2017 - In Alisa Bokulich & Juliet Floyd (eds.), Philosophical Explorations of the Legacy of Alan Turing. Springer Verlag. pp. 323-338.
    Philosophical discussion of Alan Turing’s writings on intelligence has mostly revolved around a single point made in a paper published in the journal Mind in 1950. This is unfortunate, for Turing’s reflections on machine (artificial) intelligence, human intelligence, and the relation between them were more extensive and sophisticated. They are seen to be extremely well-considered and sound in retrospect. Recently, IBM developed a question-answering computer (Watson) that could compete against humans on the game show Jeopardy! There are hopes (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  23. Turing vs. super-Turing: a defence of the Church-Turing thesis.Luciano Floridi - 1999 - In Philosophy and computing: an introduction. Oxford:
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  24. Minimal Turing Test and Children's Education.Duan Zhang, Xiaoan Wu & Jijun He - 2022 - Journal of Human Cognition 6 (1):47-58.
    Considerable evidence proves that causal learning and causal understanding greatly enhance our ability to manipulate the physical world and are major factors that distinguish humans from other primates. How do we enable unintelligent robots to think causally, answer the questions raised with "why" and even understand the meaning of such questions? The solution is one of the keys to realizing artificial intelligence. Judea Pearl believes that to achieve human-like intelligence, researchers must start by imitating the intelligence of children, so he (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25. Beyond Turing: Hypercomputation and Quantum Morphogenesis.Ignazio Licata - 2012 - Asia Pacific Mathematics Newsletter 2 (3):20-24.
    A Geometrical Approach to Quantum Information.
    Download  
     
    Export citation  
     
    Bookmark  
  26. Género, imitación e inteligencia: Una revisión crítica del enfoque funcionalista de Alan Turing.Rodrigo A. González - 2020 - In Francisco Osorio Pablo López-Silva (ed.), Filosofía de la Mente y Psicología: Enfoques Interdisciplinarios. Universidad Alberto Hurtado Ediciones. pp. 99-122.
    El Test de Turing es un método tan controvertido como desafiante en Inteligencia Artificial. Se basa en la imitación de la conducta lingüística de humanos, y tiene como objetivo recabar evidencia empírica en favor de la tesis de que las máquinas programadas podrían pensar. Alan Turing, su creador, ha sido catalogado como conductista por la mayor parte de los comentaristas. En este capítulo muestro que no lo es. Por el contrario, Turing es un funcionalista, porque todo el (...)
    Download  
     
