View topic on PhilPapers for more information
Related categories

98 found
Order:
More results on PhilPapers
1 — 50 / 98
Analog and Digital Computation
  1. David Wolpert on Impossibility, Incompleteness, the Liar Paradox, the Limits of Computation, a Non-Quantum Mechanical Uncertainty Principle and the Universe as Computer—the Ultimate Theorem in Turing Machine Theory.Michael Starks - manuscript
    I have read many recent discussions of the limits of computation and the universe as computer, hoping to find some comments on the amazing work of polymath physicist and decision theorist David Wolpert but have not found a single citation and so I present this very brief summary. Wolpert proved some stunning impossibility or incompleteness theorems (1992 to 2008-see arxiv.org) on the limits to inference (computation) that are so general they are independent of the device doing the computation, and even (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  2. A Dialogue Concerning Two World Systems: Info-Computational Vs. Mechanistic.Gordana Dodig-Crnkovic & Vincent C. Müller - 2011 - In Gordana Dodig-Crnkovic & Mark Burgin (eds.), Information and computation: Essays on scientific and philosophical understanding of foundations of information and computation. World Scientific. pp. 149-184.
    The dialogue develops arguments for and against a broad new world system - info-computationalist naturalism - that is supposed to overcome the traditional mechanistic view. It would make the older mechanistic view into a special case of the new general info-computationalist framework (rather like Euclidian geometry remains valid inside a broader notion of geometry). We primarily discuss what the info-computational paradigm would mean, especially its pancomputationalist component. This includes the requirements for a the new generalized notion of computing that would (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  3. What is a Digital State?Vincent C. Müller - 2013 - In Mark J. Bishop & Yasemin Erden (eds.), The Scandal of Computation - What is Computation? - AISB Convention 2013. AISB. pp. 11-16.
    There is much discussion about whether the human mind is a computer, whether the human brain could be emulated on a computer, and whether at all physical entities are computers (pancomputationalism). These discussions, and others, require criteria for what is digital. I propose that a state is digital if and only if it is a token of a type that serves a particular function - typically a representational function for the system. This proposal is made on a syntactic level, assuming (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  4. Pancomputationalism: Theory or Metaphor?Vincent C. Müller - 2014 - In Ruth Hagengruber & Uwe Riss (eds.), Philosophy, computing and information science. Pickering & Chattoo. pp. 213-221.
    The theory that all processes in the universe are computational is attractive in its promise to provide an understandable theory of everything. I want to suggest here that this pancomputationalism is not sufficiently clear on which problem it is trying to solve, and how. I propose two interpretations of pancomputationalism as a theory: I) the world is a computer and II) the world can be described as a computer. The first implies a thesis of supervenience of the physical over computation (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  5. Susan Stuart & Gordana Dodig Crnkovic : 'Computation, Information, Cognition: The Nexus and the Liminal'. [REVIEW]Vincent C. Müller - 2009 - Cybernetics and Human Knowing 16 (3-4):201-203.
    Review of: "Computation, Information, Cognition: The Nexus and the Liminal", Ed. Susan Stuart & Gordana Dodig Crnkovic, Newcastle: Cambridge Scholars Publishing, September 2007, xxiv+340pp, ISBN: 9781847180902, Hardback: £39.99, $79.99 ---- Are you a computer? Is your cat a computer? A single biological cell in your stomach, perhaps? And your desk? You do not think so? Well, the authors of this book suggest that you think again. They propose a computational turn, a turn towards computational explanation and towards the explanation of (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  6. Representation in Digital Systems.Vincent C. Müller - 2008 - In Adam Briggle, Katinka Waelbers & Brey Philip (eds.), Current Issues in Computing and Philosophy. IOS Press. pp. 116-121.
    Cognition is commonly taken to be computational manipulation of representations. These representations are assumed to be digital, but it is not usually specified what that means and what relevance it has for the theory. I propose a specification for being a digital state in a digital system, especially a digital computational system. The specification shows that identification of digital states requires functional directedness, either for someone or for the system of which it is a part. In the case or digital (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  7. Why Digital Pictures Are Not Notational Representations.John Zeimbekis - 2015 - Journal of Aesthetics and Art Criticism 73 (4):449-453.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  8. Structure and Dynamics in Implementation of Computations.Jacques Mallah - forthcoming - In Yasemin J. Erden (ed.), Proceedings of the 7th AISB Symposium on Computing and Philosophy:. AISB.
