Results for 'quantum fluctuations'

1000+ found
Order:
  1. Our Universe’s Fingerprint: Why Zero Point Radiation Occurs and Are Quantum Fluctuations Truly Random?David Angell - manuscript
    Absolute nothing is the absence of our universe and its laws. Without these rules, nothingness has infinite potential. This implies that within the infinite probability of nothing, infinity can emerge. This would be expressed through infinite universes like our own. Infinite of these universes will differ by several particles, appearing and disappearing for no reason other than fulfilling every possibility. This universe is the product of a greater realisation of infinity and we can test this theory via the measurement of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  2. Much ado about nothing: cosmological and anthropic limits of quantum fluctuations.Kristina Šekrst - 2020 - In Luka Boršić, Dragan Poljak, Ivana Skuhala Karasman & Franjo Sokolić (eds.), Physics and Philosophy II. Institute for Philosophy Zagreb. pp. 105-114.
    This paper deals with the philosophical issues of the notion of nothingness and pre-inflationary stage of the universe in physical cosmology. We presuppose that, in addition to cosmological limits, there may be both anthropic and computational limits for our ability to understand and replicate the conditions before the Big Bang. That is, the very notion of nothingness and pre-Big Bang state may be conceptually, but not computationally grasped.
    Download  
     
    Export citation  
     
    Bookmark  
  3. A Case for an Empirically Demonstrable Notion of the Vacuum in Quantum Electrodynamics Independent of Dynamical Fluctuations.Mario Bacelar Valente - 2011 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 42 (2):241-261.
    A re-evaluation of the notion of vacuum in quantum electrodynamics is presented, focusing on the vacuum of the quantized electromagnetic field. In contrast to the ‘nothingness’ associated to the idea of classical vacuum, subtle aspects are found in relation to the vacuum of the quantized electromagnetic field both at theoretical and experimental levels. These are not the usually called vacuum effects. The view defended here is that the so-called vacuum effects are not due to the ground state of the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  4. Quantum Mechanical Reality: Entanglement and Decoherence.Avijit Lahiri - manuscript
    We look into the ontology of quantum theory as distinct from that of the classical theory in the sciences. Theories carry with them their own ontology while the metaphysics may remain the same in the background. We follow a broadly Kantian tradition, distinguishing between the noumenal and phenomenal realities where the former is independent of our perception while the latter is assembled from the former by means of fragmentary bits of interpretation. Theories do not tell us how the noumenal (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5. The c-aplpha Non Exclusion Principle and the vastly different internal electron and muon center of charge vacuum fluctuation geometry.Jim Wilson - forthcoming - Physics Essays.
    The electronic and muonic hydrogen energy levels are calculated very accurately [1] in Quantum Electrodynamics (QED) by coupling the Dirac Equation four vector (c ,mc2) current covariantly with the external electromagnetic (EM) field four vector in QED’s Interactive Representation (IR). The c -Non Exclusion Principle(c -NEP) states that, if one accepts c as the electron/muon velocity operator because of the very accurate hydrogen energy levels calculated, the one must also accept the resulting electron/muon internal spatial and time coordinate operators (...)
    Download  
     
    Export citation  
     
    Bookmark  
  6. The action of consciousness and the uncertainty principle.Jean E. Burns - 2012 - Journal of Nonlocality 1 (1).
    The term action of consciousness is used to refer to an influence, such as psychokinesis or free will, that produces an effect on matter that is correlated to mental intention, but not completely determined by physical conditions. Such an action could not conserve energy. But in that case, one wonders why, when highly accurate measurements are done, occasions of non-conserved energy (generated perhaps by unconscious PK) are not detected. A possible explanation is that actions of consciousness take place within the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  7. Relativistic Implications for Physical Copies of Conscious States.Andrew Knight - manuscript
    The possibility of algorithmic consciousness depends on the assumption that conscious states can be copied or repeated by sufficiently duplicating their underlying physical states, leading to a variety of paradoxes, including the problems of duplication, teleportation, simulation, self-location, the Boltzmann brain, and Wigner’s Friend. In an effort to further elucidate the physical nature of consciousness, I challenge these assumptions by analyzing the implications of special relativity on evolutions of identical copies of a mental state, particularly the divergence of these evolutions (...)
    Download  
     
