Results for 'the fundaments of mathematics and logic'

962 found
Order:
  1. The Bounds of Logic: A Generalized Viewpoint.Gila Sher - 1991 - MIT Press.
    The Bounds of Logic presents a new philosophical theory of the scope and nature of logic based on critical analysis of the principles underlying modern Tarskian logic and inspired by mathematical and linguistic development. Extracting central philosophical ideas from Tarski’s early work in semantics, Sher questions whether these are fully realized by the standard first-order system. The answer lays the foundation for a new, broader conception of logic. By generally characterizing logical terms, Sher establishes a fundamental (...)
    Download  
     
    Export citation  
     
    Bookmark   95 citations  
  2. The Homeomorphism of Minkowski Space and the Separable Complex Hilbert Space: The physical, Mathematical and Philosophical Interpretations.Vasil Penchev - 2021 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 14 (3):1-22.
    A homeomorphism is built between the separable complex Hilbert space (quantum mechanics) and Minkowski space (special relativity) by meditation of quantum information (i.e. qubit by qubit). That homeomorphism can be interpreted physically as the invariance to a reference frame within a system and its unambiguous counterpart out of the system. The same idea can be applied to Poincaré’s conjecture (proved by G. Perelman) hinting at another way for proving it, more concise and meaningful physically. Furthermore, the conjecture can be generalized (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3. The Creative Universe: The Failure of Mathematical Reductionism in Physics (An Essay).Michael Epperson - 2021 - Institute of Art and Ideas News.
    In their seeking of simplicity, scientists fall into the error of Whitehead's "fallacy of misplaced concreteness." They mistake their abstract concepts describing reality for reality itself--the map for the territory. This leads to dogmatic overstatements, paradoxes, and mysteries such as the deep incompatibility of our two most fundamental physical theories--quantum mechanics and general relativity. To avoid such errors, we should evoke Whitehead's conception of the universe as a universe-in-process, where physical relations perpetually beget new physical relations. Today, the most promising (...)
    Download  
     
    Export citation  
     
    Bookmark  
  4. The Identity of Logic and the World in Terms of Quantum Information.Vasil Penchev - 2020 - Information Theory and Research eJournal (Elsevier: SSRN) 1 (21):1-4.
    One can construct a mapping between Hilbert space and the class of all logic if the latter is defined as the set of all well-orderings of some relevant set (or class). That mapping can be further interpreted as a mapping of all states of all quantum systems, on the one hand, and all logic, on the other hand. The collection of all states of all quantum systems is equivalent to the world (the universe) as a whole. Thus that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5.  54
    The Book of Phenomenological Velocity: Algebraic Techniques for Gestalt Cosmology, Transcendental Relativity and Quantum Mechanics.Parker Emmerson - 2024 - Journal of Liberated Mathematics 1:380.
    If you have enjoyed any of the 7 (seven) other books I have published over 20 years, including literally thousands of pages of mathematical and topological concepts, Python programs and conceptually expanding papers, please consider buying this book for $20.00 on google play books. -/- Introduction: -/- Though the following pages provide extensive exposition and dedicated descriptions of the phenomenological velocity formulas, theory and mystery, I thought it appropriate to write this introduction as a partial explanation for what phenomenal velocity (...)
    Download  
     