    Without a proper restriction on mappings, virtually any system could be seen as implementing any computation. That would not allow characterization of systems in terms of implemented computations and is not compatible with a computationalist philosophy of mind. Information-based criteria for independence of substates within structured states are proposed as a solution. Objections to the use of requirements for transitions in counterfactual states are addressed, in part using the partial-brain argument as a general counterargument to neural replacement arguments.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  9. The World is Either Digital or Analogue.Francesco Berto & Jacopo Tagliabue - 2014 - Synthese 191 (3):481-497.
    We address an argument by Floridi (Synthese 168(1):151–178, 2009; 2011a), to the effect that digital and analogue are not features of reality, only of modes of presentation of reality. One can therefore have an informational ontology, like Floridi’s Informational Structural Realism, without commitment to a supposedly digital or analogue world. After introducing the topic in Sect. 1, in Sect. 2 we explain what the proposition expressed by the title of our paper means. In Sect. 3, we describe Floridi’s argument. In (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  10. On the Possibilities of Hypercomputing Supertasks.Vincent C. Müller - 2011 - Minds and Machines 21 (1):83-96.
    This paper investigates the view that digital hypercomputing is a good reason for rejection or re-interpretation of the Church-Turing thesis. After suggestion that such re-interpretation is historically problematic and often involves attack on a straw man (the ‘maximality thesis’), it discusses proposals for digital hypercomputing with Zeno-machines , i.e. computing machines that compute an infinite number of computing steps in finite time, thus performing supertasks. It argues that effective computing with Zeno-machines falls into a dilemma: either they are specified such (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
Computers
  1. Ciencia de la computación y filosofía: unidades de análisis del software.Juan Manuel Durán - 2018 - Principia 22 (2):203-227.
    Una imagen muy generalizada a la hora de entender el software de computador es la que lo representa como una “caja negra”: no importa realmente saber qué partes lo componen internamente, sino qué resultados se obtienen de él según ciertos valores de entrada. Al hacer esto, muchos problemas filosóficos son ocultados, negados o simplemente mal entendidos. Este artículo discute tres unidades de análisis del software de computador, esto es, las especificaciones, los algoritmos y los procesos computacionales. El objetivo central es (...)
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  2. A User Profiling Component with the Aid of User Ontologies.Nébel István-Tibor, Barry Smith & Paschke Ralf - 2003 - In Learning – Teaching – Knowledge – Adaptivity (LLWA), University of Karlsruhe (2003). Karlsruhe, Germany:
    Abstract: What follows is a contribution to the field of user modeling for adaptive teaching and learning programs especially in the medical field. The paper outlines existing approaches to the problem of extracting user information in a form that can be exploited by adaptive software. We focus initially on the so-called stereotyping method, which allocates users into classes adaptively, reflecting characteristics such as physical data, social background, and computer experience. The user classifications of the stereotyping method are however ad hoc (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  3. The Case for Continuous Auditing of Management Information Systems.Robert E. Davis - 2012 - Effective Auditing for Corporates: Key Developments in Practice and Procedures (Key Concepts).
    In the wake of the recent financial crisis, increasing the effectiveness of auditing has weighed heavily on the minds of those responsible for governance. When a business is profitable and paying healthy dividends to its stockholders, fraudulent activities and accounting irregularities can go unnoticed. However, when revenue and cash flow decline, internal costs and operations may be scrutinized more diligently, and discrepancies can emerge as a result. Effective Auditing for Corporates provides you with proactive advice to ...
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  4. Physical Computation: A Mechanistic Account. [REVIEW]Joe Dewhurst - 2016 - Philosophical Psychology 29 (5):795-797.