    Export citation  
     
    Bookmark  
  8. The Solution Cosmological Constant Problem.Jaykov Foukzon - 2019 - Journal of Modern Physics 10 (7):729-794.
    The cosmological constant problem arises because the magnitude of vacuum energy density predicted by the Quantum Field Theory is about 120 orders of magnitude larger then the value implied by cosmological observations of accelerating cosmic expansion. We pointed out that the fractal nature of the quantum space-time with negative Hausdorff-Colombeau dimensions can resolve this tension. The canonical Quantum Field Theory is widely believed to break down at some fundamental high-energy cutoff ∗ Λ and therefore the quantum (...)
    Download  
     
    Export citation  
     
    Bookmark  
  9. Lessons from the Void: What Boltzmann Brains Teach.Bradford Saad - forthcoming - Analytic Philosophy.
    Some physical theories predict that almost all brains in the universe are Boltzmann brains, i.e. short-lived disembodied brains that are accidentally assembled as a result of thermodynamic or quantum fluctuations. Physicists and philosophers of physics widely regard this proliferation as unacceptable, and so take its prediction as a basis for rejecting these theories. But the putatively unacceptable consequences of this prediction follow only given certain philosophical assumptions. This paper develops a strategy for shielding physical theorizing from the threat (...)
    Download  
     
    Export citation  
     
    Bookmark  
  10. A Model for Creation: Part I.Paul Bernard White - manuscript
    Four initial postulates are presented (with two more added later), which state that construction of the physical universe proceeds from a sequence of discrete steps or "projections" --- a process that yields a sequence of discrete levels (labeled 0, 1, 2, 3, 4). At or above level 2 the model yields a (3+1)-dimensional structure, which is interpreted as ordinary space and time. As a result, time does not exist below level 2 of the system, and thus the quantum of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  11. Types of Boltzmann Brains.Alexey Turchin & Roman Yampolskiy - manuscript
    Abstract. Boltzmann brains (BBs) are minds which randomly appear as a result of thermodynamic or quantum fluctuations. In this article, the question of if we are BBs, and the observational consequences if so, is explored. To address this problem, a typology of BBs is created, and the evidence is compared with the Simulation Argument. Based on this comparison, we conclude that while the existence of a “normal” BB is either unlikely or irrelevant, BBs with some ordering may have (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  12. Fondamenti geometrici e problemi filosofici dello spazio-tempo.Luciano Boi - 2012 - Isonomía. Revista de Teoría y Filosofía Del Derecho:1-37.
    The answer to some of the longstanding issues in the 20th century theoretical physics, such as those of the incompatibility between general relativity and quantum mechanics, the broken symmetries of the electroweak force acting at the subatomic scale and the missing mass of Higgs particle, and also those of the cosmic singularity and the black matter and energy, appear to be closely related to the problem of the quantum texture of space-time and the fluctuations of its underlying (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  13.  53
    What is the Matter with Matter? Barad, Butler, and Adorno.P. Højme - 2024 - Matter: Journal of New Materialist Research 9.
    This article aims to read feminist new materialisms (Barad), together with ‘postulated’ linguistic or cultural primacy of Queer Theory (Butler), to show how both are engaged in similar critical-ethical endeavours. The central argument is that the criticism of Barad and new materialisms misses Butler’s materialistic insights due to a narrow interpretation of Butler's alleged social-constructivist position. There is, therefore, a specific focus on where they both make similar ethical appeals. Moreover, the article relies on Adorno's negative dialectic to highlight an (...)
    Download  
     
    Export citation  
     
    Bookmark  
  14. Methods and Applications of Non-Linear Analysis in Neurology and Psycho-physiology.Elio Conte - 2012 - Journal of Consciousness Exploration and Research 1 (9):1070-1138.
    In the light of the results obtained during the last two decades in analysis of signals by time series, it has become evident that the tools of non linear dynamics have their elective role of application in biological, and, in particular, in neuro-physiological and psycho-physiological studies. The basic concept in non linear analysis of experimental time series is that one of recurrence whose conceptual counterpart is represented from variedness and variability that are the foundations of complexity in dynamic processes. Thus, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15. Negative-Energy Matter and the Direction of Time.J. C. Lindner - forthcoming
    This report offers a modern perspective on the problem of negative energy, based on a reexamination of the concept of time direction as it arises in a classical and quantum-mechanical context. From this analysis emerges an improved understanding of the general-relativistic stress-energy of matter as being a manifestation of local variations in the energy density of zero-point vacuum fluctuations. Based on those developments, a set of axioms is proposed from which are derived generalized gravitational field equations which actually (...)
    Download  
     