    Export citation  
     
    Bookmark  
  6. Three Dogmas of First-Order Logic and some Evidence-based Consequences for Constructive Mathematics of differentiating between Hilbertian Theism, Brouwerian Atheism and Finitary Agnosticism.Bhupinder Singh Anand - manuscript
    We show how removing faith-based beliefs in current philosophies of classical and constructive mathematics admits formal, evidence-based, definitions of constructive mathematics; of a constructively well-defined logic of a formal mathematical language; and of a constructively well-defined model of such a language. -/- We argue that, from an evidence-based perspective, classical approaches which follow Hilbert's formal definitions of quantification can be labelled `theistic'; whilst constructive approaches based on Brouwer's philosophy of Intuitionism can be labelled `atheistic'. -/- We then (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7. Quantum phenomenology as a “rigorous science”: the triad of epoché and the symmetries of information.Vasil Penchev - 2021 - Philosophy of Science eJournal (Elsevier: SSRN) 14 (48):1-18.
    Husserl (a mathematician by education) remained a few famous and notable philosophical “slogans” along with his innovative doctrine of phenomenology directed to transcend “reality” in a more general essence underlying both “body” and “mind” (after Descartes) and called sometimes “ontology” (terminologically following his notorious assistant Heidegger). Then, Husserl’s tradition can be tracked as an idea for philosophy to be reinterpreted in a way to be both generalized and mathenatizable in the final analysis. The paper offers a pattern borrowed from the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  8.  91
    Efficiency in Organism-Environment Information Exchanges: A Semantic Hierarchy of Logical Types Based on the Trial-and-Error Strategy Behind the Emergence of Knowledge.Mattia Berera - 2024 - Biosemiotics 17 (1):131-160.
    Based on Kolchinsky and Wolpert’s work on the semantics of autonomous agents, I propose an application of Mathematical Logic and Probability to model cognitive processes. In this work, I will follow Bateson’s insights on the hierarchy of learning in complex organisms and formalize his idea of applying Russell’s Type Theory. Following Weaver’s three levels for the communication problem, I link the Kolchinsky–Wolpert model to Bateson’s insights, and I reach a semantic and conceptual hierarchy in living systems as an explicative (...)
    Download  
     
    Export citation  
     
    Bookmark  
  9. Logic, mathematics, physics: from a loose thread to the close link: Or what gravity is for both logic and mathematics rather than only for physics.Vasil Penchev - 2023 - Astrophysics, Cosmology and Gravitation Ejournal 2 (52):1-82.
    Gravitation is interpreted to be an “ontomathematical” force or interaction rather than an only physical one. That approach restores Newton’s original design of universal gravitation in the framework of “The Mathematical Principles of Natural Philosophy”, which allows for Einstein’s special and general relativity to be also reinterpreted ontomathematically. The entanglement theory of quantum gravitation is inherently involved also ontomathematically by virtue of the consideration of the qubit Hilbert space after entanglement as the Fourier counterpart of pseudo-Riemannian space. Gravitation can be (...)
    Download  
     
    Export citation  
     
    Bookmark  
  10. The Beyträge at 200: Bolzano's quiet revolution in the philosophy of mathematics.Jan Sebestik & Paul Rusnock - 2013 - Journal for the History of Analytical Philosophy 1 (8).
    This paper surveys Bolzano's Beyträge zu einer begründeteren Darstellung der Mathematik (Contributions to a better-grounded presentation of mathematics) on the 200th anniversary of its publication. The first and only published issue presents a definition of mathematics, a classification of its subdisciplines, and an essay on mathematical method, or logic. Though underdeveloped in some areas (including,somewhat surprisingly, in logic), it is nonetheless a radically innovative work, where Bolzano presents a remarkably modern account of axiomatics and the epistemology (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  11. Natural Cybernetics and Mathematical History: The Principle of Least Choice in History.Vasil Penchev - 2020 - Cultural Anthropology (Elsevier: SSRN) 5 (23):1-44.
    The paper follows the track of a previous paper “Natural cybernetics of time” in relation to history in a research of the ways to be mathematized regardless of being a descriptive humanitarian science withal investigating unique events and thus rejecting any repeatability. The pathway of classical experimental science to be mathematized gradually and smoothly by more and more relevant mathematical models seems to be inapplicable. Anyway quantum mechanics suggests another pathway for mathematization; considering the historical reality as dual or “complimentary” (...)
    Download  
     