    Physical Computation is the summation of Piccinini’s work on computation and mechanistic explanation over the past decade. It draws together material from papers published during that time, but also provides additional clarifications and restructuring that make this the definitive presentation of his mechanistic account of physical computation. This review will first give a brief summary of the account that Piccinini defends, followed by a chapter-by-chapter overview of the book, before finally discussing one aspect of the account in more critical detail.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  5. Computing and Philosophy: Selected Papers From IACAP 2014.Vincent C. Müller (ed.) - 2016 - Springer.
    This volume offers very selected papers from the 2014 conference of the “International Association for Computing and Philosophy” (IACAP) - a conference tradition of 28 years. - - - Table of Contents - 0 Vincent C. Müller: - Editorial - 1) Philosophy of computing - 1 Çem Bozsahin: - What is a computational constraint? - 2 Joe Dewhurst: - Computing Mechanisms and Autopoietic Systems - 3 Vincenzo Fano, Pierluigi Graziani, Roberto Macrelli and Gino Tarozzi: - Are Gandy Machines really local? (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  6. DDoS Protection With IPtables.Constantin Oesterling - 2016 - InfoSec:15.
    Research on the most effective Linux iptables rules to mitigate Distributed Denial of Service (DDoS) attacks.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  7. What is Morphological Computation? On How the Body Contributes to Cognition and Control.Vincent C. Müller & Matej Hoffmann - 2017 - Artificial Life 23 (1):1-24.
    The contribution of the body to cognition and control in natural and artificial agents is increasingly described as “off-loading computation from the brain to the body”, where the body is said to perform “morphological computation”. Our investigation of four characteristic cases of morphological computation in animals and robots shows that the ‘off-loading’ perspective is misleading. Actually, the contribution of body morphology to cognition and control is rarely computational, in any useful sense of the word. We thus distinguish (1) morphology that (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  8. Computational Mechanisms and Models of Computation.Marcin Miłkowski - 2014 - Philosophia Scientae 18:215-228.
    In most accounts of realization of computational processes by physical mechanisms, it is presupposed that there is one-to-one correspondence between the causally active states of the physical process and the states of the computation. Yet such proposals either stipulate that only one model of computation is implemented, or they do not reflect upon the variety of models that could be implemented physically. In this paper, I claim that mechanistic accounts of computation should allow for a broad variation of models of (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  9. Opinions and Outlooks on Morphological Computation.Helmut Hauser, Rudolf M. Füchslin & Rolf Pfeifer (eds.) - 2014 - E-Book.
    Morphological Computation is based on the observation that biological systems seem to carry out relevant computations with their morphology (physical body) in order to successfully interact with their environments. This can be observed in a whole range of systems and at many different scales. It has been studied in animals – e.g., while running, the functionality of coping with impact and slight unevenness in the ground is "delivered" by the shape of the legs and the damped elasticity of the muscle-tendon (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  10. Simple or Complex Bodies? Trade-Offs in Exploiting Body Morphology for Control.Matej Hoffmann & Vincent C. Müller - 2017 - In Gordana Dodig-Crnkovic & Raffaela Giovagnoli (eds.), Representation of Reality: Humans, Other Living Organisms and Intelligent Machines. Berlin: Springer. pp. 335-345.
    Engineers fine-tune the design of robot bodies for control purposes, however, a methodology or set of tools is largely absent, and optimization of morphology (shape, material properties of robot bodies, etc.) is lagging behind the development of controllers. This has become even more prominent with the advent of compliant, deformable or ”soft” bodies. These carry substantial potential regarding their exploitation for control—sometimes referred to as ”morphological computation”. In this article, we briefly review different notions of computation by physical systems and (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  11. Layers of Models in Computer Simulations.Thomas Boyer-Kassem - 2014 - International Studies in the Philosophy of Science 28 (4):417-436.
    I discuss here the definition of computer simulations, and more specifically the views of Humphreys, who considers that an object is simulated when a computer provides a solution to a computational model, which in turn represents the object of interest. I argue that Humphreys's concepts are not able to analyse fully successfully a case of contemporary simulation in physics, which is more complex than the examples considered so far in the philosophical literature. I therefore modify Humphreys's definition of simulation. I (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  12. Chains of Reference in Computer Simulations.Franck Varenne - 2013 - FMSH Working Papers 51:1-32.