    Export citation  
     
    Bookmark  
  27. Can machines think? The controversy that led to the Turing test.Bernardo Gonçalves - 2023 - AI and Society 38 (6):2499-2509.
    Turing’s much debated test has turned 70 and is still fairly controversial. His 1950 paper is seen as a complex and multilayered text, and key questions about it remain largely unanswered. Why did Turing select learning from experience as the best approach to achieve machine intelligence? Why did he spend several years working with chess playing as a task to illustrate and test for machine intelligence only to trade it out for conversational question-answering in 1950? Why did (...) refer to gender imitation in a test for machine intelligence? In this article, I shall address these questions by unveiling social, historical and epistemological roots of the so-called Turing test. I will draw attention to a historical fact that has been only scarcely observed in the secondary literature thus far, namely that Turing’s 1950 test emerged out of a controversy over the cognitive capabilities of digital computers, most notably out of debates with physicist and computer pioneer Douglas Hartree, chemist and philosopher Michael Polanyi, and neurosurgeon Geoffrey Jefferson. Seen in its historical context, Turing’s 1950 paper can be understood as essentially a reply to a series of challenges posed to him by these thinkers arguing against his view that machines can think. Turing did propose gender learning and imitation as one of his various imitation tests for machine intelligence, and I argue here that this was done in response to Jefferson's suggestion that gendered behavior is causally related to the physiology of sex hormones. (shrink)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  28. On the Claim that a Table-Lookup Program Could Pass the Turing Test.Drew McDermott - 2014 - Minds and Machines 24 (2):143-188.
    The claim has often been made that passing the Turing Test would not be sufficient to prove that a computer program was intelligent because a trivial program could do it, namely, the “Humongous-Table (HT) Program”, which simply looks up in a table what to say next. This claim is examined in detail. Three ground rules are argued for: (1) That the HT program must be exhaustive, and not be based on some vaguely imagined set of tricks. (2) That the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  29. Turing’s imitation game: still an impossible challenge for all machines and some judges––an evaluation of the 2008 Loebner contest. [REVIEW]Luciano Floridi & Mariarosaria Taddeo - 2009 - Minds and Machines 19 (1):145-150.
    An evaluation of the 2008 Loebner contest.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  30. El test de Turing: dos mitos, un dogma.Rodrigo González - 2007 - Revista de Filosofía 63:37-53.
    Este artículo analiza el Test de Turing, uno de los métodos más famosos y controvertidos para evaluar la existencia de vida mental en la Filosofía de la Mente, revelando dos mitos filosóficos comúnmente aceptados y criticando su dogma. En primer lugar, se muestra por qué Turing nunca propuso una definición de inteligencia. En segundo lugar, se refuta que el Test de Turing involucre condiciones necesarias o suficientes para la inteligencia. En tercer lugar, teniendo presente el objetivo y (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  31. Editorial: Alan Turing and artificial intelligence.Varol Akman & Patrick Blackburn - 2000 - Journal of Logic, Language and Information 9 (4):391-395.
    The papers you will find in this special issue of JoLLI develop letter and spirit of Turing’s original contributions. They do not lazily fall back into the same old sofa, but follow – or question – the inspiring ideas of a great man in the search for new, more precise, conclusions. It is refreshing to know that the fertile landscape created by Alan Turing remains a source of novel ideas.
    Download  
     
    Export citation  
     
    Bookmark  
  32. Descartes' influence on Turing.Darren Abramson - 2011 - Studies in History and Philosophy of Science Part A 42 (4):544-551.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  33. Trois leçons philosophiques de Turing et la philosophie de l’information.Luciano Floridi, Paolo Quintili & Éric Guichard - 2015 - Rue Descartes 87 (4):157.
    Quand on se penche sur l’héritage philosophique de Turing, deux risques se posent. Le premier, c’est de le réduire à son test célèbre (Turing 1950). Ce qui a toutefois le mérite de la clarté. N’importe qui peut reconnaître la contribution en question et la situer dans le débat important sur la philosophie de l’intelligence artificielle. Le second risque est de le diluer dans un récit universel, faisant des idées deTuring les graines de tout ce que nous faisons et (...)
    Download  
     
    Export citation  
     
    Bookmark  
  34. Observability of Turing Machines: a refinement of the theory of computation.Yaroslav Sergeyev & Alfredo Garro - 2010 - Informatica 21 (3):425–454.
    The Turing machine is one of the simple abstract computational devices that can be used to investigate the limits of computability. In this paper, they are considered from several points of view that emphasize the importance and the relativity of mathematical languages used to describe the Turing machines. A deep investigation is performed on the interrelations between mechanical computations and their mathematical descriptions emerging when a human (the researcher) starts to describe a Turing machine (the object of (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  35. Walking Through The Turing Wall.Albert Efimov - 2021 - IFAC Papers Online 54 (13):215-220.
    Can the machines that play board games or recognize images only in the comfort of the virtual world be intelligent? To become reliable and convenient assistants to humans, machines need to learn how to act and communicate in the physical reality, just like people do. The authors propose two novel ways of designing and building Artificial General Intelligence (AGI). The first one seeks to unify all participants at any instance of the Turing test – the judge, the machine, the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  36. Walking Through the Turing Wall.Albert Efimov - forthcoming - In Teces.
    Can the machines that play board games or recognize images only in the comfort of the virtual world be intelligent? To become reliable and convenient assistants to humans, machines need to learn how to act and communicate in the physical reality, just like people do. The authors propose two novel ways of designing and building Artificial General Intelligence (AGI). The first one seeks to unify all participants at any instance of the Turing test – the judge, the machine, the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  37. Contradictions and falling bridges: what was Wittgenstein’s reply to Turing?Ásgeir Berg Matthíasson - 2020 - British Journal for the History of Philosophy 29 (3).
    In this paper, I offer a close reading of Wittgenstein's remarks on inconsistency, mostly as they appear in the Lectures on the Foundations of Mathematics. I focus especially on an objection to Wittgenstein's view given by Alan Turing, who attended the lectures, the so-called ‘falling bridges’-objection. Wittgenstein's position is that if contradictions arise in some practice of language, they are not necessarily fatal to that practice nor necessitate a revision of that practice. If we then assume that we have (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  38. The x86 language has Turing Complete memory access.Pl Olcott - manuscript
    An abstract machine having a tape head that can be advanced in 0 to 0x7FFFFFFF increments an unlimited number of times specifies a model of computation that has access to unlimited memory. The technical name for memory addressing based on displacement from the current memory address is relative addressing.
    Download  
     