    Export citation  
     
    Bookmark  
  12.  52
    The Nuances of Deprogramming Zeros.Parker Emmerson - 2024 - Journal of Liberated Mathematics.
    Description In this paper, we propose an advanced mathematical framework centered around the Energy Number Field (E), which fundamentally avoids the conventional concept of zero by introducing a neutral ele- ment, νE. Through this approach, we redefine core mathematical constructs, including limits, continuity, differentiation, integration, and series summation, ensuring they operate seamlessly within a zero-less paradigm. We address and redefine matrix operations, topology, metric spaces, and complex analysis, aligning them with the principles of E. Additionally, we explore non-mappable properties of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  13. Establishment of a Dialectical Logic Symbol System: Inspired by Hegel’s Logic and Buddhist Philosophy.Chia Jen Lin - manuscript
    This paper presents an original dialectical logic symbol system designed to transcend the limitations of traditional logical symbols in capturing subjectivity, qualitative aspects, and contradictions inherent in the human mind. By introducing new symbols, such as “ὄ” (being) and “⌀” (nothing), and arranging them based on principles of symmetry, the system’s operations capture complex dialectical relationships essential to both Hegelian philosophy and Buddhist thought. The operations of this system are primarily structured around the categories found in Hegel’s Logic, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  14. Skolem’s “paradox” as logic of ground: The mutual foundation of both proper and improper interpretations.Vasil Penchev - 2020 - Epistemology eJournal (Elsevier: SSRN) 13 (19):1-16.
    A principle, according to which any scientific theory can be mathematized, is investigated. That theory is presupposed to be a consistent text, which can be exhaustedly represented by a certain mathematical structure constructively. In thus used, the term “theory” includes all hypotheses as yet unconfirmed as already rejected. The investigation of the sketch of a possible proof of the principle demonstrates that it should be accepted rather a metamathematical axiom about the relation of mathematics and reality. Its investigation needs (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15. The Fundamental Order of the Universe; Thinking Outside the Box.Joely Villalba - manuscript
    It has been scientifically acknowledged that the Universe is made up of 27% Dark Matter, 68% Dark Energy, and 5% Normal/Ordinary Matter. It has also been scientifically acquiesced that the evolvement of Normal/Ordinary Matter came forth due to the combination of 3% Dark Matter and 2% Dark Energy. These percentages would infer that prior to the onset of Normal/Ordinary Matter, the Universe was made up of 30% of Dark Matter and 70% Dark Energy. These numbers would infer that 100% of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  16. Philosophy of Mathematics.Alexander Paseau (ed.) - 2016 - New York: Routledge.
    Mathematics is everywhere and yet its objects are nowhere. There may be five apples on the table but the number five itself is not to be found in, on, beside or anywhere near the apples. So if not in space and time, where are numbers and other mathematical objects such as perfect circles and functions? And how do we humans discover facts about them, be it Pythagoras’ Theorem or Fermat’s Last Theorem? The metaphysical question of what numbers are and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  17. The development of mathematical logic from Russell to Tarski, 1900-1935.Paolo Mancosu, Richard Zach & Calixto Badesa - 2009 - In Leila Haaparanta (ed.), The development of modern logic. New York: Oxford University Press.
    The period from 1900 to 1935 was particularly fruitful and important for the development of logic and logical metatheory. This survey is organized along eight "itineraries" concentrating on historically and conceptually linked strands in this development. Itinerary I deals with the evolution of conceptions of axiomatics. Itinerary II centers on the logical work of Bertrand Russell. Itinerary III presents the development of set theory from Zermelo onward. Itinerary IV discusses the contributions of the algebra of logic tradition, in (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  18. Nature, Science, Bayes 'Theorem, and the Whole of Reality‖.Moorad Alexanian - manuscript
    A fundamental problem in science is how to make logical inferences from scientific data. Mere data does not suffice since additional information is necessary to select a domain of models or hypotheses and thus determine the likelihood of each model or hypothesis. Thomas Bayes’ Theorem relates the data and prior information to posterior probabilities associated with differing models or hypotheses and thus is useful in identifying the roles played by the known data and the assumed prior information when making inferences. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  19.  53
    THE PHILOSOPHY OF KURT GODEL - ALEXIS KARPOUZOS.Alexis Karpouzos - 2024 - The Harvard Review of Philosophy 8 (14):12.
    Gödel's Philosophical Legacy Kurt Gödel's contributions to philosophy extend beyond his incompleteness theorems. He engaged deeply with the work of other philosophers, including Immanuel Kant and Edmund Husserl, and explored topics such as the nature of time, the structure of the universe, and the relationship between mathematics and reality. Gödel's philosophical writings, though less well-known than his mathematical work, offer rich insights into his views on the nature of existence, the limits of human knowledge, and the interplay between the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  20. Discrete and continuous: a fundamental dichotomy in mathematics.James Franklin - 2017 - Journal of Humanistic Mathematics 7 (2):355-378.
    The distinction between the discrete and the continuous lies at the heart of mathematics. Discrete mathematics (arithmetic, algebra, combinatorics, graph theory, cryptography, logic) has a set of concepts, techniques, and application areas largely distinct from continuous mathematics (traditional geometry, calculus, most of functional analysis, differential equations, topology). The interaction between the two – for example in computer models of continuous systems such as fluid flow – is a central issue in the applicable mathematics of the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  21. Hilbert Mathematics Versus Gödel Mathematics. IV. The New Approach of Hilbert Mathematics Easily Resolving the Most Difficult Problems of Gödel Mathematics.Vasil Penchev - 2023 - Philosophy of Science eJournal (Elsevier: SSRN) 16 (75):1-52.
    The paper continues the consideration of Hilbert mathematics to mathematics itself as an additional “dimension” allowing for the most difficult and fundamental problems to be attacked in a new general and universal way shareable between all of them. That dimension consists in the parameter of the “distance between finiteness and infinity”, particularly able to interpret standard mathematics as a particular case, the basis of which are arithmetic, set theory and propositional logic: that is as a special (...)
    Download  
     