    This paper proposes an extensionalist analysis of computer simulations (CSs). It puts the emphasis not on languages nor on models, but on symbols, on their extensions, and on their various ways of referring. It shows that chains of reference of symbols in CSs are multiple and of different kinds. As they are distinct and diverse, these chains enable different kinds of remoteness of reference and different kinds of validation for CSs. Although some methodological papers have already underlined the role of (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  13. Justified Belief in a Digital Age: On the Epistemic Implications of Secret Internet Technologies.Boaz Miller & Isaac Record - 2013 - Episteme 10 (2):117 - 134.
    People increasingly form beliefs based on information gained from automatically filtered Internet ‎sources such as search engines. However, the workings of such sources are often opaque, preventing ‎subjects from knowing whether the information provided is biased or incomplete. Users’ reliance on ‎Internet technologies whose modes of operation are concealed from them raises serious concerns about ‎the justificatory status of the beliefs they end up forming. Yet it is unclear how to address these concerns ‎within standard theories of knowledge and justification. (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   9 citations  
Implementing Computations
  1. Computation in Physical Systems: A Normative Mapping Account.Paul Schweizer - 2019 - In Matteo Vincenzo D'Alfonso & Don Berkich (eds.), On the Cognitive, Ethical, and Scientific Dimensions of Artificial Intelligence. Springer Verlag.
    The relationship between abstract formal procedures and the activities of actual physical systems has proved to be surprisingly subtle and controversial, and there are a number of competing accounts of when a physical system can be properly said to implement a mathematical formalism and hence perform a computation. I defend an account wherein computational descriptions of physical systems are high-level normative interpretations motivated by our pragmatic concerns. Furthermore, the criteria of utility and success vary according to our diverse purposes and (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  2. Mechanistic Computational Individuation Without Biting the Bullet.Nir Fresco & Marcin Miłkowski - 2019 - British Journal for the Philosophy of Science:axz005.
    Is the mathematical function being computed by a given physical system determined by the system’s dynamics? This question is at the heart of the indeterminacy of computation phenomenon (Fresco et al. [unpublished]). A paradigmatic example is a conventional electrical AND-gate that is often said to compute conjunction, but it can just as well be used to compute disjunction. Despite the pervasiveness of this phenomenon in physical computational systems, it has been discussed in the philosophical literature only indirectly, mostly with reference (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  3. Morphological Computation: Nothing but Physical Computation.Marcin Miłkowski - 2018 - Entropy 10 (20):942.
    The purpose of this paper is to argue against the claim that morphological computation is substantially different from other kinds of physical computation. I show that some (but not all) purported cases of morphological computation do not count as specifically computational, and that those that do are solely physical computational systems. These latter cases are not, however, specific enough: all computational systems, not only morphological ones, may (and sometimes should) be studied in various ways, including their energy efficiency, cost, reliability, (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  4. How to Explain Miscomputation.Chris Tucker - 2018 - Philosophers' Imprint 18 (24):1-17.
    Just as theory of representation is deficient if it can’t explain how misrepresentation is possible, a theory of computation is deficient if it can’t explain how miscomputation is possible. Nonetheless, philosophers have generally ignored miscomputation. My primary goal in this paper is to clarify both what miscomputation is and how to adequately explain it. Miscomputation is a special kind of malfunction: a system miscomputes when it computes in a way that it shouldn’t. To explain miscomputation, you must provide accounts of (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  5. The Cognitive Basis of Computation: Putting Computation in Its Place.Daniel D. Hutto, Erik Myin, Anco Peeters & Farid Zahnoun - 2018 - In Mark Sprevak & Matteo Colombo (eds.), The Routledge Handbook of the Computational Mind. London: Routledge. pp. 272-282.
    The mainstream view in cognitive science is that computation lies at the basis of and explains cognition. Our analysis reveals that there is no compelling evidence or argument for thinking that brains compute. It makes the case for inverting the explanatory order proposed by the computational basis of cognition thesis. We give reasons to reverse the polarity of standard thinking on this topic, and ask how it is possible that computation, natural and artificial, might be based on cognition and not (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  6. The Swapping Constraint.Henry Schiller - 2018 - Minds and Machines 28 (3):605-622.