    Export citation  
     
    Bookmark  
  16. Distributional SAdS BH Spacetime-Induced Vacuum Dominance.Jaykov Foukzon - 2016 - Journal of Advances in Mathematics and Computer Science 13 (6):1-54.
    This paper dealing with extension of the Einstein eld equations using apparatus of contemporary generalization of the classical Lorentzian geometry named in literature Colombeau distributional geometry, see for example [1], [2], [3], [4], [5], [6], [7] and [32]. The regularizations of singularities presented in some solutions of the Einstein equations is an important part of this approach. Any singularities present in some solutions of the Einstein equations recognized only in the sense of Colombeau generalized functions [1], [2] and not classically. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  17. Reality and the Probability Wave.Daniel Shanahan - 2019 - International Journal of Quantum Foundations 5:51-68.
    Effects associated in quantum mechanics with a divisible probability wave are explained as physically real consequences of the equal but opposite reaction of the apparatus as a particle is measured. Taking as illustration a Mach-Zehnder interferometer operating by refraction, it is shown that this reaction must comprise a fluctuation in the reradiation field of complementary effect to the changes occurring in the photon as it is projected into one or other path. The evolution of this fluctuation through the experiment (...)
    Download  
     
    Export citation  
     
    Bookmark  
  18. Complexity Biology-based Information Structures can explain Subjectivity, Objective Reduction of Wave Packets, and Non-Computability.Alex Hankey - 2014 - Cosmos and History 10 (1):237-250.
    Background: how mind functions is subject to continuing scientific discussion. A simplistic approach says that, since no convincing way has been found to model subjective experience, mind cannot exist. A second holds that, since mind cannot be described by classical physics, it must be described by quantum physics. Another perspective concerns mind's hypothesized ability to interact with the world of quanta: it should be responsible for reduction of quantum wave packets; physics producing 'Objective Reduction' is postulated to form (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  19. Colombeau Solutions to Einstein Field Equations in General Relativity: Gravitational Singularities, Distributional SAdS BH Spacetime-Induced Vacuum Dominance.Jaykov Foukzon (ed.) - 2019 - India . United Kingdom: Book Publisher International.
    This book deals with Colombeau solutions to Einstein field equations in general relativity: Gravitational singularities, distributional SAdS BH spacetime-induced vacuum dominance. This book covers key areas of Colombeau nonlinear generalized functions, distributional Riemannian, geometry, distributional schwarzschild geometry, Schwarzschild singularity, Schwarzschild horizon, smooth regularization, nonsmooth regularization, quantum fields, curved spacetime, vacuum fluctuations, vacuum dominance etc. This book contains various materials suitable for students, researchers and academicians of this area.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  20. Was Polchinski Wrong? Colombeau Distributional Rindler Space-Time with Distributional Levi-Cività Connection Induced Vacuum Dominance. Unruh Effect Revisited.Jaykov Foukzon - 2018 - Journal of High Energy Physics, Gravitation and Cosmology 2 (4):361-440.
    The vacuum energy density of free scalar quantum field Φ in a Rindler distributional space-time with distributional Levi-Cività connection is considered. It has been widely believed that, except in very extreme situations, the influence of acceleration on quantum fields should amount to just small, sub-dominant contributions. Here we argue that this belief is wrong by showing that in a Rindler distributional background space-time with distributional Levi-Cività connection the vacuum energy of free quantum fields is forced, by the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  21. Unruh effect revisited.Jaykov Foukzon - 2018 - Journal of Physics: Conference Series 1141 (1).
    The vacuum energy density of free scalar quantum field phgr in a Rindler distributional space-time with distributional Levi-Cività connection is considered. It has been widely believed that, except in very extreme situations, the influence of acceleration on quantum fields should amount to just small, sub-dominant contributions. Here we argue that this belief is wrong by showing that in a Rindler distributional background space-time with distributional Levi-Cività connection the vacuum energy of free quantum fields is forced, by the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  22. Quantum Mechanics in a Time-Asymmetric Universe: On the Nature of the Initial Quantum State.Eddy Keming Chen - 2021 - British Journal for the Philosophy of Science 72 (4):1155–1183.
    In a quantum universe with a strong arrow of time, we postulate a low-entropy boundary condition to account for the temporal asymmetry. In this paper, I show that the Past Hypothesis also contains enough information to simplify the quantum ontology and define a unique initial condition in such a world. First, I introduce Density Matrix Realism, the thesis that the quantum universe is described by a fundamental density matrix that represents something objective. This stands in sharp contrast (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  23. Quantum Entanglement, Bohmian Mechanics, and Humean Supervenience.Elizabeth Miller - 2014 - Australasian Journal of Philosophy 92 (3):567-583.
    David Lewis is a natural target for those who believe that findings in quantum physics threaten the tenability of traditional metaphysical reductionism. Such philosophers point to allegedly holistic entities they take both to be the subjects of some claims of quantum mechanics and to be incompatible with Lewisian metaphysics. According to one popular argument, the non-separability argument from quantum entanglement, any realist interpretation of quantum theory is straightforwardly inconsistent with the reductive conviction that the complete physical (...)
    Download  
     