    Export citation  
     
    Bookmark  
  22. Acts of Time: Cohen and Benjamin on Mathematics and History.Julia Ng - 2017 - Paradigmi. Rivista di Critica Filosofica 2017 (1):41-60.
    This paper argues that the principle of continuity that underlies Benjamin’s understanding of what makes the reality of a thing thinkable, which in the Kantian context implies a process of “filling time” with an anticipatory structure oriented to the subject, is of a different order than that of infinitesimal calculus—and that a “discontinuity” constitutive of the continuity of experience and (merely) counterposed to the image of actuality as an infinite gradation of ultimately thetic acts cannot be the principle on which (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  23. Logic. of Descriptions. A New Approach to the Foundations of Mathematics and Science.Joanna Golińska-Pilarek & Taneli Huuskonen - 2012 - Studies in Logic, Grammar and Rhetoric 27 (40):63-94.
    We study a new formal logic LD introduced by Prof. Grzegorczyk. The logic is based on so-called descriptive equivalence, corresponding to the idea of shared meaning rather than shared truth value. We construct a semantics for LD based on a new type of algebras and prove its soundness and completeness. We further show several examples of classical laws that hold for LD as well as laws that fail. Finally, we list a number of open problems. -/- .
    Download  
     
    Export citation  
     
    Bookmark  
  24. Lack of Discretion unveiled by the concept of the function, the relativity of simultaneity and social experience.Kaveh Mohammadi & Assad Rashidi - manuscript
    In this paper, we have tried to prove the lack of discretion by providing a logical and philosophical connection between the fundamental concept of a function in mathematics and one of Einstein's most exceptional relativity results, namely, the relativity of simultaneity. Then, by providing real examples of social experiences and philosophical interpretations of them, we propose another proof for lack of discretion.
    Download  
     