    Triviality arguments against the computational theory of mind claim that computational implementation is trivial and thus does not serve as an adequate metaphysical basis for mental states. It is common to take computational implementation to consist in a mapping from physical states to abstract computational states. In this paper, I propose a novel constraint on the kinds of physical states that can implement computational states, which helps to specify what it is for two physical states to non-trivially implement the same (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  7. Book Review: Jeff Buechner, Gödel, Putnam, and Functionalism: A New Reading of Representation and Reality. [REVIEW]Witold M. Hensel & Marcin Miłkowski - 2014 - Journal of Cognitive Science 15 (3):391-402.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  8. The False Dichotomy Between Causal Realization and Semantic Computation.Marcin Miłkowski - 2017 - Hybris. Internetowy Magazyn Filozoficzny 38:1-21.
    In this paper, I show how semantic factors constrain the understanding of the computational phenomena to be explained so that they help build better mechanistic models. In particular, understanding what cognitive systems may refer to is important in building better models of cognitive processes. For that purpose, a recent study of some phenomena in rats that are capable of ‘entertaining’ future paths (Pfeiffer and Foster 2013) is analyzed. The case shows that the mechanistic account of physical computation may be complemented (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  9. A Mechanistic Account of Wide Computationalism.Luke Kersten - 2017 - Review of Philosophy and Psychology 8 (3):501-517.
    The assumption that psychological states and processes are computational in character pervades much of cognitive science, what many call the computational theory of mind. In addition to occupying a central place in cognitive science, the computational theory of mind has also had a second life supporting “individualism”, the view that psychological states should be taxonomized so as to supervene only on the intrinsic, physical properties of individuals. One response to individualism has been to raise the prospect of “wide computational systems”, (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  10. Many-Valued Logics. A Mathematical and Computational Introduction.Luis M. Augusto - 2017 - London: College Publications.
    Many-valued logics are those logics that have more than the two classical truth values, to wit, true and false; in fact, they can have from three to infinitely many truth values. This property, together with truth-functionality, provides a powerful formalism to reason in settings where classical logic—as well as other non-classical logics—is of no avail. Indeed, originally motivated by philosophical concerns, these logics soon proved relevant for a plethora of applications ranging from switching theory to cognitive modeling, and they are (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  11. A Cognitive Computation Fallacy? Cognition, Computations and Panpsychism.John Mark Bishop - 2009 - Cognitive Computation 1 (3):221-233.
    The journal of Cognitive Computation is defined in part by the notion that biologically inspired computational accounts are at the heart of cognitive processes in both natural and artificial systems. Many studies of various important aspects of cognition (memory, observational learning, decision making, reward prediction learning, attention control, etc.) have been made by modelling the various experimental results using ever-more sophisticated computer programs. In this manner progressive inroads have been made into gaining a better understanding of the many components of (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   4 citations  
  12. Dancing with Pixies: Strong Artificial Intelligence and Panpsychism.J. M. Bishop - 2002 - In John Preston & John Mark Bishop (eds.), Views into the Chinese Room: New Essays on Searle and Artificial Intelligence. pp. 360-379.
    The argument presented in this paper is not a direct attack or defence of the Chinese Room Argument (CRA), but relates to the premise at its heart, that syntax is not sufficient for semantics, via the closely associated propositions that semantics is not intrinsic to syntax and that syntax is not intrinsic to physics. However, in contrast to the CRA’s critique of the link between syntax and semantics, this paper will explore the associated link between syntax and physics. The main (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  13. System, Subsystem, Hive: Boundary Problems in Computational Theories of Consciousness.Tomer Fekete, Cees van Leeuwen & Shimon Edelman - 2016 - Frontiers in Psychology 7.
