- Realism in mathematics.Penelope Maddy - 1990 - New York: Oxford University Prress.details
|
|
The potential hierarchy of sets.Øystein Linnebo - 2013 - Review of Symbolic Logic 6 (2):205-228.details
|
|
The Boundary Stones of Thought: An Essay in the Philosophy of Logic.Ian Rumfitt - 2015 - Oxford, England: Oxford University Press.details
|
|
Foundations of Set Theory.Abraham Adolf Fraenkel & Yehoshua Bar-Hillel - 1973 - Atlantic Highlands, NJ, USA: Elsevier.details
|
|
(5 other versions)What is Cantor's Continuum Problem?Kurt Gödel - 1947 - The American Mathematical Monthly 54 (9):515--525.details
|
|
The set-theoretic multiverse.Joel David Hamkins - 2012 - Review of Symbolic Logic 5 (3):416-449.details
|
|
A Logical Journey: From Gödel to Philosophy.Hao Wang - 1996 - Bradford.details
|
|
[Omnibus Review].Thomas Jech - 1992 - Journal of Symbolic Logic 57 (1):261-262.details
|
|
(2 other versions)Set Theory.T. Jech - 2005 - Bulletin of Symbolic Logic 11 (2):243-245.details
|
|
How we learn mathematical language.Vann McGee - 1997 - Philosophical Review 106 (1):35-68.details
|
|
(2 other versions)Set theory.Thomas Jech - 1981 - Journal of Symbolic Logic.details
|
|
Believing the axioms. I.Penelope Maddy - 1988 - Journal of Symbolic Logic 53 (2):481-511.details
|
|
The Higher Infinite: Large Cardinals in Set Theory from Their Beginnings.Akihiro Kanamori - 1994 - Springer.details
|
|
A Logical Journey. From Gödel to Philosophy.Hao Wang - 1998 - Philosophy 73 (285):495-504.details
|
|
(5 other versions)What is Cantor's Continuum Problem (1964 version).Kurt Gödel - 1964 - Journal of Symbolic Logic (2):116-117.details
|
|
Set Theory: An Introduction to Large Cardinals.F. R. Drake & T. J. Jech - 1976 - British Journal for the Philosophy of Science 27 (2):187-191.details
|
|
Believing the axioms. II.Penelope Maddy - 1988 - Journal of Symbolic Logic 53 (3):736-764.details
|
|
The Axiom of Determinacy, Forcing Axioms, and the Nonstationary Ideal.W. Hugh Woodin - 2002 - Bulletin of Symbolic Logic 8 (1):91-93.details
|
|
On the question of absolute undecidability.Peter Koellner - 2010 - In Kurt Gödel, Solomon Feferman, Charles Parsons & Stephen G. Simpson (eds.), Kurt Gödel: essays for his centennial. Ithaca, NY: Association for Symbolic Logic. pp. 153-188.details
|
|
On reflection principles.Peter Koellner - 2009 - Annals of Pure and Applied Logic 157 (2-3):206-219.details
|
|
The Reality of Mathematics and the Case of Set Theory.Daniel Isaacson - 2010 - In Zsolt Novák & András Simonyi (eds.), Truth, reference, and realism. New York: Central European University Press. pp. 1-76.details
|
|
(2 other versions)Set Theory.Thomas Jech - 1999 - Studia Logica 63 (2):300-300.details
|
|
Global Reflection Principles.P. D. Welch - 2017 - In I. Niiniluoto, H. Leitgeb, P. Seppälä & E. Sober (eds.), Logic, Methodology and Philosophy of Science - Proceedings of the 15th International Congress, 2015. College Publications.details
|
|
Reviews. Kurt Gödel. What is Cantor's continuum problem? The American mathematical monthly, vol. 54 , pp. 515–525.S. C. Kleene - 1948 - Journal of Symbolic Logic 13 (2):116-117.details
|
|
Descriptive Set Theory.Yiannis Nicholas Moschovakis - 1982 - Studia Logica 41 (4):429-430.details
|
|
(1 other version)Zur Frage der Unendlichkeitsschemata in der axiomatischen Mengenlehre.Paul Bernays - 1961 - In Bar-Hillel, Yehoshua & [From Old Catalog] (eds.), Essays on the Foundations of Mathematics. Jerusalem,: Magnes Press. pp. 3--49.details
|
|
Zermelo's Conception of Set Theory and Reflection Principles.W. W. Tait - 1998 - In Matthias Schirn (ed.), The Philosophy of Mathematics Today: Papers From a Conference Held in Munich From June 28 to July 4,1993. Oxford, England: Clarendon Press.details
|
|
Constructing cardinals from below.William Tait - manuscriptdetails
|
|
WHAT CAN A CATEGORICITY THEOREM TELL US?Toby Meadows - 2013 - Review of Symbolic Logic (3):524-544.details
|
|
(1 other version)Zur Frage der Unendlichkeitsschemata in der Axiomatischen Mengenlehre.Paul Bernays - 1962 - Journal of Symbolic Logic 27 (3):353-354.details
|
|