    Export citation  
     
    Bookmark  
  25. Cassirer's Psychology of Relations: From the Psychology of Mathematics and Natural Science to the Psychology of Culture.Samantha Matherne - 2018 - Journal for the History of Analytical Philosophy 6 (3).
    In spite of Ernst Cassirer’s criticisms of psychologism throughout Substance and Function, in the final chapter he issues a demand for a “psychology of relations” that can do justice to the subjective dimensions of mathematics and natural science. Although these remarks remain somewhat promissory, the fact that this is how Cassirer chooses to conclude Substance and Function recommends it as a topic worthy of serious consideration. In this paper, I argue that in order to work out the details of (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  26. An Aristotelian Realist Philosophy of Mathematics: Mathematics as the science of quantity and structure.James Franklin - 2014 - London and New York: Palgrave MacMillan.
    An Aristotelian Philosophy of Mathematics breaks the impasse between Platonist and nominalist views of mathematics. Neither a study of abstract objects nor a mere language or logic, mathematics is a science of real aspects of the world as much as biology is. For the first time, a philosophy of mathematics puts applied mathematics at the centre. Quantitative aspects of the world such as ratios of heights, and structural ones such as symmetry and continuity, are (...)
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  27. The Fundamental Problem of Logical Omniscience.Peter Hawke, Aybüke Özgün & Francesco Berto - 2020 - Journal of Philosophical Logic 49 (4):727-766.
    We propose a solution to the problem of logical omniscience in what we take to be its fundamental version: as concerning arbitrary agents and the knowledge attitude per se. Our logic of knowledge is a spin-off from a general theory of thick content, whereby the content of a sentence has two components: an intension, taking care of truth conditions; and a topic, taking care of subject matter. We present a list of plausible logical validities and invalidities for the (...) of knowledge per se for arbitrary agents, and isolate three explanatory factors for them: the topic-sensitivity of content; the fragmentation of knowledge states; the defeasibility of knowledge acquisition. We then present a novel dynamic epistemic logic that yields precisely the desired validities and invalidities, for which we provide expressivity and completeness results. We contrast this with related systems and address possible objections. (shrink)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  28. The Logical Structure of Philosophy Psychology, Sociology, Anthropology Religion, Politics, Economics Literature and History - Articles and Reviews 2006-2019.Michael Starks - 2019 - Las Vegas, NV USA: Reality Press.
    It is my contention that the table of intentionality (rationality, mind, thought, language, personality etc.) that features prominently here describes more or less accurately, or at least serves as an heuristic for, how we think and behave, and so it encompasses not merely philosophy and psychology, but everything else (history, literature, mathematics, politics etc.). Note especially that intentionality and rationality as I (along with Searle, Wittgenstein and others) view it, includes both conscious deliberative linguistic System 2 and unconscious automated (...)
    Download  
     
    Export citation  
     
    Bookmark  
  29. Truth, Proof and Gödelian Arguments: A Defence of Tarskian Truth in Mathematics.Markus Pantsar - 2009 - Dissertation, University of Helsinki
    One of the most fundamental questions in the philosophy of mathematics concerns the relation between truth and formal proof. The position according to which the two concepts are the same is called deflationism, and the opposing viewpoint substantialism. In an important result of mathematical logic, Kurt Gödel proved in his first incompleteness theorem that all consistent formal systems containing arithmetic include sentences that can neither be proved nor disproved within that system. However, such undecidable Gödel sentences can be (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  30. Hilbert mathematics versus (or rather “without”) Gödel mathematics: V. Ontomathematics!Vasil Penchev - 2024 - Metaphysics eJournal (Elsevier: SSRN) 17 (10):1-57.
    The paper is the final, fifth part of a series of studies introducing the new conceptions of “Hilbert mathematics” and “ontomathematics”. The specific subject of the present investigation is the proper philosophical sense of both, including philosophy of mathematics and philosophy of physics not less than the traditional “first philosophy” (as far as ontomathematics is a conservative generalization of ontology as well as of Heidegger’s “fundamental ontology” though in a sense) and history of philosophy (deepening Heidegger’s destruction of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  31. Our Incorrigible Ontological Relations and Categories of Being.Julian M. Galvez Bunge (ed.) - 2017 - USA: Amazon.
    The purpose of this book is to address the controversial issues of whether we have a fixed set of ontological categories and if they have some epistemic value at all. Which are our ontological categories? What determines them? Do they play a role in cognition? If so, which? What do they force to presuppose regarding our world-view? If they constitute a limit to possible knowledge, up to what point is science possible? Does their study make of philosophy a science? Departing (...)
    Download  
     