    A computational theory of consciousness should include a quantitative measure of consciousness, or MoC, that (i) would reveal to what extent a given system is conscious, (ii) would make it possible to compare not only different systems, but also the same system at different times, and (iii) would be graded, because so is consciousness. However, unless its design is properly constrained, such an MoC gives rise to what we call the boundary problem: an MoC that labels a system as conscious (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  14. Why Build a Virtual Brain? Large-Scale Neural Simulations as Jump Start for Cognitive Computing.Matteo Colombo - 2016 - Journal of Experimental and Theoretical Artificial Intelligence.
    Despite the impressive amount of financial resources recently invested in carrying out large-scale brain simulations, it is controversial what the pay-offs are of pursuing this project. One idea is that from designing, building, and running a large-scale neural simulation, scientists acquire knowledge about the computational performance of the simulating system, rather than about the neurobiological system represented in the simulation. It has been claimed that this knowledge may usher in a new era of neuromorphic, cognitive computing systems. This study elucidates (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  15. Computational Mechanisms and Models of Computation.Marcin Miłkowski - 2014 - Philosophia Scientae 18:215-228.
    In most accounts of realization of computational processes by physical mechanisms, it is presupposed that there is one-to-one correspondence between the causally active states of the physical process and the states of the computation. Yet such proposals either stipulate that only one model of computation is implemented, or they do not reflect upon the variety of models that could be implemented physically. In this paper, I claim that mechanistic accounts of computation should allow for a broad variation of models of (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  16. A Dialogue Concerning Two World Systems: Info-Computational Vs. Mechanistic.Gordana Dodig-Crnkovic & Vincent C. Müller - 2011 - In Gordana Dodig-Crnkovic & Mark Burgin (eds.), Information and computation: Essays on scientific and philosophical understanding of foundations of information and computation. World Scientific. pp. 149-184.
    The dialogue develops arguments for and against a broad new world system - info-computationalist naturalism - that is supposed to overcome the traditional mechanistic view. It would make the older mechanistic view into a special case of the new general info-computationalist framework (rather like Euclidian geometry remains valid inside a broader notion of geometry). We primarily discuss what the info-computational paradigm would mean, especially its pancomputationalist component. This includes the requirements for a the new generalized notion of computing that would (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  17. 20 Years After The Embodied Mind - Why is Cognitivism Alive and Kicking?Vincent C. Müller - 2013 - In Blay Whitby & Joel Parthmore (eds.), Re-Conceptualizing Mental "Illness": The View from Enactivist Philosophy and Cognitive Science - AISB Convention 2013. AISB. pp. 47-49.
    I want to suggest that the major influence of classical arguments for embodiment like "The Embodied Mind" by Varela, Thomson & Rosch (1991) has been a changing of positions rather than a refutation: Cognitivism has found ways to retreat and regroup at positions that have better fortification, especially when it concerns theses about artificial intelligence or artificial cognitive systems. For example: a) Agent-based cognitivism' that understands humans as taking in representations of the world, doing rule-based processing and then acting on (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  18. Opinions and Outlooks on Morphological Computation.Helmut Hauser, Rudolf M. Füchslin & Rolf Pfeifer (eds.) - 2014 - E-Book.
    Morphological Computation is based on the observation that biological systems seem to carry out relevant computations with their morphology (physical body) in order to successfully interact with their environments. This can be observed in a whole range of systems and at many different scales. It has been studied in animals – e.g., while running, the functionality of coping with impact and slight unevenness in the ground is "delivered" by the shape of the legs and the damped elasticity of the muscle-tendon (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  19. Programming the Emergence in Morphogenetically Architected Complex Systems.Franck Varenne, Pierre Chaigneau, Jean Petitot & René Doursat - 2015 - Acta Biotheoretica 63 (3):295-308.
    Large sets of elements interacting locally and producing specific architectures reliably form a category that transcends the usual dividing line between biological and engineered systems. We propose to call them morphogenetically architected complex systems (MACS). While taking the emergence of properties seriously, the notion of MACS enables at the same time the design (or “meta-design”) of operational means that allow controlling and even, paradoxically, programming this emergence. To demonstrate our claim, we first show that among all the self-organized systems studied (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  20. A Review of the LSAT Using Literature on Legal Reasoning.Gilbert E. Plumer - 2000 - Law School Admission Council Computerized Testing Report 97 (8):1-19.
