Switch to: References

Citations of:

Einige Bemerkungen zur axiomatischen Begründung der Mengenlehre

In ¸ Iteskolem:Swl. pp. 137--52 (1955)

Add citations

You must login to add citations.
  1. Skolem, the Skolem 'Paradox' and Informal Mathematics.Luca Bellotti - 2006 - Theoria 72 (3):177-212.
    I discuss Skolem's own ideas on his ‘paradox’, some classical disputes between Skolemites and Antiskolemites, and the underlying notion of ‘informal mathematics’, from a point of view which I hope to be rather unusual. I argue that the Skolemite cannot maintain that from an absolute point of view everything is in fact denumerable; on the other hand, the Antiskolemite is left with the onus of explaining the notion of informal mathematical knowledge of the intended model of set theory. 1 conclude (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The development of mathematical logic from Russell to Tarski, 1900-1935.Paolo Mancosu, Richard Zach & Calixto Badesa - 2009 - In Leila Haaparanta (ed.), The development of modern logic. New York: Oxford University Press.
    The period from 1900 to 1935 was particularly fruitful and important for the development of logic and logical metatheory. This survey is organized along eight "itineraries" concentrating on historically and conceptually linked strands in this development. Itinerary I deals with the evolution of conceptions of axiomatics. Itinerary II centers on the logical work of Bertrand Russell. Itinerary III presents the development of set theory from Zermelo onward. Itinerary IV discusses the contributions of the algebra of logic tradition, in particular, Löwenheim (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Logical information and epistemic space.Mark Jago - 2009 - Synthese 167 (2):327 - 341.
    Gaining information can be modelled as a narrowing of epistemic space . Intuitively, becoming informed that such-and-such is the case rules out certain scenarios or would-be possibilities. Chalmers’s account of epistemic space treats it as a space of a priori possibility and so has trouble in dealing with the information which we intuitively feel can be gained from logical inference. I propose a more inclusive notion of epistemic space, based on Priest’s notion of open worlds yet which contains only those (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Skolem's paradox and constructivism.Charles McCarty & Neil Tennant - 1987 - Journal of Philosophical Logic 16 (2):165 - 202.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Hilbert mathematics versus (or rather “without”) Gödel mathematics: V. Ontomathematics!Vasil Penchev - 2024 - Metaphysics eJournal (Elsevier: SSRN) 17 (10):1-57.
    The paper is the final, fifth part of a series of studies introducing the new conceptions of “Hilbert mathematics” and “ontomathematics”. The specific subject of the present investigation is the proper philosophical sense of both, including philosophy of mathematics and philosophy of physics not less than the traditional “first philosophy” (as far as ontomathematics is a conservative generalization of ontology as well as of Heidegger’s “fundamental ontology” though in a sense) and history of philosophy (deepening Heidegger’s destruction of it from (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Gentzen’s “cut rule” and quantum measurement in terms of Hilbert arithmetic. Metaphor and understanding modeled formally.Vasil Penchev - 2022 - Logic and Philosophy of Mathematics eJournal 14 (14):1-37.
    Hilbert arithmetic in a wide sense, including Hilbert arithmetic in a narrow sense consisting by two dual and anti-isometric Peano arithmetics, on the one hand, and the qubit Hilbert space (originating for the standard separable complex Hilbert space of quantum mechanics), on the other hand, allows for an arithmetic version of Gentzen’s cut elimination and quantum measurement to be described uniformy as two processes occurring accordingly in those two branches. A philosophical reflection also justifying that unity by quantum neo-Pythagoreanism links (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Fermat’s last theorem proved in Hilbert arithmetic. II. Its proof in Hilbert arithmetic by the Kochen-Specker theorem with or without induction.Vasil Penchev - 2022 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 14 (10):1-52.
    The paper is a continuation of another paper published as Part I. Now, the case of “n=3” is inferred as a corollary from the Kochen and Specker theorem (1967): the eventual solutions of Fermat’s equation for “n=3” would correspond to an admissible disjunctive division of qubit into two absolutely independent parts therefore versus the contextuality of any qubit, implied by the Kochen – Specker theorem. Incommensurability (implied by the absence of hidden variables) is considered as dual to quantum contextuality. The (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Tarski on logical notions.Luca Bellotti - 2003 - Synthese 135 (3):401 - 413.
    We try to explain Tarski's conception of logical notions, as it emerges from alecture of his, delivered in 1966 and published posthumously in 1986 (Historyand Philosophy of Logic 7, 143–154), a conception based on the idea ofinvariance. The evaluation of Tarski's proposal leads us to consider an interesting(and neglected) reply to Skolem in which Tarski hints at his own point of view onthe foundations of set theory. Then, comparing the lecture of 1966 with Tarski'slast work and with an earlier paper (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Logical Concepts vs. Logical Operations.Tabea Rohr - 2021 - Journal for the History of Analytical Philosophy 9 (11):56 - 74.