    Export citation  
     
    Bookmark  
  32. CRITIQUE OF IMPURE REASON: Horizons of Possibility and Meaning.Steven James Bartlett - 2021 - Salem, USA: Studies in Theory and Behavior.
    PLEASE NOTE: This is the corrected 2nd eBook edition, 2021. ●●●●● _Critique of Impure Reason_ has now also been published in a printed edition. To reduce the otherwise high price of this scholarly, technical book of nearly 900 pages and make it more widely available beyond university libraries to individual readers, the non-profit publisher and the author have agreed to issue the printed edition at cost. ●●●●● The printed edition was released on September 1, 2021 and is now available through (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  33. A Fundamental Duality in the Exact Sciences: The Application to Quantum Mechanics.David Ellerman - 2024 - Foundations 4 (2):175-204.
    There is a fundamental subsets–partitions duality that runs through the exact sciences. In more concrete terms, it is the duality between elements of a subset and the distinctions of a partition. In more abstract terms, it is the reverse-the-arrows of category theory that provides a major architectonic of mathematics. The paper first develops the duality between the Boolean logic of subsets and the logic of partitions. Then, probability theory and information theory (as based on logical entropy) are (...)
    Download  
     
    Export citation  
     
    Bookmark  
  34. Discourse Grammars and the Structure of Mathematical Reasoning II: The Nature of a Correct Theory of Proof and Its Value.John Corcoran - 1971 - Journal of Structural Learning 3 (2):1-16.
    1971. Discourse Grammars and the Structure of Mathematical Reasoning II: The Nature of a Correct Theory of Proof and Its Value, Journal of Structural Learning 3, #2, 1–16. REPRINTED 1976. Structural Learning II Issues and Approaches, ed. J. Scandura, Gordon & Breach Science Publishers, New York, MR56#15263. -/- This is the second of a series of three articles dealing with application of linguistics and logic to the study of mathematical reasoning, especially in the setting of a concern for improvement (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  35. The Role of Mathematics in Deleuze’s Critical Engagement with Hegel.Simon Duffy - 2009 - International Journal of Philosophical Studies 17 (4):563 – 582.
    The role of mathematics in the development of Gilles Deleuze's (1925-95) philosophy of difference as an alternative to the dialectical philosophy determined by the Hegelian dialectic logic is demonstrated in this paper by differentiating Deleuze's interpretation of the problem of the infinitesimal in Difference and Repetition from that which G. W. F Hegel (1770-1831) presents in the Science of Logic . Each deploys the operation of integration as conceived at different stages in the development of the infinitesimal (...)
    Download  
     
    Export citation  
     
    Bookmark  
  36. Avoiding reification: Heuristic effectiveness of mathematics and the prediction of the omega minus particle.Michele Ginammi - 2016 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 53:20-27.
    According to Steiner (1998), in contemporary physics new important discoveries are often obtained by means of strategies which rely on purely formal mathematical considerations. In such discoveries, mathematics seems to have a peculiar and controversial role, which apparently cannot be accounted for by means of standard methodological criteria. M. Gell-Mann and Y. Ne׳eman׳s prediction of the Ω− particle is usually considered a typical example of application of this kind of strategy. According to Bangu (2008), this prediction is apparently based (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  37. (1 other version)The Fundamental Facts Can Be Logically Simple.Alexander Jackson - 2023 - Noûs 1:1-20.
    I like the view that the fundamental facts are logically simple, not complex. However, some universal generalizations and negations may appear fundamental, because they cannot be explained by logically simple facts about particulars. I explore a natural reply: those universal generalizations and negations are true because certain logically simple facts—call them —are the fundamental facts. I argue that this solution is only available given some metaphysical frameworks, some conceptions of metaphysical explanation and fundamentality. It requires a ‘fitting’ framework, according to (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  38. Wittgenstein and the Creativity of Language.Sebastian Sunday Grève & Jakub Mácha (eds.) - 2016 - Palgrave Macmillan.
    This volume is the first to focus on a particular complex of questions that have troubled Wittgenstein scholarship since its very beginnings. The authors re-examine Wittgenstein’s fundamental insights into the workings of human linguistic behaviour, its creative extensions and its philosophical capabilities, as well as his creative use of language. It offers insight into a variety of topics including painting, politics, literature, poetry, literary theory, mathematics, philosophy of language, aesthetics and philosophical methodology.
    Download  
     