    Export citation  
     
    Bookmark   93 citations  
  24. Quantum Mereology: Factorizing Hilbert Space into Subsystems with Quasi-Classical Dynamics.Sean M. Carroll & Ashmeet Singh - 2021 - Physical Review A 103 (2):022213.
    We study the question of how to decompose Hilbert space into a preferred tensor-product factorization without any pre-existing structure other than a Hamiltonian operator, in particular the case of a bipartite decomposition into "system" and "environment." Such a decomposition can be defined by looking for subsystems that exhibit quasi-classical behavior. The correct decomposition is one in which pointer states of the system are relatively robust against environmental monitoring (their entanglement with the environment does not continually and dramatically increase) and remain (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  25. Quantum States of a Time-Asymmetric Universe: Wave Function, Density Matrix, and Empirical Equivalence.Eddy Keming Chen - 2019 - Dissertation, Rutgers University - New Brunswick
    What is the quantum state of the universe? Although there have been several interesting suggestions, the question remains open. In this paper, I consider a natural choice for the universal quantum state arising from the Past Hypothesis, a boundary condition that accounts for the time-asymmetry of the universe. The natural choice is given not by a wave function but by a density matrix. I begin by classifying quantum theories into two types: theories with a fundamental wave function (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  26. Quantum Mechanics and 3 N - Dimensional Space.Bradley Monton - 2006 - Philosophy of Science 73 (5):778-789.
    I maintain that quantum mechanics is fundamentally about a system of N particles evolving in three-dimensional space, not the wave function evolving in 3N-dimensional space.
    Download  
     