    Export citation  
     
    Bookmark  
  39. Levels of abstraction and the Turing test.Luciano Floridi - 2010 - Kybernetes 39 (3):423-440.
    An important lesson that philosophy can learn from the Turing Test and computer science more generally concerns the careful use of the method of Levels of Abstraction (LoA). In this paper, the method is first briefly summarised. The constituents of the method are “observables”, collected together and moderated by predicates restraining their “behaviour”. The resulting collection of sets of observables is called a “gradient of abstractions” and it formalises the minimum consistency conditions that the chosen abstractions must satisfy. Two (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  40. An Empathy Imitation Game: Empathy Turing Test for Care- and Chat-bots.Jeremy Howick, Jessica Morley & Luciano Floridi - 2021 - Minds and Machines 31 (3):1–⁠5.
    AI, in the form of artificial carers, provides a possible solution to the problem of a growing elderly population Yet, concerns remain that artificial carers ( such as care-or chat-bots) could not emphathize with patients to the extent that humans can. Utilising the concept of empathy perception,we propose a Turing-type test that could check whether artificial carers could do many of the menial tasks human carers currently undertake, and in the process, free up more time for doctors to offer (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  41. Computing Machinery and Sexual Difference: The Sexed Presuppositions Underlying the Turing Test.Amy Kind - 2022 - In Keya Maitra & Jennifer McWeeny (eds.), Feminist Philosophy of Mind. New York, NY, United States of America: Oxford University Press, Usa.
    In his 1950 paper “Computing Machinery and Intelligence,” Alan Turing proposed that we can determine whether a machine thinks by considering whether it can win at a simple imitation game. A neutral questioner communicates with two different systems – one a machine and a human being – without knowing which is which. If after some reasonable amount of time the machine is able to fool the questioner into identifying it as the human, the machine wins the game, and we (...)
    Download  
     
    Export citation  
     
    Bookmark  
  42. Davidson's no-priority thesis in defending the Turing Test.Mohammad Reza Vaez Shahrestani - 2012 - Procedia - Social and Behavioral Sciences 32:456-461.
    Turing does not provide an explanation for substituting the original question of his test – i.e., “Can machines think?” with “Can a machine pass the imitation game?” – resulting in an argumentative gap in his main thesis. In this article, I argue that a positive answer to the second question would mean attributing the ability of linguistic interactions to machines; while a positive answer to the original question would mean attributing the ability of thinking to machines. In such a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  43. Minimum Intelligent Signal Test as an Alternative to the Turing Test.Paweł Łupkowski & Patrycja Jurowska - 2019 - Diametros 59:35-47.
    The aim of this paper is to present and discuss the issue of the adequacy of the Minimum Intelligent Signal Test (MIST) as an alternative to the Turing Test. MIST has been proposed by Chris McKinstry as a better alternative to Turing’s original idea. Two of the main claims about MIST are that (1) MIST questions exploit commonsense knowledge and as a result are expected to be easy to answer for human beings and difficult for computer programs; and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  44. SAD computers and two versions of the Church–Turing thesis.Tim Button - 2009 - British Journal for the Philosophy of Science 60 (4):765-792.
    Recent work on hypercomputation has raised new objections against the Church–Turing Thesis. In this paper, I focus on the challenge posed by a particular kind of hypercomputer, namely, SAD computers. I first consider deterministic and probabilistic barriers to the physical possibility of SAD computation. These suggest several ways to defend a Physical version of the Church–Turing Thesis. I then argue against Hogarth's analogy between non-Turing computability and non-Euclidean geometry, showing that it is a non-sequitur. I conclude that (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  45. Lumikki ja Myrkkyomena - Alan Turing 1912-1954.Panu Raatikainen - 2004 - In Timo Kaitaro & Markku Roinila (eds.), Filosofin kuolema. Summa.
    Download  
     