    In what follows, the difference between Frege’s and Schröder’s understanding of logical connectives will be investigated. It will be argued that Frege thought of logical connectives as concepts, whereas Schröder thought of them as operations. For Frege, logical connectives can themselves be connected. There is no substantial difference between the connectives and the concepts they connect. Frege’s distinction between concepts and objects is central to this conception, because it allows a method of concept formation which enables us to form concepts (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • What the Tortoise Said to Achilles: Lewis Carroll’s paradox in terms of Hilbert arithmetic.Vasil Penchev - 2021 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 13 (22):1-32.
    Lewis Carroll, both logician and writer, suggested a logical paradox containing furthermore two connotations (connotations or metaphors are inherent in literature rather than in mathematics or logics). The paradox itself refers to implication demonstrating that an intermediate implication can be always inserted in an implication therefore postponing its ultimate conclusion for the next step and those insertions can be iteratively and indefinitely added ad lib, as if ad infinitum. Both connotations clear up links due to the shared formal structure with (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Both Classical & Quantum Information; Both Bit & Qubit: Both Physical & Transcendental Time.Vasil Penchev - 2021 - Philosophy of Science eJournal (Elsevier: SSRN) 14 (22):1-24.
    Information can be considered as the most fundamental, philosophical, physical and mathematical concept originating from the totality by means of physical and mathematical transcendentalism (the counterpart of philosophical transcendentalism). Classical and quantum information, particularly by their units, bit and qubit, correspond and unify the finite and infinite. As classical information is relevant to finite series and sets, as quantum information, to infinite ones. A fundamental joint relativity of the finite and infinite, of the external and internal is to be investigated. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Time and Information in the Foundations of Physics.Vasil Penchev - 2020 - Information Theory and Research eJournal (Elsevier: SSRN) 1 (25):1-12.
    The paper justifies the following theses: The totality can found time if the latter is axiomatically represented by its “arrow” as a well-ordering. Time can found choice and thus information in turn. Quantum information and its units, the quantum bits, can be interpreted as their generalization as to infinity and underlying the physical world as well as the ultimate substance of the world both subjective and objective. Thus a pathway of interpretation between the totality via time, order, choice, and information (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Relationship of Arithmetic As Two Twin Peano Arithmetic(s) and Set Theory: A New Glance From the Theory of Information.Vasil Penchev - 2020 - Metaphilosophy eJournal (Elseviers: SSRN) 12 (10):1-33.
    The paper introduces and utilizes a few new concepts: “nonstandard Peano arithmetic”, “complementary Peano arithmetic”, “Hilbert arithmetic”. They identify the foundations of both mathematics and physics demonstrating the equivalence of the newly introduced Hilbert arithmetic and the separable complex Hilbert space of quantum mechanics in turn underlying physics and all the world. That new both mathematical and physical ground can be recognized as information complemented and generalized by quantum information. A few fundamental mathematical problems of the present such as Fermat’s (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Quantum Strategy of Completeness: On the Self-Foundation of Mathematics.Vasil Penchev - 2020 - Cultural Anthropology eJournal (Elsevier: SSRN) 5 (136):1-12.
    Gentzen’s approach by transfinite induction and that of intuitionist Heyting arithmetic to completeness and the self-foundation of mathematics are compared and opposed to the Gödel incompleteness results as to Peano arithmetic. Quantum mechanics involves infinity by Hilbert space, but it is finitist as any experimental science. The absence of hidden variables in it interpretable as its completeness should resurrect Hilbert’s finitism at the cost of relevant modification of the latter already hinted by intuitionism and Gentzen’s approaches for completeness. This paper (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Quantum Invariance.Vasil Penchev - 2020 - Epistemology eJournal (Elsevier: SSRN) 13 (22):1-6.
    Quantum invariance designates the relation of any quantum coherent state to the corresponding statistical ensemble of measured results. The adequate generalization of ‘measurement’ is discussed to involve the discrepancy, due to the fundamental Planck constant, between any quantum coherent state and its statistical representation as a statistical ensemble after measurement. A set-theory corollary is the curious invariance to the axiom of choice: Any coherent state excludes any well-ordering and thus excludes also the axiom of choice. It should be equated to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • General Relativity and Quantum Gravity in Terms of Quantum Measure: A philosophical comment.Vasil Penchev - 2020 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 12 (17):1-37.
    The paper discusses the philosophical conclusions, which the interrelation between quantum mechanics and general relativity implies by quantum measure. Quantum measure is three-dimensional, both universal as the Borel measure and complete as the Lebesgue one. Its unit is a quantum bit (qubit) and can be considered as a generalization of the unit of classical information, a bit. It allows quantum mechanics to be interpreted in terms of quantum information, and all physical processes to be seen as informational in a generalized (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Logic, Mathematics, Philosophy, Vintage Enthusiasms: Essays in Honour of John L. Bell.David DeVidi, Michael Hallett & Peter Clark (eds.) - 2011 - Dordrecht, Netherland: Springer.