    Export citation  
     
    Bookmark   65 citations  
  27. Quantum Mechanics as the Solution to a Maximization Problem on the Entropy of All Quantum Measurements.Harvey-Tremblay Alexandre - manuscript
    This work presents a novel formulation of quantum mechanics as the solution to an entropy maximization problem constrained by empirical measurement outcomes. By treating the complete set of possible measurement outcomes as an optimization constraint, our entropy maximization problem derives the axioms of quantum mechanics as theorems, demonstrating that the theory's mathematical structure is the least biased probability measure consistent with the observed data. This approach reduces the foundation of quantum mechanics to a single axiom, the measurement (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  28. Quantum leaps in philosophy of mind.David Bourget - 2004 - Journal of Consciousness Studies 11 (12):17--42.
    I discuss the quantum mechanical theory of consciousness and freewill offered by Stapp (1993, 1995, 2000, 2004). First I show that decoherence-based arguments do not work against this theory. Then discuss a number of problems with the theory: Stapp's separate accounts of consciousness and freewill are incompatible, the interpretations of QM they are tied to are questionable, the Zeno effect could not enable freewill as he suggests because weakness of will would then be ubiquitous, and the holism of measurement (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  29. Fluctuating capacity and advanced decision making – self-binding directives and self-determination’.Tania Gergel & Gareth Owen - 2015 - International Journal of Law and Psychiatry 105 (40):92-101.
    For people with Bipolar Affective Disorder, a self-binding (advance) directive (SBD), by which they commit themselves to treatment during future episodes of mania, even if unwilling, can seem the most rational way to deal with an imperfect predicament. Knowing that mania will almost certainly cause enormous damage to themselves, their preferred solution may well be to allow trusted others to enforce treatment and constraint, traumatic though this may be. No adequate provision exists for drafting a truly effective SBD and efforts (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  30. Interpreting Quantum Entanglement: Steps towards Coherentist Quantum Mechanics.Claudio Calosi & Matteo Morganti - 2018 - British Journal for the Philosophy of Science:axy064.
    We put forward a new, ‘coherentist’ account of quantum entanglement, according to which entangled systems are characterized by symmetric relations of ontological dependence among the component particles. We compare this coherentist viewpoint with the two most popular alternatives currently on offer—structuralism and holism—and argue that it is essentially different from, and preferable to, both. In the course of this article, we point out how coherentism might be extended beyond the case of entanglement and further articulated.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  31. Quantum Technologies in Industry 4.0: Navigating the Ethical Frontier with Value-Sensitive Design.Steven Umbrello - 2024 - Procedia Computer Science 232:1654-1662.
    With the emergence of quantum technologies such as quantum computing, quantum communications, and quantum sensing, new potential has emerged for smart manufacturing and Industry 4.0. These technologies, however, present ethical concerns that must be addressed in order to ensure they are developed and used responsibly. This article outlines some of the ethical challenges that quantum technologies may raise for Industry 4.0 and presents the value sensitive design methodology as a strategy for ethics-by-design of quantum (...)
    Download  
     
    Export citation  
     
    Bookmark  
  32. Quantum sensing and quantum engineering: a strategy for acceleration via metascience.Charles Clark, Mayur Gosai, Terry Janssen, Melissa LaDuke, Jobst Landgrebe, Lawrence Pace & Barry Smith - 2023 - Proceedings of Spie: Quantum Sensing, Imaging, and Precision Metrology 12447.
    Research and engineering in the quantum domain involve long chains of activity involving theory development, hypothesis formation, experimentation, device prototyping, device testing, and many more. At each stage multiple paths become possible, and of the paths pursued, the majority will lead nowhere. Our quantum metascience approach provides a strategy which enables all stakeholders to gain an overview of those developments along these tracks, that are relevant to their specific concerns. It provides a controlled vocabulary, built out of terms (...)
    Download  
     
    Export citation  
     
    Bookmark  
  33.  68
    Temperature fluctuations and moisture level in external walls. Case study Tirana, Albania.Xhexhi Klodjan - 2023 - American Journal of Engineering Research (AJER) 12 (2):65-72.
    The incorporation of thermal insulation materials into building walls is a novel strategy for reducing heating and cooling energy consumption. Nowadays, the issues of energy production, consumption, and energy storage have become global problems. Furthermore, the thermal insulation of buildings increases the thermal comfort of residential premises in order to save energy. The use of several kinds of thermal insulation materials is required in the construction sector. This paper compares the thermal and moisture performance of two different types of walls. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  34. Quantum states for primitive ontologists: A case study.Gordon Belot - 2012 - European Journal for Philosophy of Science 2 (1):67-83.
    Under so-called primitive ontology approaches, in fully describing the history of a quantum system, one thereby attributes interesting properties to regions of spacetime. Primitive ontology approaches, which include some varieties of Bohmian mechanics and spontaneous collapse theories, are interesting in part because they hold out the hope that it should not be too difficult to make a connection between models of quantum mechanics and descriptions of histories of ordinary macroscopic bodies. But such approaches are dualistic, positing a (...) state as well as ordinary material degrees of freedom. This paper lays out and compares some options that primitive ontologists have for making sense of the quantum state. (shrink)
    Download  
     