    Export citation  
     
    Bookmark  
  39. Mathematical anti-realism and explanatory structure.Bruno Whittle - 2021 - Synthese 199 (3-4):6203-6217.
    Plausibly, mathematical claims are true, but the fundamental furniture of the world does not include mathematical objects. This can be made sense of by providing mathematical claims with paraphrases, which make clear how the truth of such claims does not require the fundamental existence of mathematical objects. This paper explores the consequences of this type of position for explanatory structure. There is an apparently straightforward relationship between this sort of structure, and the logical sort: i.e. logically complex claims are explained (...)
    Download  
     
    Export citation  
     
    Bookmark  
  40. On the duality between existence and information.David Ellerman - manuscript
    Recent developments in pure mathematics and in mathematical logic have uncovered a fundamental duality between "existence" and "information." In logic, the duality is between the Boolean logic of subsets and the logic of quotient sets, equivalence relations, or partitions. The analogue to an element of a subset is the notion of a distinction of a partition, and that leads to a whole stream of dualities or analogies--including the development of new logical foundations for information theory (...)
    Download  
     
    Export citation  
     
    Bookmark  
  41. The Logical Structure of Consciousness.Michael Starks (ed.) - 2019 - Las Vegas, NV, USA: Reality Press.
    It is my contention that the table of intentionality (rationality, consciousness, mind, thought, language, personality etc.) that features prominently here describes more or less accurately, or at least serves as an heuristic for, how we think and behave, and so it encompasses not merely philosophy and psychology, but everything else (history, literature, mathematics, politics etc.). Note especially that intentionality and rationality as I (along with Searle, Wittgenstein and others) view it, includes both conscious deliberative linguistic System 2 and unconscious (...)
    Download  
     
    Export citation  
     
    Bookmark  
  42. The Importance of Teaching Logic to Computer Scientists and Electrical Engineers.Paul Mayer - forthcoming - IEEE.
    It is argued that logic, and in particular mathematical logic, should play a key role in the undergraduate curriculum for students in the computing fields, which include electrical engineering (EE), computer engineering (CE), and computer science (CS). This is based on 1) the history of the field of computing and its close ties with logic, 2) empirical results showing that students with better logical thinking skills perform better in tasks such as programming and mathematics, and 3) (...)
    Download  
     
    Export citation  
     
    Bookmark  
  43. Computability. Computable functions, logic, and the foundations of mathematics[REVIEW]R. Zach - 2002 - History and Philosophy of Logic 23 (1):67-69.
    Epstein and Carnielli's fine textbook on logic and computability is now in its second edition. The readers of this journal might be particularly interested in the timeline `Computability and Undecidability' added in this edition, and the included wall-poster of the same title. The text itself, however, has some aspects which are worth commenting on.
    Download  
     
    Export citation  
     
    Bookmark  
  44. The Logical Structure of Human Behavior.Michael Starks (ed.) - 2019 - Las Vegas, NV USA: Reality Press.
    It is my contention that the table of intentionality (rationality, mind, thought, language, personality etc.) that features prominently here describes more or less accurately, or at least serves as an heuristic for, how we think and behave, and so it encompasses not merely philosophy and psychology, but everything else (history, literature, mathematics, politics etc.). Note especially that intentionality and rationality as I (along with Searle, Wittgenstein and others) view it, includes both conscious deliberative linguistic System 2 and unconscious automated (...)
    Download  
     