    The volume includes twenty-five research papers presented as gifts to John L. Bell to celebrate his 60th birthday by colleagues, former students, friends and admirers. Like Bell’s own work, the contributions cross boundaries into several inter-related fields. The contributions are new work by highly respected figures, several of whom are among the key figures in their fields. Some examples: in foundations of maths and logic ; analytical philosophy, philosophy of science, philosophy of mathematics and decision theory and foundations of economics. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • More Than Impossible: Negative and Complex Probabilities and Their Philosophical Interpretation.Vasil Penchev - 2020 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 12 (16):1-7.
    A historical review and philosophical look at the introduction of “negative probability” as well as “complex probability” is suggested. The generalization of “probability” is forced by mathematical models in physical or technical disciplines. Initially, they are involved only as an auxiliary tool to complement mathematical models to the completeness to corresponding operations. Rewards, they acquire ontological status, especially in quantum mechanics and its formulation as a natural information theory as “quantum information” after the experimental confirmation the phenomena of “entanglement”. Philosophical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Mathematical Model of Quantum Computer by Both Arithmetic and Set Theory.Vasil Penchev - 2020 - Information Theory and Research eJournal 1 (15):1-13.
    A practical viewpoint links reality, representation, and language to calculation by the concept of Turing (1936) machine being the mathematical model of our computers. After the Gödel incompleteness theorems (1931) or the insolvability of the so-called halting problem (Turing 1936; Church 1936) as to a classical machine of Turing, one of the simplest hypotheses is completeness to be suggested for two ones. That is consistent with the provability of completeness by means of two independent Peano arithmetics discussed in Section I. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Representation and Reality by Language: How to make a home quantum computer?Vasil Penchev - 2020 - Philosophy of Science eJournal (Elsevier: SSRN) 13 (34):1-14.
    A set theory model of reality, representation and language based on the relation of completeness and incompleteness is explored. The problem of completeness of mathematics is linked to its counterpart in quantum mechanics. That model includes two Peano arithmetics or Turing machines independent of each other. The complex Hilbert space underlying quantum mechanics as the base of its mathematical formalism is interpreted as a generalization of Peano arithmetic: It is a doubled infinite set of doubled Peano arithmetics having a remarkable (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Quantum Computer: Quantum Model and Reality.Vasil Penchev - 2020 - Epistemology eJournal (Elsevier: SSRN) 13 (17):1-7.
    Any computer can create a model of reality. The hypothesis that quantum computer can generate such a model designated as quantum, which coincides with the modeled reality, is discussed. Its reasons are the theorems about the absence of “hidden variables” in quantum mechanics. The quantum modeling requires the axiom of choice. The following conclusions are deduced from the hypothesis. A quantum model unlike a classical model can coincide with reality. Reality can be interpreted as a quantum computer. The physical processes (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Time: From the Totality to Quantum Information.Vasil Penchev - 2020 - Philosophy of Science eJournal (Elsevier: SSRN) 13 (24):1-14.
    The paper justifies the following theses: The totality can found time if the latter is axiomatically represented by its “arrow” as a well-ordering. Time can found choice and thus information in turn. Quantum information and its units, the quantum bits, can be interpreted as their generalization as to infinity and underlying the physical world as well as the ultimate substance of the world both subjective and objective. Thus a pathway of interpretation between the totality via time, order, choice, and information (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • From The Principle Of Least Action To The Conservation Of Quantum Information In Chemistry: Can One Generalize The Periodic Table?Vasil Penchev - 2019 - Chemistry: Bulgarian Journal of Science Education 28 (4):525-539.
    The success of a few theories in statistical thermodynamics can be correlated with their selectivity to reality. These are the theories of Boltzmann, Gibbs, end Einstein. The starting point is Carnot’s theory, which defines implicitly the general selection of reality relevant to thermodynamics. The three other theories share this selection, but specify it further in detail. Each of them separates a few main aspects within the scope of the implicit thermodynamic reality. Their success grounds on that selection. Those aspects can (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Математизирането на историята: число и битие.Vasil Penchev - 2013 - Sofia: BAS: ISSk (IPR).
    The book is a philosophical refection on the possibility of mathematical history. Are poosible models of historical phenomena so exact as those of physical ones? Mathematical models borrowed from quantum mechanics by the meditation of its interpretations are accomodated to history. The conjecture of many-variant history, alternative history, or counterfactual history is necessary for mathematical history. Conclusions about philosophy of history are inferred.
    Download  
     