    Research using current literature on legal reasoning was conducted with the goals of (a) determining what skills are most important in good legal reasoning according to such literature, (b) determining the extent to which existing Law School Admission Test item types and subtypes are designed to assess those skills, and (c) suggesting test specifications or new or refined item types and formats that could be developed in the future to assess any important skills that appear [by (a) and (b)] to (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  21. Computational Mechanisms and Models of Computation.Marcin Miłkowski - 2014 - Philosophia Scientiæ 18:215-228.
    In most accounts of realization of computational processes by physical mechanisms, it is presupposed that there is one-to-one correspondence between the causally active states of the physical process and the states of the computation. Yet such proposals either stipulate that only one model of computation is implemented, or they do not reflect upon the variety of models that could be implemented physically. -/- In this paper, I claim that mechanistic accounts of computation should allow for a broad variation of models (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  22. Structure and Dynamics in Implementation of Computations.Jacques Mallah - forthcoming - In Yasemin J. Erden (ed.), Proceedings of the 7th AISB Symposium on Computing and Philosophy:. AISB.
    Without a proper restriction on mappings, virtually any system could be seen as implementing any computation. That would not allow characterization of systems in terms of implemented computations and is not compatible with a computationalist philosophy of mind. Information-based criteria for independence of substates within structured states are proposed as a solution. Objections to the use of requirements for transitions in counterfactual states are addressed, in part using the partial-brain argument as a general counterargument to neural replacement arguments.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  23. Solving Ordinary Differential Equations by Working with Infinitesimals Numerically on the Infinity Computer.Yaroslav Sergeyev - 2013 - Applied Mathematics and Computation 219 (22):10668–10681.
    There exists a huge number of numerical methods that iteratively construct approximations to the solution y(x) of an ordinary differential equation (ODE) y′(x) = f(x,y) starting from an initial value y_0=y(x_0) and using a finite approximation step h that influences the accuracy of the obtained approximation. In this paper, a new framework for solving ODEs is presented for a new kind of a computer – the Infinity Computer (it has been patented and its working prototype exists). The new computer is (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  24. On the Possibilities of Hypercomputing Supertasks.Vincent C. Müller - 2011 - Minds and Machines 21 (1):83-96.
    This paper investigates the view that digital hypercomputing is a good reason for rejection or re-interpretation of the Church-Turing thesis. After suggestion that such re-interpretation is historically problematic and often involves attack on a straw man (the ‘maximality thesis’), it discusses proposals for digital hypercomputing with Zeno-machines , i.e. computing machines that compute an infinite number of computing steps in finite time, thus performing supertasks. It argues that effective computing with Zeno-machines falls into a dilemma: either they are specified such (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  25. Implementation Is Semantic Interpretation.William J. Rapaport - 1999 - The Monist 82 (1):109-130.
    What is the computational notion of "implementation"? It is not individuation, instantiation, reduction, or supervenience. It is, I suggest, semantic interpretation. The online version differs from the published version in being a bit longer and going into a bit more detail.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   5 citations  
  26. A Counterexample T o All Future Dynamic Systems Theories of Cognition.Eric Dietrich - 2000 - J. Of Experimental and Theoretical AI 12 (2):377-382.
    Years ago, when I was an undergraduate math major at the University of Wyoming, I came across an interesting book in our library. It was a book of counterexamples t o propositions in real analysis (the mathematics of the real numbers). Mathematicians work more or less like the rest of us. They consider propositions. If one seems to them to be plausibly true, then they set about to prove it, to establish the proposition as a theorem. Instead o f setting (...)
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  27. Resolving Arguments by Different Conceptual Traditions of Realization.Ronald P. Endicott - 2012 - Philosophical Studies 159 (1):41-59.
    There is currently a significant amount of interest in understanding and developing theories of realization. Naturally arguments have arisen about the adequacy of some theories over others. Many of these arguments have a point. But some can be resolved by seeing that the theories of realization in question are not genuine competitors because they fall under different conceptual traditions with different but compatible goals. I will first describe three different conceptual traditions of realization that are implicated by the arguments under (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
1 — 50 / 98