    Export citation  
     
    Bookmark  
  45. Wittgenstein on Gödelian 'Incompleteness', Proofs and Mathematical Practice: Reading Remarks on the Foundations of Mathematics, Part I, Appendix III, Carefully.Wolfgang Kienzler & Sebastian Sunday Grève - 2016 - In Sebastian Sunday Grève & Jakub Mácha (eds.), Wittgenstein and the Creativity of Language. Palgrave Macmillan. pp. 76-116.
    We argue that Wittgenstein’s philosophical perspective on Gödel’s most famous theorem is even more radical than has commonly been assumed. Wittgenstein shows in detail that there is no way that the Gödelian construct of a string of signs could be assigned a useful function within (ordinary) mathematics. — The focus is on Appendix III to Part I of Remarks on the Foundations of Mathematics. The present reading highlights the exceptional importance of this particular set of remarks and, more (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  46. Reconstructing the Unity of Mathematics circa 1900.David J. Stump - 1997 - Perspectives on Science 5 (3):383-417.
    Standard histories of mathematics and of analytic philosophy contend that work on the foundations of mathematics was motivated by a crisis such as the discovery of paradoxes in set theory or the discovery of non-Euclidean geometries. Recent scholarship, however, casts doubt on the standard histories, opening the way for consideration of an alternative motive for the study of the foundations of mathematics—unification. Work on foundations has shown that diverse mathematical practices could be integrated into a single framework (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  47. The Reality of Consciousness and Its Logical Intermittences: from Hegel to Bergson.Riccardo Roni - 2020 - Open Journal of Humanities 5:185-217.
    The critic of substance immobility through negation constitutes the starting point of the ‘voyage of discovery’ of Hegel’s Phänomenologie des Geistes, in which mind and body experiences are considered in terms of mutual recognition, without denying the subjectivity. In this article I am discussing some aspects of Hegel’s philosophy of spirit after Nietzsche’s ‘experimentalism’ and Dennett’s theory of mind, in order to articulate, through Bergson, two fundamental reasons. The first concerns the subject and the dramatic awareness of its constitutional temporality (...)
    Download  
     
    Export citation  
     
    Bookmark  
  48. Foundations of Relational Realism: A Topological Approach to Quantum Mechanics and the Philosophy of Nature.Michael Epperson & Elias Zafiris - 2013 - Lanham: Lexington Books. Edited by Elias Zafiris.
    Foundations of Relational Realism presents an intuitive interpretation of quantum mechanics, based on a revised decoherent histories interpretation, structured within a category theoretic topological formalism. -/- If there is a central conceptual framework that has reliably borne the weight of modern physics as it ascends into the twenty-first century, it is the framework of quantum mechanics. Because of its enduring stability in experimental application, physics has today reached heights that not only inspire wonder, but arguably exceed the limits of intuitive (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  49. Mohan Ganesalingam. The Language of Mathematics: A Linguistic and Philosophical Investigation. FoLLI Publications on Logic, Language and Information. [REVIEW]Andrew Aberdein - 2017 - Philosophia Mathematica 25 (1):143–147.
    Download  
     
    Export citation  
     
    Bookmark  
  50.  21
    Mathematizing Bodies. Leibniz on the Application of Mathematics to Nature, and its Metaphysical Ground.Lucia Oliveri - 2023 - Studia Leibnitiana 55 (1-2):190-208.
    There are two axes of Leibniz’s philosophy about bodies that are deeply inter- twined, as this paper shows: the scientific investigation of bodies due to the application of mathematics to nature – Leibniz’s mixed mathematics – and the issue of matter/bodies ide- alism. This intertwinement raises an issue: How did Leibniz frame the relationship between mathematics, natural sciences, and metaphysics? Due to the increasing application of mathe- matics to natural sciences, especially physics, philosophers of the early modern (...)
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 962