    Export citation  
     
    Bookmark  
  46. Laws of Form and the Force of Function: Variations on the Turing Test.Hajo Greif - 2012 - In Vincent C. Müller & Aladdin Ayesh (eds.), Revisiting Turing and His Test: Comprehensiveness, Qualia, and the Real World. AISB. pp. 60-64.
    This paper commences from the critical observation that the Turing Test (TT) might not be best read as providing a definition or a genuine test of intelligence by proxy of a simulation of conversational behaviour. Firstly, the idea of a machine producing likenesses of this kind served a different purpose in Turing, namely providing a demonstrative simulation to elucidate the force and scope of his computational method, whose primary theoretical import lies within the realm of mathematics rather than (...)
    Download  
     
    Export citation  
     
    Bookmark  
  47. Philosophy and Science, the Darwinian-Evolved Computational Brain, a Non-Recursive Super-Turing Machine & Our Inner-World-Producing Organ.Hermann G. W. Burchard - 2016 - Open Journal of Philosophy 6 (1):13-28.
    Recent advances in neuroscience lead to a wider realm for philosophy to include the science of the Darwinian-evolved computational brain, our inner world producing organ, a non-recursive super- Turing machine combining 100B synapsing-neuron DNA-computers based on the genetic code. The whole system is a logos machine offering a world map for global context, essential for our intentional grasp of opportunities. We start from the observable contrast between the chaotic universe vs. our orderly inner world, the noumenal cosmos. So far, (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  48.  31
    La thèse de Turing physique et l'informatique quantique.Florent Franchette - 2010 - RÉPHA, revue étudiante de philosophie analytique 2:19-24.
    Download  
     
    Export citation  
     
    Bookmark  
  49. Dos criterios para la presencia de estados mentales: Descartes y Turing.Rodrigo González - 2016 - Cinta de Moebio 56:159-171.
    En este artículo examino dos criterios para la existencia de estados mentales, el de Descartes y el de Turing. Mientras que el primero plantea que las máquinas no pueden pensar en principio, el segundo defiende la inteligencia de máquina. Pese a esto, ambos parecen coincidir en que la decisión sobre la presencia de estados mentales es tomada por alguien que juzga internamente la misma. Si bien ello es esperable del racionalismo cartesiano, en el funcionalismo de Turing es sorprendente. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  50. ¿Existen las Máquinas Aceleradas de Turing? Paradojas y posibilidades lógicas.Jose Alejandro Fernández Cuesta - 2023 - Techno Review. International Technology, Science and Society Review 13 (1):49.74.
    Las máquinas aceleradas de Turing (ATMs) son dispositivos capaces de ejecutar súper-tareas. Sin embargo, el simple ejercicio de definirlas ha generado varias paradojas. En el presente artículo se definirán las nociones de súper-tarea y ATM de manera exhaustiva y se aclarará qué debe entenderse en un contexto lógico-formal cuando se pregunta por la existencia de un objeto. A partir de la distinción entre posibilidades lógicas y físicas se disolverán las paradojas y se concluirá que las ATMs son posibles y (...)
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 312