    Export citation  
     
    Bookmark  
  • Философия на квантовата информация.Vasil Penchev - 2009 - Sofia: BAS: IPhR.
    The book is devoted to the contemporary stage of quantum mechanics – quantum information, and especially to its philosophical interpretation and comprehension: the first one of a series monographs about the philosophy of quantum information. The second will consider Be l l ’ s inequalities, their modified variants and similar to them relations. The beginning of quantum information was in the thirties of the last century. Its speed development has started over the last two decades. The main phenomenon is entanglement. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • All science as rigorous science: the principle of constructive mathematizability of any theory.Vasil Penchev - 2020 - Logic and Philosophy of Mathematics eJournal 12 (12):1-15.
    A principle, according to which any scientific theory can be mathematized, is investigated. Social science, liberal arts, history, and philosophy are meant first of all. That kind of theory is presupposed to be a consistent text, which can be exhaustedly represented by a certain mathematical structure constructively. In thus used, the term “theory” includes all hypotheses as yet unconfirmed as already rejected. The investigation of the sketch of a possible proof of the principle demonstrates that it should be accepted rather (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Skolem’s “paradox” as logic of ground: The mutual foundation of both proper and improper interpretations.Vasil Penchev - 2020 - Epistemology eJournal (Elsevier: SSRN) 13 (19):1-16.
    A principle, according to which any scientific theory can be mathematized, is investigated. That theory is presupposed to be a consistent text, which can be exhaustedly represented by a certain mathematical structure constructively. In thus used, the term “theory” includes all hypotheses as yet unconfirmed as already rejected. The investigation of the sketch of a possible proof of the principle demonstrates that it should be accepted rather a metamathematical axiom about the relation of mathematics and reality. Its investigation needs philosophical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Modal set theory.Christopher Menzel - 2018 - In Otávio Bueno & Scott A. Shalkowski (eds.), The Routledge Handbook of Modality. New York: Routledge.
    This article presents an overview of the basic philosophical motivations for, and some recent work in, modal set theory.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Formalization, Syntax and the Standard Model of Arithmetic.Luca Bellotti - 2007 - Synthese 154 (2):199-229.
    I make an attempt at the description of the delicate role of the standard model of arithmetic for the syntax of formal systems. I try to assess whether the possible instability in the notion of finiteness deriving from the nonstandard interpretability of arithmetic affects the very notions of syntactic metatheory and of formal system. I maintain that the crucial point of the whole question lies in the evaluation of the phenomenon of formalization. The ideas of Skolem, Zermelo, Beth and Carnap (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Deflating skolem.F. A. Muller - 2005 - Synthese 143 (3):223-253.
    . Remarkably, despite the tremendous success of axiomatic set-theory in mathematics, logic and meta-mathematics, e.g., model-theory, two philosophical worries about axiomatic set-theory as the adequate catch of the set-concept keep haunting it. Having dealt with one worry in a previous paper in this journal, we now fulfil a promise made there, namely to deal with the second worry. The second worry is the Skolem Paradox and its ensuing Skolemite skepticism. We present a comparatively novel and simple analysis of the argument (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Quantum information as the information of infinite collections or series.Vasil Penchev - 2020 - Information Theory and Research eJournal (Elsevier: SSRN) 1 (14):1-8.
    The quantum information introduced by quantum mechanics is equivalent to a certain generalization of classical information: from finite to infinite series or collections. The quantity of information is the quantity of choices measured in the units of elementary choice. The “qubit”, can be interpreted as that generalization of “bit”, which is a choice among a continuum of alternatives. The axiom of choice is necessary for quantum information. The coherent state is transformed into a well-ordered series of results in time after (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Non-standard numbers: a semantic obstacle for modelling arithmetical reasoning.Anderson De Araújo & Walter Carnielli - 2012 - Logic Journal of the IGPL 20 (2):477-485.
    The existence of non-standard numbers in first-order arithmetics is a semantic obstacle for modelling our arithmetical skills. This article argues that so far there is no adequate approach to overcome such a semantic obstacle, because we can also find out, and deal with, non-standard elements in Turing machines.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Philosophical Impact of the Löwenheim-Skolem Theorem.Miloš Arsenijević - 2011 - In Majda Trobok, Nenad Miščević & Berislav Žarnić (eds.), Between Logic and Reality: Modeling Inference, Action and Understanding. Dordrecht and New York: Springer. pp. 59--81.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Herbrand semantics, the potential infinite, and ontology-free logic.Theodore Hailperin - 1992 - History and Philosophy of Logic 13 (1):69-90.
    This paper investigates the ontological presuppositions of quantifier logic. It is seen that the actual infinite, although present in the usual completeness proofs, is not needed for a proper semantic foundation. Additionally, quantifier logic can be given an adequate formulation in which neither the notion of individual nor that of a predicate appears.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Skolem and the löwenheim-skolem theorem: a case study of the philosophical significance of mathematical results.Alexander George - 1985 - History and Philosophy of Logic 6 (1):75-89.
    The dream of a community of philosophers engaged in inquiry with shared standards of evidence and justification has long been with us. It has led some thinkers puzzled by our mathematical experience to look to mathematics for adjudication between competing views. I am skeptical of this approach and consider Skolem's philosophical uses of the Löwenheim-Skolem Theorem to exemplify it. I argue that these uses invariably beg the questions at issue. I say ?uses?, because I claim further that Skolem shifted his (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Some Uses of Logic in Rigorous Philosophy.Guillermo E. Rosado Haddock - 2010 - Axiomathes 20 (2-3):385-398.
    This paper is concerned with the use of logic to solve philosophical problems. Such use of logic goes counter to the prevailing empiricist tradition in analytic circles. Specifically, model-theoretic tools are applied to three fundamental issues in the philosophy of logic and mathematics, namely, to the issue of the existence of mathematical entities, to the dispute between first- and second-order logic and to the definition of analyticity.
    Download  
     