    Export citation  
     
    Bookmark   75 citations  
  35. Quantum propensiton theory: A testable resolution of the wave/particle dilemma.Nicholas Maxwell - 1988 - British Journal for the Philosophy of Science 39 (1):1-50.
    In this paper I put forward a new micro realistic, fundamentally probabilistic, propensiton version of quantum theory. According to this theory, the entities of the quantum domain - electrons, photons, atoms - are neither particles nor fields, but a new kind of fundamentally probabilistic entity, the propensiton - entities which interact with one another probabilistically. This version of quantum theory leaves the Schroedinger equation unchanged, but reinterprets it to specify how propensitons evolve when no probabilistic transitions occur. (...)
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  36. Quantum Mechanics and Paradigm Shifts.Valia Allori - 2015 - Topoi 34 (2):313-323.
    It has been argued that the transition from classical to quantum mechanics is an example of a Kuhnian scientific revolution, in which there is a shift from the simple, intuitive, straightforward classical paradigm, to the quantum, convoluted, counterintuitive, amazing new quantum paradigm. In this paper, after having clarified what these quantum paradigms are supposed to be, I analyze whether they constitute a radical departure from the classical paradigm. Contrary to what is commonly maintained, I argue that, (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  37. Quantum-like non-separability of concept combinations, emergent associates and abduction.P. Bruza, K. Kitto, B. Ramm, L. Sitbon & D. Song - 2012 - Logic Journal of the IGPL 20 (2):445-457.
    Consider the concept combination ‘pet human’. In word association experiments, human subjects produce the associate ‘slave’ in relation to this combination. The striking aspect of this associate is that it is not produced as an associate of ‘pet’, or ‘human’ in isolation. In other words, the associate ‘slave’ seems to be emergent. Such emergent associations sometimes have a creative character and cognitive science is largely silent about how we produce them. Departing from a dimensional model of human conceptual space, this (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  38. Quantum mechanics in terms of realism.Arthur Jabs - 2017 - arXiv.Org.
    We expound an alternative to the Copenhagen interpretation of the formalism of nonrelativistic quantum mechanics. The basic difference is that the new interpretation is formulated in the language of epistemological realism. It involves a change in some basic physical concepts. The ψ function is no longer interpreted as a probability amplitude of the observed behaviour of elementary particles but as an objective physical field representing the particles themselves. The particles are thus extended objects whose extension varies in time according (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  39. QUANTUM RESONANCE WITH THE MIND: A COMPARATIVE ANALYSIS OF BUDDHISM'S EIGHTH CONSCIOUSNESS, QUANTUM HOLOGRAPHY AND JUNG'S COLLECTIVE UNCONSCIOUS.David Leong - manuscript
    This interdisciplinary exploration discusses the intricate conceptual linkages among Buddhism’s Eighth State of Consciousness, Quantum Holography, and the Jungian Collective Unconscious. Central to this study is examining the Eighth Consciousness in Buddhist thought—a realm that transcends the conventional sensory and mental states to connect with a more universal and profound awareness. Drawing parallels, Quantum Holography posits that every part of the universe retains information about the whole, much like a hologram. This notion seemingly mirrors the Jungian concept of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  40. Quantum mereotopology.Barry Smith & Berit O. Brogaard - 2002 - Annals of Mathematics and Artificial Intelligence 36 (1):153-175.
    Mereotopology faces problems when its methods are extended to deal with time and change. We offer a new solution to these problems, based on a theory of partitions of reality which allows us to simulate (and also to generalize) aspects of set theory within a mereotopological framework. This theory is extended to a theory of coarse- and fine-grained histories (or finite sequences of partitions evolving over time), drawing on machinery developed within the framework of the so-called ‘consistent histories’ interpretation of (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  41. How Quantum Mechanics Can Consistently Describe the Use of Itself.Dustin Lazarovici & Mario Hubert - 2019 - Scientific Reports 470 (9):1-8.
    We discuss the no-go theorem of Frauchiger and Renner based on an "extended Wigner's friend" thought experiment which is supposed to show that any single-world interpretation of quantum mechanics leads to inconsistent predictions if it is applicable on all scales. We show that no such inconsistency occurs if one considers a complete description of the physical situation. We then discuss implications of the thought experiment that have not been clearly addressed in the original paper, including a tension between relativity (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  42. Quantum Mechanics and Intentionality.Godehard Brüntrup - 2014 - In Antonella Corradini & Uwe Meixner (eds.), Quantum Physics Meets the Philosophy of Mind: New Essays on the Mind-Body Relation in Quantum-Theoretical Perspective. Boston: De Gruyter. pp. 35-49.
    An essay on the connection between the mind-body-problem and quantum mechanics.
    Download  
     