    Export citation  
     
    Bookmark  
  • God, Logic, and Quantum Information.Vasil Penchev - 2020 - Information Theory and Research eJournal (Elsevier: SSRN) 1 (20):1-10.
    Quantum information is discussed as the universal substance of the world. It is interpreted as that generalization of classical information, which includes both finite and transfinite ordinal numbers. On the other hand, any wave function and thus any state of any quantum system is just one value of quantum information. Information and its generalization as quantum information are considered as quantities of elementary choices. Their units are correspondingly a bit and a qubit. The course of time is what generates choices (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Are Impossible Worlds Trivial?Mark Jago - 2013 - In Vit Puncochar & Petr Svarny (eds.), The Logica Yearbook 2012. College Publications.
    Theories of content are at the centre of philosophical semantics. The most successful general theory of content takes contents to be sets of possible worlds. But such contents are very coarse-grained, for they cannot distinguish between logically equivalent contents. They draw intensional but not hyperintensional distinctions. This is often remedied by including impossible as well as possible worlds in the theory of content. Yet it is often claimed that impossible worlds are metaphysically obscure; and it is sometimes claimed that their (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Hilbert and set theory.Burton Dreben & Akihiro Kanamori - 1997 - Synthese 110 (1):77-125.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Intuitionistic sets and ordinals.Paul Taylor - 1996 - Journal of Symbolic Logic 61 (3):705-744.
    Transitive extensional well founded relations provide an intuitionistic notion of ordinals which admits transfinite induction. However these ordinals are not directed and their successor operation is poorly behaved, leading to problems of functoriality. We show how to make the successor monotone by introducing plumpness, which strengthens transitivity. This clarifies the traditional development of successors and unions, making it intuitionistic; even the (classical) proof of trichotomy is made simpler. The definition is, however, recursive, and, as their name suggests, the plump ordinals (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Intuitionism and Logical Tolerance.B. G. Sundholm - unknown
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Reason and intuition.Charles Parsons - 2000 - Synthese 125 (3):299-315.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Issues in the philosophy of logic: an unorthodox approach.Guillermo E. Rosado Haddock - 2007 - Principia: An International Journal of Epistemology 11 (1):25-44.
    In this paper six of the most important issues in the philosophy of logic are examined from a standpoint that rejects the First Commandment of empiricist analytic philosophy, namely, Ockham’s razor. Such a standpoint opens the door to the clarification of such fundamental issues and to possible new solutions to each of them.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Cut as Consequence.Curtis Franks - 2010 - History and Philosophy of Logic 31 (4):349-379.
    The papers where Gerhard Gentzen introduced natural deduction and sequent calculi suggest that his conception of logic differs substantially from the now dominant views introduced by Hilbert, Gödel, Tarski, and others. Specifically, (1) the definitive features of natural deduction calculi allowed Gentzen to assert that his classical system nk is complete based purely on the sort of evidence that Hilbert called ?experimental?, and (2) the structure of the sequent calculi li and lk allowed Gentzen to conceptualize completeness as a question (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Perspective on Hilbert.David E. Rowe - 1997 - Perspectives on Science 5 (4):533-570.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)Zermelo: definiteness and the universe of definable sets.Heinz-Dieter Ebbinghaus - 2003 - History and Philosophy of Logic 24 (3):197-219.