    Export citation  
     
    Bookmark  
  43.  64
    Interpreting Quantum Entanglement: Steps towards Coherentist Quantum Mechanics.Matteo Morganti & Claudio Calosi - 2021 - British Journal for the Philosophy of Science 72 (3):865-891.
    We put forward a new, ‘coherentist’ account of quantum entanglement, according to which entangled systems are characterized by symmetric relations of ontological dependence among the component particles. We compare this coherentist viewpoint with the two most popular alternatives currently on offer—structuralism and holism—and argue that it is essentially different from, and preferable to, both. In the course of this article, we point out how coherentism might be extended beyond the case of entanglement and further articulated.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  44. Against Quantum Indeterminacy.David Glick - 2017 - Thought: A Journal of Philosophy 6 (3):204-213.
    A growing literature is premised on the claim that quantum mechanics provides evidence for metaphysical indeterminacy. But does it? None of the currently fashionable realist interpretations involve fundamental indeterminacy and the ‘standard interpretation’, to the extent that it can be made out, doesn't require indeterminacy either.
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  45. Quantum Foundations of Statistical Mechanics and Thermodynamics.Orly Shenker - 2022 - In Eleanor Knox & Alastair Wilson (eds.), The Routledge Companion to Philosophy of Physics. London, UK: Routledge. pp. Ch. 29.
    Statistical mechanics is often taken to be the paradigm of a successful inter-theoretic reduction, which explains the high-level phenomena (primarily those described by thermodynamics) by using the fundamental theories of physics together with some auxiliary hypotheses. In my view, the scope of statistical mechanics is wider since it is the type-identity physicalist account of all the special sciences. But in this chapter, I focus on the more traditional and less controversial domain of this theory, namely, that of explaining the thermodynamic (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  46. Quantum Gravity and Mereology: Not So Simple.Sam Baron & Baptiste Le Bihan - 2022 - Philosophical Quarterly 72 (1):19-40.
    A number of philosophers have argued in favour of extended simples on the grounds that they are needed by fundamental physics. The arguments typically appeal to theories of quantum gravity. To date, the argument in favour of extended simples has ignored the fact that the very existence of spacetime is put under pressure by quantum gravity. We thus consider the case for extended simples in the context of different views on the existence of spacetime. We show that the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  47. Inter-theory Relations in Quantum Gravity: Correspondence, Reduction and Emergence.Karen Crowther - 2018 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 63:74-85.
    Relationships between current theories, and relationships between current theories and the sought theory of quantum gravity (QG), play an essential role in motivating the need for QG, aiding the search for QG, and defining what would count as QG. Correspondence is the broad class of inter-theory relationships intended to demonstrate the necessary compatibility of two theories whose domains of validity overlap, in the overlap regions. The variety of roles that correspondence plays in the search for QG are illustrated, using (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  48. Quantum mechanics unscrambled.Jean-Michel Delhotel - 2014
    Is quantum mechanics about ‘states’? Or is it basically another kind of probability theory? It is argued that the elementary formalism of quantum mechanics operates as a well-justified alternative to ‘classical’ instantiations of a probability calculus. Its providing a general framework for prediction accounts for its distinctive traits, which one should be careful not to mistake for reflections of any strange ontology. The suggestion is also made that quantum theory unwittingly emerged, in Schrödinger’s formulation, as a ‘lossy’ (...)
    Download  
     
    Export citation  
     
    Bookmark  
  49. Quantum gravity, timelessness, and the contents of thought.David Braddon-Mitchell & Kristie Miller - 2019 - Philosophical Studies 176 (7):1807-1829.
    A number of recent theories of quantum gravity lack a one-dimensional structure of ordered temporal instants. Instead, according to many of these views, our world is either best represented as a single three-dimensional object, or as a configuration space composed of such three-dimensional objects, none of which bear temporal relations to one another. Such theories will be empirically self-refuting unless they can accommodate the existence of conscious beings capable of representation. For if representation itself is impossible in a timeless (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  50. Quantum Dysgenic Theory.Wilfried Schachter - manuscript
    The utilisation of quantum theories within social science and biology is often reasonably met with dubiety. It would be even more controversial should such theories be applied to concepts under the domain of eugenics. Nonetheless, this can open up a fresh and unique understanding of theories that are usually understood by their classical structure. We will provide quantum interpretations of dysgenics and dysgenic traits from different scopes and procedures. The way dysgenic traits are in a flux with the (...)
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 1000