    Using hitherto unpublished manuscripts from the Zermelo Nachlass, I describe the development of the notion of definiteness and the discussion about it, giving a conclusive picture of Zermelo's thoughts up to the late thirties. As it turns out, Zermelo's considerations about definiteness are intimately related to his concept of a Cantorian universe of categorically definable sets that may be considered an inner model of set theory in an ideationally given universe of classes.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • “Mathematics is the Logic of the Infinite”: Zermelo’s Project of Infinitary Logic.Jerzy Pogonowski - 2021 - Studies in Logic, Grammar and Rhetoric 66 (3):673-708.
    In this paper I discuss Ernst Zermelo’s ideas concerning the possibility of developing a system of infinitary logic that, in his opinion, should be suitable for mathematical inferences. The presentation of Zermelo’s ideas is accompanied with some remarks concerning the development of infinitary logic. I also stress the fact that the second axiomatization of set theory provided by Zermelo in 1930 involved the use of extremal axioms of a very specific sort.1.
    Download  
     
    Export citation  
     
    Bookmark  
  • Epistemology Versus Ontology: Essays on the Philosophy and Foundations of Mathematics in Honour of Per Martin-Löf.Peter Dybjer, Sten Lindström, Erik Palmgren & Göran Sundholm (eds.) - 2012 - Dordrecht, Netherland: Springer.
    This book brings together philosophers, mathematicians and logicians to penetrate important problems in the philosophy and foundations of mathematics. In philosophy, one has been concerned with the opposition between constructivism and classical mathematics and the different ontological and epistemological views that are reflected in this opposition. The dominant foundational framework for current mathematics is classical logic and set theory with the axiom of choice. This framework is, however, laden with philosophical difficulties. One important alternative foundational programme that is actively pursued (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Conceptions and paradoxes of sets.G. Aldo Antonelli - 1999 - Philosophia Mathematica 7 (2):136-163.
    This paper is concerned with the way different axiom systems for set theory can be justified by appeal to such intuitions as limitation of size, predicativity, stratification, etc. While none of the different conceptions historically resulting from the impetus to provide a solution to the paradoxes turns out to rest on an intuition providing an unshakeable foundation,'each supplies a picture of the set-theoretic universe that is both useful and internally well motivated. The same is true of more recently proposed axiom (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On Gödel's awareness of Skolem's Helsinki lecture.Mark van Atten - 2005 - History and Philosophy of Logic 26 (4):321-326.
    Gödel always claimed that he did not know Skolem's Helsinki lecture when writing his dissertation. Some questions and doubts have been raised about this claim, in particular on the basis of a library slip showing that he had requested Skolem's paper in 1928. It is shown that this library slip does not constitute evidence against Gödel's claim, and that, on the contrary, the library slip and other archive material actually corroborate what Gödel said.
    Download  
     
    Export citation  
     
    Bookmark   1 citation